Recursive regularisation parameter selection for sparse RLS algorithm

In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 54; H. 5; S. 286 - 287
Hauptverfasser: Sun, Dajun, Liu, Lu, Zhang, Youwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 08.03.2018
Schlagworte:
ISSN:0013-5194, 1350-911X, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an $l_0$l0-norm and an $l_{2\comma 0}$l2,0-norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time-varying sparse system with both random sparsity and group sparsity.
AbstractList In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an $l_0$l0-norm and an $l_{2\comma 0}$l2,0-norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time-varying sparse system with both random sparsity and group sparsity.
In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an ‐norm and an ‐norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time‐varying sparse system with both random sparsity and group sparsity.
In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS algorithm is regularised by a convex function, which equals the linear combination of two convex functions, one to cope with random sparsity, and the other to cope with group sparsity. The normal equations corresponding to the RLS algorithm with the proposed convex regularised penalty function are derived, and a recursive algorithm to update the regularisation parameters (i.e. the coefficients of the linear combination) is proposed. As an example, by using the linear combination of an l0‐norm and an l2,0‐norm as the penalty function, simulation results show that the proposed sparse RLS with recursive regularisation parameter selection can achieve better performance in terms of mean square error for a slowly time‐varying sparse system with both random sparsity and group sparsity.
Author Zhang, Youwen
Sun, Dajun
Liu, Lu
Author_xml – sequence: 1
  givenname: Dajun
  surname: Sun
  fullname: Sun, Dajun
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
– sequence: 2
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  email: liulu_uwa@hrbeu.edu.cn
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
– sequence: 3
  givenname: Youwen
  surname: Zhang
  fullname: Zhang, Youwen
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
BookMark eNp9kMFKw0AQhhepYK29-QA5ePBg6mx20iRHLa0KAaEqeAubzWxd2SZlN1X69qatB5HqaZiZ7x-G75T16qYmxs45jDhgdk12FAFPRhhhdMT6XMQQZpy_9lgfgIsw5hmesKH3pgSOHMeAvM-mc1Jr580HBY4Wayud8bI1TR2spJNLaskFniyp3Uw3XdctPAXz_CmQdtE4074tz9ixltbT8LsO2Mts-jy5D_PHu4fJTR4qgSINBZZAohynCaUpCpVghlBVuiRFkILGTHNFMVZpTIhJpmksZJJAWokKSojEgEX7u8o13jvShTLt7t3WSWMLDsXWRUG22Looti660NWv0MqZpXSbv_B4j38aS5t_2WKa59HtDGJM0i53sc8Zaov3Zu3qzkRH_MBXle6wywPYwU--AFVtizI
CitedBy_id crossref_primary_10_1007_s00034_022_02197_y
crossref_primary_10_1080_00207721_2021_1889707
crossref_primary_10_1155_2022_5877563
crossref_primary_10_3390_app9010202
crossref_primary_10_1007_s11277_021_08155_2
Cites_doi 10.1016/j.sigpro.2011.02.013
10.1109/LSP.2011.2159373
10.1049/el.2012.3590
10.1109/TSP.2010.2046897
10.1109/TSP.2013.2258340
10.1109/TSP.2012.2192924
10.1109/TSP.2010.2048103
10.1109/TSP.2002.800414
10.1109/TASL.2008.2010156
10.1002/acs.2449
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2017.4242
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 287
ExternalDocumentID 10_1049_el_2017_4242
ELL2BF05478
Genre rapidPublication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 50909029; 61471138; 61531012
– fundername: National Natural Science Foundation of China
  funderid: 50909029; 61471138; 61531012
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3438-34b0e3b687e8843c74940ddfbece080f49f1ce54d85e4479fe63a7708d3d0b023
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426262200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:32:30 EST 2025
Wed Oct 29 21:20:29 EDT 2025
Wed Jan 22 16:59:10 EST 2025
Tue Jan 05 21:45:57 EST 2021
Thu May 09 18:04:54 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords sparse recursive least squares algorithm
adaptive filters
least squares approximations
l0-norm
adaptive filtering
recursive regularisation parameter selection method
random sparsity
sparse RLS algorithm
l2,0-norm
group sparsity
convex regularised penalty function
time-varying sparse system
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3438-34b0e3b687e8843c74940ddfbece080f49f1ce54d85e4479fe63a7708d3d0b023
PageCount 2
ParticipantIDs crossref_citationtrail_10_1049_el_2017_4242
iet_journals_10_1049_el_2017_4242
wiley_primary_10_1049_el_2017_4242_ELL2BF05478
crossref_primary_10_1049_el_2017_4242
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2018-03-08
PublicationDateYYYYMMDD 2018-03-08
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-08
  day: 08
PublicationDecade 2010
PublicationTitle Electronics letters
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Martin, R.K.; Sethares, W.A.; Williamson, R.C. (C2) 2002; 50
Angelosante, D.; Bazerque, J.; Giannakis, G. (C5) 2010; 58
Eksioglu, E.M. (C6) 2011; 5
Yang, S.; Xu, J.; Wang, M.H. (C12) 2013; 49
Babadi, B.; Kalouptsidis, N.; Tarokh, V. (C4) 2010; 58
Eksioglu, E.M.; Tanc, A.K. (C8) 2011; 18
Eksioglu, E.M. (C11) 2014; 28
Vega, L.R.; Rey, H.; Benesty, J. (C3) 2009; 17
Kalouptsidis, N.; Mileounis, G.; Babadi, B. (C7) 2011; 91
Zakharov, Y.V.; Nascimento, V.H. (C10) 2013; 61
Chen, Y.; Hero, A.O. (C9) 2012; 60
2012; 60
2010; 58
2003
2002
2014; 28
2013; 49
2002; 50
2011; 91
2011; 5
2011; 18
2013; 61
2009; 17
e_1_2_7_6_1
Bertsekas D. (e_1_2_7_14_1) 2003
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Eksioglu E.M. (e_1_2_7_7_1) 2011; 5
Haykin S. (e_1_2_7_2_1) 2002
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – volume: 91
  start-page: 1910
  issue: 8
  year: 2011
  end-page: 1919
  ident: C7
  article-title: Adaptive algorithms for sparse system identification
  publication-title: Signal Process.
– volume: 61
  start-page: 3198
  issue: 12
  year: 2013
  end-page: 3213
  ident: C10
  article-title: DCD-RLS adaptive filters with penalties for sparse identification
  publication-title: Trans. Signal Process.
– volume: 58
  start-page: 3436
  issue: 7
  year: 2010
  end-page: 3477
  ident: C5
  article-title: Online adaptive estimation of sparse signals: where RLS meets the -norm
  publication-title: Trans. Signal Process.
– volume: 28
  start-page: 1398
  issue: 12
  year: 2014
  end-page: 1412
  ident: C11
  article-title: Group sparse RLS algorithms
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 50
  start-page: 1883
  issue: 8
  year: 2002
  end-page: 1894
  ident: C2
  article-title: Exploiting sparsity in adaptive filters
  publication-title: Trans. Signal Process.
– volume: 49
  start-page: 337
  issue: 5
  year: 2013
  end-page: 338
  ident: C12
  article-title: Object tracking using random sparse appearance model
  publication-title: Electron. Lett.
– volume: 60
  start-page: 3978
  issue: 8
  year: 2012
  end-page: 3987
  ident: C9
  article-title: Recursive group lasso
  publication-title: Trans. Signal Process.
– volume: 17
  start-page: 572
  issue: 4
  year: 2009
  end-page: 581
  ident: C3
  article-title: A family of robust algorithms exploiting sparsity in adaptive filters
  publication-title: Trans. Audio Speech Lang. Process.
– volume: 18
  start-page: 470
  issue: 8
  year: 2011
  end-page: 473
  ident: C8
  article-title: RLS algorithm with convex regularization
  publication-title: Signal Process. Lett.
– volume: 5
  start-page: 480
  issue: 5
  year: 2011
  end-page: 487
  ident: C6
  article-title: Sparsity regularised recursive least squares adaptive filtering
  publication-title: Signal Process..
– volume: 58
  start-page: 4013
  issue: 8
  year: 2010
  end-page: 4025
  ident: C4
  article-title: SPARLS: The sparse RLS algorithm
  publication-title: Trans. Signal Process.
– volume: 28
  start-page: 1398
  issue: 12
  year: 2014
  end-page: 1412
  article-title: Group sparse RLS algorithms
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 91
  start-page: 1910
  issue: 8
  year: 2011
  end-page: 1919
  article-title: Adaptive algorithms for sparse system identification
  publication-title: Signal Process.
– volume: 5
  start-page: 480
  issue: 5
  year: 2011
  end-page: 487
  article-title: Sparsity regularised recursive least squares adaptive filtering
  publication-title: Signal Process..
– year: 2002
– year: 2003
– volume: 61
  start-page: 3198
  issue: 12
  year: 2013
  end-page: 3213
  article-title: DCD‐RLS adaptive filters with penalties for sparse identification
  publication-title: Trans. Signal Process.
– volume: 49
  start-page: 337
  issue: 5
  year: 2013
  end-page: 338
  article-title: Object tracking using random sparse appearance model
  publication-title: Electron. Lett.
– volume: 17
  start-page: 572
  issue: 4
  year: 2009
  end-page: 581
  article-title: A family of robust algorithms exploiting sparsity in adaptive filters
  publication-title: Trans. Audio Speech Lang. Process.
– volume: 50
  start-page: 1883
  issue: 8
  year: 2002
  end-page: 1894
  article-title: Exploiting sparsity in adaptive filters
  publication-title: Trans. Signal Process.
– volume: 58
  start-page: 3436
  issue: 7
  year: 2010
  end-page: 3477
  article-title: Online adaptive estimation of sparse signals: where RLS meets the ‐norm
  publication-title: Trans. Signal Process.
– volume: 58
  start-page: 4013
  issue: 8
  year: 2010
  end-page: 4025
  article-title: SPARLS: The sparse RLS algorithm
  publication-title: Trans. Signal Process.
– volume: 18
  start-page: 470
  issue: 8
  year: 2011
  end-page: 473
  article-title: RLS algorithm with convex regularization
  publication-title: Signal Process. Lett.
– volume: 60
  start-page: 3978
  issue: 8
  year: 2012
  end-page: 3987
  article-title: Recursive group lasso
  publication-title: Trans. Signal Process.
– ident: e_1_2_7_8_1
  doi: 10.1016/j.sigpro.2011.02.013
– ident: e_1_2_7_9_1
  doi: 10.1109/LSP.2011.2159373
– volume-title: Convex analysis and optimization
  year: 2003
  ident: e_1_2_7_14_1
– volume-title: Adaptive filter theory
  year: 2002
  ident: e_1_2_7_2_1
– ident: e_1_2_7_13_1
  doi: 10.1049/el.2012.3590
– volume: 5
  start-page: 480
  issue: 5
  year: 2011
  ident: e_1_2_7_7_1
  article-title: Sparsity regularised recursive least squares adaptive filtering
  publication-title: Signal Process..
– ident: e_1_2_7_6_1
  doi: 10.1109/TSP.2010.2046897
– ident: e_1_2_7_11_1
  doi: 10.1109/TSP.2013.2258340
– ident: e_1_2_7_10_1
  doi: 10.1109/TSP.2012.2192924
– ident: e_1_2_7_5_1
  doi: 10.1109/TSP.2010.2048103
– ident: e_1_2_7_3_1
  doi: 10.1109/TSP.2002.800414
– ident: e_1_2_7_4_1
  doi: 10.1109/TASL.2008.2010156
– ident: e_1_2_7_12_1
  doi: 10.1002/acs.2449
SSID ssib014146041
ssj0012997
Score 2.259969
Snippet In this Letter, the authors propose a recursive regularisation parameter selection method for sparse recursive least squares (RLS) algorithm. The proposed RLS...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 286
SubjectTerms adaptive filtering
adaptive filters
Circuits and systems
convex regularised penalty function
group sparsity
l0‐norm
l2,0‐norm
least squares approximations
random sparsity
recursive regularisation parameter selection method
sparse recursive least squares algorithm
sparse RLS algorithm
time‐varying sparse system
Title Recursive regularisation parameter selection for sparse RLS algorithm
URI http://digital-library.theiet.org/content/journals/10.1049/el.2017.4242
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2017.4242
Volume 54
WOSCitedRecordID wos000426262200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSsNAcPF10INvsb6IoCeJbrLT7O5RpKJQitRXbyGbTLRQqyTV73dnE2t7UBAvOWxm2LDzzOw8GDvCUKc6Co0fJtz4EInQNylqP7fWKRBpIIwrH3toy05H9Xr6pg64US1M1R9iHHAjyXD6mgQ8MdUUEuvUEhHp4iCQp2CNzCybDwIhiatDuBnfIlhV64ariCYnoe7Vie8W_2wSe8okzfZxNO2oOktzufLfb1xly7WP6Z1XTLHGZnC4zpYmOg9usFaX4uyUuu4Vbhp9Uaf1eNQL_IVyZLzSjcihNevYelbzFCV63fatlwyeXov-6Pllk91ftu4urvx6ooKfCrCaTYDhKEykJCoFIpWggWdZbgmJ1nXMQedBik3IVBMBpM4xEomUXGUi48aa9y02N3wd4jbzuMkztL6bUmggAqWlTpomwIh-QThCg518HWqc1u3GaerFIHbX3qBjHMR0ODEdToMdj6HfqjYbP8AdWvrEtZyVP8DsT8G02t_v4rcsb7CKZr9uZLHaIfWwBal2_oqwyxbtuitd5GqPzY2Kd9xnC-nHqF8WB45H7fPxuvMJYJHkoQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4BmzR4YLCB6BgQpPE0BZz4GtuPCBWByCrEGOpbVCcXqNQWlBb-fnxO1tEHJiFekzslsn0_7Dt_H8APik1uktiGcV_YEBMZhzYnE5YuOkUyj6T118duUtXt6l7PXDY8p3wXpsaHmB24sWV4f80GzgfS9YYTGSSTuHIQqUN0UWYRPqALNExhEOPlrIzgfK1nV5FtwVbdazrfnf7RS-25mLQ4oOl8pupDzennd__kGqw2WWZwXC-LdVig8RdYeYE9-BU6V3zSzs3rQeX56KumsSdgNPARd8kEE0-Sw89cahs431NNKLhKfwf94e19NZjejTbgz2nn-uQsbDgVwlyi820SrSBpE61Ia5S5QoOiKEo3leSSxxJNGeXUxkK3CVGZkhLZV0roQhbCugC_CUvj-zFtQSBsWZDL3rQmiwlqo0y_bSNKeBMiCFvw8--oZnkDOM68F8PMF77RZDTMeHAyHpwWHMykH2qgjVfk9t0EZY2lTV6R2ZmT6aT_3mUPRdmCetL--yGnlcaMYotKf3urwh58Orv-lWbpefdiG5adjL_IKPR3WJpWj7QDH_On6WBS7foF-wyc--d0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xMSH2MLYxRNnYMml7mgJOfIntR8RaMS2qKjZQ36I6uYxKbUFpx9-PzwkdfWAS4jW5UyKf78O-u98BfKHYFCaNbRiPhA0xlXFoCzJh5bxTJItIWt8-dpmpfl8Ph2bQzjnlXpgGH2J54caa4e01KzjdlFVz4EQGySTOHETqCJ2XWYdNTJyZZWhnHCzTCM7W-ukqMhGs1cO28t3xHz_kXvFJ62NarEaq3tX0dp79k6_hVRtlBifNtngDazR7Cy8fYA_uQvecb9q5eD2o_Tz6ui3sCRgNfMpVMsHcD8nhZy60DZztqecUnGe_gtHkz3U9XlxN38FFr_v79CxsZyqEhURn2yRaQdKmWpHWKAuFBkVZVk6U5ILHCk0VFZRgqRNCVKaiVI6UErqUpbDOwe_Bxux6RvsQCFuV5KI3rcliitooM0psRCkfQgRhB77dr2petIDjPPdikvvEN5qcJjkvTs6L04GvS-qbBmjjEbrPTkB5q2nzR2gOV2i62b93uZNPBxqh_fdDjiuLGcUWlT54KsMn2Bp87-XZj_7P97DtSHwfo9AfYGNR_6VDeFHcLsbz-qPfr3dhJOb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+regularisation+parameter+selection+for+sparse+RLS+algorithm&rft.jtitle=Electronics+letters&rft.au=Sun%2C+Dajun&rft.au=Liu%2C+Lu&rft.au=Zhang%2C+Youwen&rft.date=2018-03-08&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=54&rft.issue=5&rft.spage=286&rft.epage=287&rft_id=info:doi/10.1049%2Fel.2017.4242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2017_4242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon