Efficient approach for EEG-based emotion recognition
Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can give us a more diverse insight on emotional states. The aim of this study is to develop an efficient framework based on deep learning concept...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 56; číslo 25; s. 1361 - 1364 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
10.12.2020
|
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can give us a more diverse insight on emotional states. The aim of this study is to develop an efficient framework based on deep learning concept for automatic identification of human emotion from EEG signals. In the proposed framework, the signals are pre-processing for removing noises by low-pass filtering and then delta rhythm is extracted. After that, the extracted rhythm signals are converted into the EEG rhythm images by employing the continuous wavelet transform and then deep features are discovered by using a pre-trained convolutional neural networks model. Afterwards, MobileNetv2 is used for deep feature selection to obtain the most efficient features and finally, long short term memory method is employed for classification of selected features. The proposed methodology is tested on ‘DEAP EEG data set’ (publicly available). This study considers two emotions namely ‘Valence’ and ‘Arousal’ for classification. The experimental results demonstrate that the proposed approach produced accuracies of 96.1% for low/high valence and 99.6% for low/high arousal classification. A further comparison of the proposed method is also carried out and it is seen that the proposed method outperforms other compared methods. |
|---|---|
| AbstractList | Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can give us a more diverse insight on emotional states. The aim of this study is to develop an efficient framework based on deep learning concept for automatic identification of human emotion from EEG signals. In the proposed framework, the signals are pre‐processing for removing noises by low‐pass filtering and then delta rhythm is extracted. After that, the extracted rhythm signals are converted into the EEG rhythm images by employing the continuous wavelet transform and then deep features are discovered by using a pre‐trained convolutional neural networks model. Afterwards, MobileNetv2 is used for deep feature selection to obtain the most efficient features and finally, long short term memory method is employed for classification of selected features. The proposed methodology is tested on ‘DEAP EEG data set’ (publicly available). This study considers two emotions namely ‘Valence’ and ‘Arousal’ for classification. The experimental results demonstrate that the proposed approach produced accuracies of 96.1% for low/high valence and 99.6% for low/high arousal classification. A further comparison of the proposed method is also carried out and it is seen that the proposed method outperforms other compared methods. |
| Author | Şengür, D Siuly, S |
| Author_xml | – sequence: 1 givenname: D surname: Şengür fullname: Şengür, D email: dsengur@firat.edu.tr organization: Education Faculty, Educational Science Department, Firat University, Elazig, Turkey – sequence: 2 givenname: S surname: Siuly fullname: Siuly, S organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Australia |
| BookMark | eNp9kE9LxDAQxYOs4LruzQ_QgwcPds2fSdIedemuQsGLgreQNolGuk1JK7Lf3pb1IKKeZhje7828OUWzNrQWoXOCVwRDfm2bFcUUr6jI-BGaE8ZxmhPyPENzjAlLOcnhBC373leYAAGBgcwRFM752tt2SHTXxaDr18SFmBTFNq10b01id2HwoU2ircNL66f-DB073fR2-VUX6GlTPK7v0vJhe7--KdOaAZOpAcOw1Iaz3NgaKpCZlELkFamocC43gmbYwjg2UnLJqOSgAcDwzAgzYgtED751DH0frVO1H_R0wRC1bxTBaoqubKOm6GqKPkJXP6Au-p2O-7_k_CD_8I3d_6tVRVnS2w2WTMiRuzxw3g7qLbzHdvzEXysufpEW5Tfnzjj2CTSVg04 |
| CitedBy_id | crossref_primary_10_1016_j_dsim_2025_02_003 crossref_primary_10_1007_s11042_023_14354_9 crossref_primary_10_1109_ACCESS_2021_3124765 crossref_primary_10_1109_JSEN_2022_3151465 crossref_primary_10_1016_j_apacoust_2021_108260 crossref_primary_10_1109_ACCESS_2025_3585826 crossref_primary_10_3233_THC_220458 crossref_primary_10_1016_j_compbiomed_2022_105335 crossref_primary_10_1007_s40998_024_00697_y crossref_primary_10_55525_tjst_1411197 crossref_primary_10_1007_s13755_022_00187_7 crossref_primary_10_1007_s10489_022_04228_2 crossref_primary_10_1109_JSEN_2021_3070373 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_3389_fncom_2021_758212 crossref_primary_10_3390_diagnostics12102508 crossref_primary_10_1016_j_jksuci_2021_08_021 crossref_primary_10_1007_s13755_022_00201_y crossref_primary_10_1007_s13755_023_00224_z crossref_primary_10_3390_s23031255 crossref_primary_10_1016_j_bbe_2021_07_004 |
| Cites_doi | 10.1146/annurev‐psych‐010213‐115043 10.1007/s11280‐012‐0181‐5 10.3390/s18082739 10.1109/JSEN.2019.2917850 10.1007/s13755‐018‐0057‐x 10.1109/ICASSP.2013.6637858 10.1162/neco.1997.9.8.1735 10.3390/s19092212 10.1126/science.1076358 10.1016/j.neulet.2016.09.037 10.1109/EMBC.2015.7320065 10.1609/aaai.v31i2.19105 10.1109/JSEN.2018.2883497 10.1186/s40708‐020‐00111‐3 10.1109/ACCESS.2019.2908285 10.1155/2017/8317357 10.1109/T‐AFFC.2011.15 10.1023/A:1025667309714 10.1109/CVPR.2018.00474 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2020.2685 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 1364 |
| ExternalDocumentID | 10_1049_el_2020_2685 ELL2BF07367 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3437-d4d307ad539dec4b47877669b1b26ff9d6280e4478d775732754a444d58d6dd53 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Wed Oct 29 21:27:59 EDT 2025 Tue Nov 18 21:22:46 EST 2025 Wed Jan 22 16:31:52 EST 2025 Wed Jan 06 04:41:12 EST 2021 Wed Jan 06 06:33:42 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | wavelet transforms diverse insight emotional states continuous wavelet electroencephalogram signals pre-trained convolutional neural networks model emotion recognition delta rhythm feature extraction EEG signals low-pass filtering learning (artificial intelligence) deep feature selection electroencephalography efficient features EEG rhythm images deep features health monitoring application medical signal processing long short term memory method deep learning concept EEG-based emotion recognition human emotion extracted rhythm signals automatic identification neural nets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3437-d4d307ad539dec4b47877669b1b26ff9d6280e4478d775732754a444d58d6dd53 |
| PageCount | 4 |
| ParticipantIDs | iet_journals_10_1049_el_2020_2685 crossref_citationtrail_10_1049_el_2020_2685 wiley_primary_10_1049_el_2020_2685_ELL2BF07367 crossref_primary_10_1049_el_2020_2685 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Ismael, A.M.; Alçin, Ö.F.; Abdalla, K.H. (C13) 2020; 7 Zhu Zhuang, N.; Zeng, Y.; Tong, L. (C14) 2017; 17 Chao, H.; Dong, L.; Liu, Y. (C2) 2019; 19 Robnik-Sikonja, M.; Kononenko, I. (C15) 2003; 53 Hochreiter, S.; Schmidhuber, J. (C19) 1997; 9 Lerner, J.S.; Li, Y.; Valdesolo, P. (C3) 2015; 66 Deniz, E.; Şengür, A.; Kadiroğlu, Z. (C17) 2018; 6 Gupta, V.; Chopda, M.D.; Pachori, R.B. (C5) 2018; 19 Koelstra, S.; Muhl, C.; Soleymani, M. (C6) 2011; 3 Zhang, Y.; Ji, X.; Zhang, S. (C9) 2016; 633 Dolan, R.J. (C1) 2002; 298 Budak, U.; Bajaj, V.; Akbulut, Y. (C20) 2019; 19 Alazrai, R.; Homoud, R.; Alwanni, H. (C4) 2018; 18 Zhang, X.; Hu, B.; Chen, J. (C8) 2013; 16 Chen, J.X.; Zhang, P.W.; Mao, Z.J. (C12) 2019; 7 2018; 19 2019; 7 2020; 7 2018; 6 2018; 18 2013; 16 2017; 17 2002; 298 2015; 66 May 2013 2019; 19 August 2015 2018 2016; 633 2011; 3 February 2017 2003; 53 1997; 9 1999 e_1_2_9_10_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_12_2 e_1_2_9_11_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 Polikar R. (e_1_2_9_17_2) 1999 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_14_2 e_1_2_9_13_2 e_1_2_9_16_2 e_1_2_9_15_2 e_1_2_9_18_2 e_1_2_9_19_2 |
| References_xml | – volume: 19 start-page: 2212 issue: 9 year: 2019 ident: C2 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors – volume: 633 start-page: 152 year: 2016 end-page: 157 ident: C9 article-title: An approach to EEG-based emotion recognition using combined feature extraction method publication-title: Neurosci. Lett. – volume: 19 start-page: 2266 issue: 6 year: 2018 end-page: 2274 ident: C5 article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals publication-title: IEEE Sens. J. – volume: 53 start-page: 23 issue: 1–2 year: 2003 end-page: 69 ident: C15 article-title: Theoretical and empirical analysis of Relieff and RReliefF publication-title: Mach. Learn. – volume: 19 start-page: 7624 issue: 17 year: 2019 end-page: 7631 ident: C20 article-title: An effective hybrid model for EEG-based drowsiness detection publication-title: IEEE Sens. J. – volume: 298 start-page: 1191 issue: 5596 year: 2002 end-page: 1194 ident: C1 article-title: Emotion, cognition, and behavior publication-title: Science – volume: 17 start-page: 1 year: 2017 end-page: 10 ident: C14 article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain publication-title: BioMed Res. Int. – volume: 3 start-page: 18 issue: 1 year: 2011 end-page: 31 ident: C6 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. – volume: 18 start-page: 2739 issue: 9 year: 2018 ident: C4 article-title: EEG-based emotion recognition using quadratic time-frequency distribution publication-title: Sensors – volume: 16 start-page: 497 issue: 4 year: 2013 end-page: 513 ident: C8 article-title: Ontology-based context modeling for emotion recognition in an intelligent web publication-title: World Wide Web – volume: 66 start-page: 799 year: 2015 end-page: 823 ident: C3 article-title: Emotion and decision making publication-title: Annu. Rev. Psychol. – volume: 7 start-page: 44317 year: 2019 end-page: 44328 ident: C12 article-title: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks publication-title: IEEE Access – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: C19 article-title: Long short-term memory publication-title: Neural Comput. – volume: 6 start-page: 1 issue: 18 year: 2018 end-page: 7 ident: C17 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health. Inf. Sci. Syst. – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 12 ident: C13 article-title: Two stepped majority voting for efficient EEG based emotion classification publication-title: Brain. Inform. – start-page: 7250 year: August 2015 end-page: 7253 article-title: Investigation of window size in classification of EEG‐emotion signal with wavelet entropy and support vector machine – volume: 3 start-page: 18 issue: 1 year: 2011 end-page: 31 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. – start-page: 4746 year: February 2017 end-page: 4752 article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset – volume: 53 start-page: 23 issue: 1–2 year: 2003 end-page: 69 article-title: Theoretical and empirical analysis of Relieff and RReliefF publication-title: Mach. Learn. – volume: 19 start-page: 7624 issue: 17 year: 2019 end-page: 7631 article-title: An effective hybrid model for EEG‐based drowsiness detection publication-title: IEEE Sens. J. – start-page: 4510‐4520 year: 2018 article-title: Mobilenetv2: inverted residuals and linear bottlenecks – start-page: 1286 year: May 2013 end-page: 1290 article-title: Robust EEG emotion classification using segment level decision fusion – volume: 6 start-page: 1 issue: 18 year: 2018 end-page: 7 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health. Inf. Sci. Syst. – volume: 7 start-page: 44317 year: 2019 end-page: 44328 article-title: Accurate EEG‐based emotion recognition on combined features using deep convolutional neural networks publication-title: IEEE Access – volume: 298 start-page: 1191 issue: 5596 year: 2002 end-page: 1194 article-title: Emotion, cognition, and behavior publication-title: Science – volume: 19 start-page: 2212 issue: 9 year: 2019 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors – volume: 17 start-page: 1 year: 2017 end-page: 10 article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain publication-title: BioMed Res. Int. – volume: 66 start-page: 799 year: 2015 end-page: 823 article-title: Emotion and decision making publication-title: Annu. Rev. Psychol. – volume: 18 start-page: 2739 issue: 9 year: 2018 article-title: EEG‐based emotion recognition using quadratic time‐frequency distribution publication-title: Sensors – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – volume: 633 start-page: 152 year: 2016 end-page: 157 article-title: An approach to EEG‐based emotion recognition using combined feature extraction method publication-title: Neurosci. Lett. – volume: 19 start-page: 2266 issue: 6 year: 2018 end-page: 2274 article-title: Cross‐subject emotion recognition using flexible analytic wavelet transform from EEG signals publication-title: IEEE Sens. J. – volume: 16 start-page: 497 issue: 4 year: 2013 end-page: 513 article-title: Ontology‐based context modeling for emotion recognition in an intelligent web publication-title: World Wide Web – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Two stepped majority voting for efficient EEG based emotion classification publication-title: Brain. Inform. – year: 1999 – ident: e_1_2_9_4_2 doi: 10.1146/annurev‐psych‐010213‐115043 – ident: e_1_2_9_9_2 doi: 10.1007/s11280‐012‐0181‐5 – ident: e_1_2_9_5_2 doi: 10.3390/s18082739 – ident: e_1_2_9_21_2 doi: 10.1109/JSEN.2019.2917850 – volume-title: The wavelet tutorial. Glassboro year: 1999 ident: e_1_2_9_17_2 – ident: e_1_2_9_18_2 doi: 10.1007/s13755‐018‐0057‐x – ident: e_1_2_9_12_2 doi: 10.1109/ICASSP.2013.6637858 – ident: e_1_2_9_20_2 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_9_3_2 doi: 10.3390/s19092212 – ident: e_1_2_9_2_2 doi: 10.1126/science.1076358 – ident: e_1_2_9_10_2 doi: 10.1016/j.neulet.2016.09.037 – ident: e_1_2_9_11_2 doi: 10.1109/EMBC.2015.7320065 – ident: e_1_2_9_8_2 doi: 10.1609/aaai.v31i2.19105 – ident: e_1_2_9_6_2 doi: 10.1109/JSEN.2018.2883497 – ident: e_1_2_9_14_2 doi: 10.1186/s40708‐020‐00111‐3 – ident: e_1_2_9_13_2 doi: 10.1109/ACCESS.2019.2908285 – ident: e_1_2_9_15_2 doi: 10.1155/2017/8317357 – ident: e_1_2_9_7_2 doi: 10.1109/T‐AFFC.2011.15 – ident: e_1_2_9_16_2 doi: 10.1023/A:1025667309714 – ident: e_1_2_9_19_2 doi: 10.1109/CVPR.2018.00474 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.4384255 |
| Snippet | Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1361 |
| SubjectTerms | automatic identification continuous wavelet deep feature selection deep features deep learning concept delta rhythm diverse insight EEG rhythm images EEG signals EEG‐based emotion recognition efficient features electroencephalogram signals electroencephalography emotion recognition emotional states extracted rhythm signals feature extraction health monitoring application human emotion learning (artificial intelligence) long short term memory method low‐pass filtering medical signal processing neural nets pre‐trained convolutional neural networks model Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications wavelet transforms |
| Title | Efficient approach for EEG-based emotion recognition |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.2685 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2685 |
| Volume | 56 |
| WOSCitedRecordID | wos000604957700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RwgADb0SBoiDBhAKO49jOCCgFpKrqwKNbFD8iVarSqi3M_AR-I78EO0lDOxQJsWRw7pLI9j18d_kO4Ny4FJKGNHW1YNglCRKuOdkSF3OBJEVYeXkc8qXNOh3e64XdMuBm_4Up8CGqgJuVjFxfWwFPRNGFxDi1dhFt4gCjK0x5UINVz_O5bd2ASbfKIhhVmzdX8QNkhbpXFr4b_ut57gWTVOvr6aKjmlua1tZ_v3EbNksf07kpNsUOrOhsFzbmkAf3gEY5dISxOM4MVdwx7qsTRfdfH5_WtClHFx1-nKrGaJjtw3Mrerp7cMsWCq70ic9cRZQR4kQFfqi0JMJC8TBKQ-EJTNM0VBRzpIkZVowFzMcsIAkhRAVcUWXYDqCeDTN9CI70Am7OsIlWJCU2fydwiFRKNDbPUJI34HI2i7Es8cVtm4tBnOe5SRjrQWxnI7az0YCLinpU4GosoTszCxKXgjVZQtNcoInaP_fikUobUCzSry8yXG182zIaj7KjvzIcw7odt2UuHjqB-nT8ppuwJt-n_cn4NN-U5vr62PkGTm_eUw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NToNAEJ7YaqIe_DdWrWKiJ4Muy7ILRzXUNiLxULU3UnaXpElDm7Z69hF8Rp_EXaDYHmpivMIMkNmdn50ZvgE4VyEFpx5NTBkzbJIuik11siUmdmPEKcLCyvKQLwELQ7fT8Z6KOaf6X5gcH6JMuGnNyOy1VnCdkM4PnESDZEpdOcDoClPXqcAyUbGGnt3w2grLMoKytdl0FdtBWqs7Ree74r-e5Z7zSZWenMxHqpmraWz--yO3YKOIMo2bfFtsw5JMd2B9BntwF6ifgUcon2NMccUNFcAavn__9fGpnZswZD7jxyi7jAbpHjw3_PZd0yyGKJjcJjYzBRFKjbvCsT0hOYk1GA-j1IutGNMk8QTFLpJEXRaMOczGzCFdQohwXEGFYtuHajpI5QEY3HJcdYrtSkESoit4MfaQSIjE6hmCuzW4nIox4gXCuB500Y-ySjfxItmPtDQiLY0aXJTUwxxZYwHdmVqRqFCt8QKa-hyNH_zci4YiqUG-Sr--SHEF-LahbB5lh39lOIXVZvsxiIJW-HAEa5pGN71Y6Biqk9GbrMMKf5_0xqOTbId-A_sk4Zw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oNUYPvo1Vq5joyaCwDLtw9AFqJE0PanojZXdJmjS0aatnf4K_0V_iLlBsDzUxXmEGyO48d4ZvAM5USMGpT1NTJoyY2LESU2W2aBIvsTi1iLDzc8jXiDWbXrvtt8o5p_pfmAIfojpw05qR22ut4HIg0iLhRA2SKXXlgFiXhHruIiyhy2wt1gRbVRlB2dp8uorjWlqr22Xnu-K_muae8UmLXTmejVRzVxNu_PsjN2G9jDKN60IstmBBZtuwNoU9uAM0yMEjlM8xJrjihgpgjSC4__r41M5NGLKY8WNUXUb9bBdewuD59sEshyiY3EGHmQKFUuOOcB1fSI6JBuNhlPqJnRCapr6gxLMkqsuCMZc5hLnYQUTheoIKxbYHtayfyX0wuO16KovtSIEp6gpeQnxLpCiJeobgXh0uJssY8xJhXA-66MV5pRv9WPZivRqxXo06nFfUgwJZYw7dqdqRuFSt0RyaxgxNEP3ci9WG1KHYpV9fpLgichMqm0fZwV8ZTmCldRfG0WPz6RBWNYnuebGtI6iNh2-yAcv8fdwdDY9zAf0GOr3gsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+approach+for+EEG-based+emotion+recognition&rft.jtitle=Electronics+letters&rft.au=%C5%9Eeng%C3%BCr%2C+D&rft.au=Siuly%2C+S&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1361&rft.epage=1364&rft_id=info:doi/10.1049%2Fel.2020.2685&rft.externalDocID=10_1049_el_2020_2685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |