Recursive regularisation parameter selection for sparse RLS algorithm
In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity,...
Uložené v:
| Vydané v: | Electronics letters Ročník 54; číslo 5; s. 286 - 287 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
The Institution of Engineering and Technology
08.03.2018
|
| Predmet: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an $l_0$l0-norm and an $l_{2\comma 0}$l2,0-norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time-varying sparse system with both random sparsity and group sparsity. |
|---|---|
| AbstractList | In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an $l_0$l0-norm and an $l_{2\comma 0}$l2,0-norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time-varying sparse system with both random sparsity and group sparsity. In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an ‐norm and an ‐norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time‐varying sparse system with both random sparsity and group sparsity. In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an l0‐norm and an l2,0‐norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time‐varying sparse system with both random sparsity and group sparsity. |
| Author | Zhang, Youwen Sun, Dajun Liu, Lu |
| Author_xml | – sequence: 1 givenname: Dajun surname: Sun fullname: Sun, Dajun organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China – sequence: 2 givenname: Lu surname: Liu fullname: Liu, Lu email: liulu_uwa@hrbeu.edu.cn organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China – sequence: 3 givenname: Youwen surname: Zhang fullname: Zhang, Youwen organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China |
| BookMark | eNp9kMFKw0AQhhepYK29-QA5ePBg6mx20iRHLa0KAaEqeAubzWxd2SZlN1X69qatB5HqaZiZ7x-G75T16qYmxs45jDhgdk12FAFPRhhhdMT6XMQQZpy_9lgfgIsw5hmesKH3pgSOHMeAvM-mc1Jr580HBY4Wayud8bI1TR2spJNLaskFniyp3Uw3XdctPAXz_CmQdtE4074tz9ixltbT8LsO2Mts-jy5D_PHu4fJTR4qgSINBZZAohynCaUpCpVghlBVuiRFkILGTHNFMVZpTIhJpmksZJJAWokKSojEgEX7u8o13jvShTLt7t3WSWMLDsXWRUG22Looti660NWv0MqZpXSbv_B4j38aS5t_2WKa59HtDGJM0i53sc8Zaov3Zu3qzkRH_MBXle6wywPYwU--AFVtizI |
| CitedBy_id | crossref_primary_10_1007_s00034_022_02197_y crossref_primary_10_1080_00207721_2021_1889707 crossref_primary_10_1155_2022_5877563 crossref_primary_10_3390_app9010202 crossref_primary_10_1007_s11277_021_08155_2 |
| Cites_doi | 10.1016/j.sigpro.2011.02.013 10.1109/LSP.2011.2159373 10.1049/el.2012.3590 10.1109/TSP.2010.2046897 10.1109/TSP.2013.2258340 10.1109/TSP.2012.2192924 10.1109/TSP.2010.2048103 10.1109/TSP.2002.800414 10.1109/TASL.2008.2010156 10.1002/acs.2449 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2017.4242 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 287 |
| ExternalDocumentID | 10_1049_el_2017_4242 ELL2BF05478 |
| Genre | rapidPublication |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 50909029; 61471138; 61531012 – fundername: National Natural Science Foundation of China funderid: 50909029; 61471138; 61531012 |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3438-34b0e3b687e8843c74940ddfbece080f49f1ce54d85e4479fe63a7708d3d0b023 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426262200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Tue Nov 18 22:32:30 EST 2025 Wed Oct 29 21:20:29 EDT 2025 Wed Jan 22 16:59:10 EST 2025 Tue Jan 05 21:45:57 EST 2021 Thu May 09 18:04:54 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | sparse recursive least squares algorithm adaptive filters least squares approximations l0-norm adaptive filtering recursive regularisation parameter selection method random sparsity sparse RLS algorithm l2,0-norm group sparsity convex regularised penalty function time-varying sparse system |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3438-34b0e3b687e8843c74940ddfbece080f49f1ce54d85e4479fe63a7708d3d0b023 |
| PageCount | 2 |
| ParticipantIDs | crossref_citationtrail_10_1049_el_2017_4242 iet_journals_10_1049_el_2017_4242 wiley_primary_10_1049_el_2017_4242_ELL2BF05478 crossref_primary_10_1049_el_2017_4242 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-08 |
| PublicationDateYYYYMMDD | 2018-03-08 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2018 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Martin, R.K.; Sethares, W.A.; Williamson, R.C. (C2) 2002; 50 Angelosante, D.; Bazerque, J.; Giannakis, G. (C5) 2010; 58 Eksioglu, E.M. (C6) 2011; 5 Yang, S.; Xu, J.; Wang, M.H. (C12) 2013; 49 Babadi, B.; Kalouptsidis, N.; Tarokh, V. (C4) 2010; 58 Eksioglu, E.M.; Tanc, A.K. (C8) 2011; 18 Eksioglu, E.M. (C11) 2014; 28 Vega, L.R.; Rey, H.; Benesty, J. (C3) 2009; 17 Kalouptsidis, N.; Mileounis, G.; Babadi, B. (C7) 2011; 91 Zakharov, Y.V.; Nascimento, V.H. (C10) 2013; 61 Chen, Y.; Hero, A.O. (C9) 2012; 60 2012; 60 2010; 58 2003 2002 2014; 28 2013; 49 2002; 50 2011; 91 2011; 5 2011; 18 2013; 61 2009; 17 e_1_2_7_6_1 Bertsekas D. (e_1_2_7_14_1) 2003 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 Eksioglu E.M. (e_1_2_7_7_1) 2011; 5 Haykin S. (e_1_2_7_2_1) 2002 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 |
| References_xml | – volume: 91 start-page: 1910 issue: 8 year: 2011 end-page: 1919 ident: C7 article-title: Adaptive algorithms for sparse system identification publication-title: Signal Process. – volume: 61 start-page: 3198 issue: 12 year: 2013 end-page: 3213 ident: C10 article-title: DCD-RLS adaptive filters with penalties for sparse identification publication-title: Trans. Signal Process. – volume: 58 start-page: 3436 issue: 7 year: 2010 end-page: 3477 ident: C5 article-title: Online adaptive estimation of sparse signals: where RLS meets the -norm publication-title: Trans. Signal Process. – volume: 28 start-page: 1398 issue: 12 year: 2014 end-page: 1412 ident: C11 article-title: Group sparse RLS algorithms publication-title: Int. J. Adapt. Control Signal Process. – volume: 50 start-page: 1883 issue: 8 year: 2002 end-page: 1894 ident: C2 article-title: Exploiting sparsity in adaptive filters publication-title: Trans. Signal Process. – volume: 49 start-page: 337 issue: 5 year: 2013 end-page: 338 ident: C12 article-title: Object tracking using random sparse appearance model publication-title: Electron. Lett. – volume: 60 start-page: 3978 issue: 8 year: 2012 end-page: 3987 ident: C9 article-title: Recursive group lasso publication-title: Trans. Signal Process. – volume: 17 start-page: 572 issue: 4 year: 2009 end-page: 581 ident: C3 article-title: A family of robust algorithms exploiting sparsity in adaptive filters publication-title: Trans. Audio Speech Lang. Process. – volume: 18 start-page: 470 issue: 8 year: 2011 end-page: 473 ident: C8 article-title: RLS algorithm with convex regularization publication-title: Signal Process. Lett. – volume: 5 start-page: 480 issue: 5 year: 2011 end-page: 487 ident: C6 article-title: Sparsity regularised recursive least squares adaptive filtering publication-title: Signal Process.. – volume: 58 start-page: 4013 issue: 8 year: 2010 end-page: 4025 ident: C4 article-title: SPARLS: The sparse RLS algorithm publication-title: Trans. Signal Process. – volume: 28 start-page: 1398 issue: 12 year: 2014 end-page: 1412 article-title: Group sparse RLS algorithms publication-title: Int. J. Adapt. Control Signal Process. – volume: 91 start-page: 1910 issue: 8 year: 2011 end-page: 1919 article-title: Adaptive algorithms for sparse system identification publication-title: Signal Process. – volume: 5 start-page: 480 issue: 5 year: 2011 end-page: 487 article-title: Sparsity regularised recursive least squares adaptive filtering publication-title: Signal Process.. – year: 2002 – year: 2003 – volume: 61 start-page: 3198 issue: 12 year: 2013 end-page: 3213 article-title: DCD‐RLS adaptive filters with penalties for sparse identification publication-title: Trans. Signal Process. – volume: 49 start-page: 337 issue: 5 year: 2013 end-page: 338 article-title: Object tracking using random sparse appearance model publication-title: Electron. Lett. – volume: 17 start-page: 572 issue: 4 year: 2009 end-page: 581 article-title: A family of robust algorithms exploiting sparsity in adaptive filters publication-title: Trans. Audio Speech Lang. Process. – volume: 50 start-page: 1883 issue: 8 year: 2002 end-page: 1894 article-title: Exploiting sparsity in adaptive filters publication-title: Trans. Signal Process. – volume: 58 start-page: 3436 issue: 7 year: 2010 end-page: 3477 article-title: Online adaptive estimation of sparse signals: where RLS meets the ‐norm publication-title: Trans. Signal Process. – volume: 58 start-page: 4013 issue: 8 year: 2010 end-page: 4025 article-title: SPARLS: The sparse RLS algorithm publication-title: Trans. Signal Process. – volume: 18 start-page: 470 issue: 8 year: 2011 end-page: 473 article-title: RLS algorithm with convex regularization publication-title: Signal Process. Lett. – volume: 60 start-page: 3978 issue: 8 year: 2012 end-page: 3987 article-title: Recursive group lasso publication-title: Trans. Signal Process. – ident: e_1_2_7_8_1 doi: 10.1016/j.sigpro.2011.02.013 – ident: e_1_2_7_9_1 doi: 10.1109/LSP.2011.2159373 – volume-title: Convex analysis and optimization year: 2003 ident: e_1_2_7_14_1 – volume-title: Adaptive filter theory year: 2002 ident: e_1_2_7_2_1 – ident: e_1_2_7_13_1 doi: 10.1049/el.2012.3590 – volume: 5 start-page: 480 issue: 5 year: 2011 ident: e_1_2_7_7_1 article-title: Sparsity regularised recursive least squares adaptive filtering publication-title: Signal Process.. – ident: e_1_2_7_6_1 doi: 10.1109/TSP.2010.2046897 – ident: e_1_2_7_11_1 doi: 10.1109/TSP.2013.2258340 – ident: e_1_2_7_10_1 doi: 10.1109/TSP.2012.2192924 – ident: e_1_2_7_5_1 doi: 10.1109/TSP.2010.2048103 – ident: e_1_2_7_3_1 doi: 10.1109/TSP.2002.800414 – ident: e_1_2_7_4_1 doi: 10.1109/TASL.2008.2010156 – ident: e_1_2_7_12_1 doi: 10.1002/acs.2449 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.2598705 |
| Snippet | In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 286 |
| SubjectTerms | adaptive filtering adaptive filters Circuits and systems convex regularised penalty function group sparsity l0‐norm l2,0‐norm least squares approximations random sparsity recursive regularisation parameter selection method sparse recursive least squares algorithm sparse RLS algorithm time‐varying sparse system |
| Title | Recursive regularisation parameter selection for sparse RLS algorithm |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2017.4242 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2017.4242 |
| Volume | 54 |
| WOSCitedRecordID | wos000426262200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTsMwLILBAQ68EQOGggQnVGgXt0mOCG0CqZqm8dqtStIUJu2ltvD9JG0Z22FIiEsPqd1GdvyQ7dgIXfjSOK1KSUdwxRzgMnBkrIjDE-prN-FQ1ua8hLTTYf0-71YBN3sXpuwPMQu4Wcko9LUVcCHLKSTGqbVMtIkDj16DMTKraM3zCLWnugndWRbBqNpiuArxXSvU_arw3eDfzGMvmKTVgc4XHdXC0rS3_7vHHbRV-Zj4tjwUu2hFj_fQ5lznwX3U6tk4uy1dx2kxjT6tynqw7QU-sjUyOCtG5Ng149hio3nSTONe-IjF8G2SDvL30QF6bree7u6daqKCowgYzUZAuprIgFHNGBBFgYMbx4lhpDauYwI88ZT2IWa-BqA80QERlLosJrErjXk_RLXxZKyPEGYqZhKIELpJAEBwqgXxRNA0HxPa8-ro6puokarajdupF8OoSHsDj_QwssSJLHHq6HIGPS3bbCyBOzf8iSo5y5bANBZgWuHPu2gaJ3VU8uzXHxmssGl72AJlx39FOEEbZr24uuiyU1TL0w_dQOvqMx9k6VlxRs3z9aHzBYh25ig |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6RUKlwgL4Q4dG6Unuq3NrZcXb3iFBQUE0UUVrlZq3X4xIpJJET-vu7Y5uQHIKEuNoztjW78_Du7PcBfIlSV7Ram_pGW-WjTjt-mlnh61xGFOQaq96cP7Hs99VwqAc1zymfhanwIZYLbuwZZbxmB-cF6eqHExkkk3jnIJTf0WWZBmyjSzRMYdDGwXIbwcXakl1FRAF79bDufHf6P1a113JSY0SL9Uq1TDUX-y_-yDewV1eZ3lk1Ld7CFk3ewe4K9uB76F7zSjs3r3tFyUdf1I09HqOB33GXjDcvSXL4mittPRd7ijl51_Evz4z_TovR4vbuA_y-6N6c9_yaU8G3Al1sE5gGJNKOkqQUCitRY5BluRtKcsVjjjoPLUWYqYgQpc6pI4yUgcpEFqQuwR9AczKd0CF4ymYqRWEMtQUiGi3JiNB02u5hhsKwBd8erJrYGnCceS_GSbnxjTqhccLGSdg4Lfi6lJ5VQBsb5D67AUpqT5tvkDldk-nGj_eSWZa3oBq0J1_ktOI2o9iiVEfPVfgEr3s3V3ESX_Z_HsOOkykPMgbqBJqL4p5O4ZX9txjNi4_lhP0Pz3bo-w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBN2I8iwQnVGgXd0mOCDaBqKaJl3ar0tSFSdtA3eD3k7RlbIchIa6t3VZ2_GjsfAY4CWKTtGodu0pq4aKMa26caObKlAfkpRKL3pznkDebot2WrXLOqT0LU-BDjDbcrGXk_toaOL0nafHDiRYkk2zlwOfnaKLMLMxjYNyshXbG1qiMYHxtPl2FBZ616nbZ-W74L8a5J2LSbIeGk5lqHmoaq__-yDVYKbNM57JYFuswQ_0NWB7DHtyE-r3dabfN606Wz6PPysYex6KB92yXjDPIh-TYaya1dYzvyQbk3IcPjuq-vGWd4WtvC54a9cerG7ecqeBqhsa3MYw9YnFNcBICmeYo0UuS1KiSTPKYokx9TQEmIiBELlOqMcW5JxKWeLEJ8Nsw13_r0w44QiciRqYUVRkiKslJMV_VquZhiny_AmffUo10CThu5150o7zwjTKibmSFE1nhVOB0RP1eAG1MoTs2CopKSxtMoTmYoKmHP_cio58KFEr79UWGK6xaFFvkYvevDEew2LpuROFt824PlgxJfo7RE_swN8w-6AAW9OewM8gO8_X6BZIY6H8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+regularisation+parameter+selection+for+sparse+RLS+algorithm&rft.jtitle=Electronics+letters&rft.au=Sun%2C+Dajun&rft.au=Liu%2C+Lu&rft.au=Zhang%2C+Youwen&rft.date=2018-03-08&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=54&rft.issue=5&rft.spage=286&rft.epage=287&rft_id=info:doi/10.1049%2Fel.2017.4242&rft.externalDBID=10.1049%252Fel.2017.4242&rft.externalDocID=ELL2BF05478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |