Efficient approach for EEG-based emotion recognition

Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can give us a more diverse insight on emotional states. The aim of this study is to develop an efficient framework based on deep learning concept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 56; H. 25; S. 1361 - 1364
Hauptverfasser: Şengür, D, Siuly, S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 10.12.2020
Schlagworte:
ISSN:0013-5194, 1350-911X, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can give us a more diverse insight on emotional states. The aim of this study is to develop an efficient framework based on deep learning concept for automatic identification of human emotion from EEG signals. In the proposed framework, the signals are pre-processing for removing noises by low-pass filtering and then delta rhythm is extracted. After that, the extracted rhythm signals are converted into the EEG rhythm images by employing the continuous wavelet transform and then deep features are discovered by using a pre-trained convolutional neural networks model. Afterwards, MobileNetv2 is used for deep feature selection to obtain the most efficient features and finally, long short term memory method is employed for classification of selected features. The proposed methodology is tested on ‘DEAP EEG data set’ (publicly available). This study considers two emotions namely ‘Valence’ and ‘Arousal’ for classification. The experimental results demonstrate that the proposed approach produced accuracies of 96.1% for low/high valence and 99.6% for low/high arousal classification. A further comparison of the proposed method is also carried out and it is seen that the proposed method outperforms other compared methods.
AbstractList Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can give us a more diverse insight on emotional states. The aim of this study is to develop an efficient framework based on deep learning concept for automatic identification of human emotion from EEG signals. In the proposed framework, the signals are pre‐processing for removing noises by low‐pass filtering and then delta rhythm is extracted. After that, the extracted rhythm signals are converted into the EEG rhythm images by employing the continuous wavelet transform and then deep features are discovered by using a pre‐trained convolutional neural networks model. Afterwards, MobileNetv2 is used for deep feature selection to obtain the most efficient features and finally, long short term memory method is employed for classification of selected features. The proposed methodology is tested on ‘DEAP EEG data set’ (publicly available). This study considers two emotions namely ‘Valence’ and ‘Arousal’ for classification. The experimental results demonstrate that the proposed approach produced accuracies of 96.1% for low/high valence and 99.6% for low/high arousal classification. A further comparison of the proposed method is also carried out and it is seen that the proposed method outperforms other compared methods.
Author Şengür, D
Siuly, S
Author_xml – sequence: 1
  givenname: D
  surname: Şengür
  fullname: Şengür, D
  email: dsengur@firat.edu.tr
  organization: Education Faculty, Educational Science Department, Firat University, Elazig, Turkey
– sequence: 2
  givenname: S
  surname: Siuly
  fullname: Siuly, S
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Australia
BookMark eNp9kE9LxDAQxYOs4LruzQ_QgwcPds2fSdIedemuQsGLgreQNolGuk1JK7Lf3pb1IKKeZhje7828OUWzNrQWoXOCVwRDfm2bFcUUr6jI-BGaE8ZxmhPyPENzjAlLOcnhBC373leYAAGBgcwRFM752tt2SHTXxaDr18SFmBTFNq10b01id2HwoU2ircNL66f-DB073fR2-VUX6GlTPK7v0vJhe7--KdOaAZOpAcOw1Iaz3NgaKpCZlELkFamocC43gmbYwjg2UnLJqOSgAcDwzAgzYgtED751DH0frVO1H_R0wRC1bxTBaoqubKOm6GqKPkJXP6Au-p2O-7_k_CD_8I3d_6tVRVnS2w2WTMiRuzxw3g7qLbzHdvzEXysufpEW5Tfnzjj2CTSVg04
CitedBy_id crossref_primary_10_1016_j_dsim_2025_02_003
crossref_primary_10_1007_s11042_023_14354_9
crossref_primary_10_1109_ACCESS_2021_3124765
crossref_primary_10_1109_JSEN_2022_3151465
crossref_primary_10_1016_j_apacoust_2021_108260
crossref_primary_10_1109_ACCESS_2025_3585826
crossref_primary_10_3233_THC_220458
crossref_primary_10_1016_j_compbiomed_2022_105335
crossref_primary_10_1007_s40998_024_00697_y
crossref_primary_10_55525_tjst_1411197
crossref_primary_10_1007_s13755_022_00187_7
crossref_primary_10_1007_s10489_022_04228_2
crossref_primary_10_1109_JSEN_2021_3070373
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_3389_fncom_2021_758212
crossref_primary_10_3390_diagnostics12102508
crossref_primary_10_1016_j_jksuci_2021_08_021
crossref_primary_10_1007_s13755_022_00201_y
crossref_primary_10_1007_s13755_023_00224_z
crossref_primary_10_3390_s23031255
crossref_primary_10_1016_j_bbe_2021_07_004
Cites_doi 10.1146/annurev‐psych‐010213‐115043
10.1007/s11280‐012‐0181‐5
10.3390/s18082739
10.1109/JSEN.2019.2917850
10.1007/s13755‐018‐0057‐x
10.1109/ICASSP.2013.6637858
10.1162/neco.1997.9.8.1735
10.3390/s19092212
10.1126/science.1076358
10.1016/j.neulet.2016.09.037
10.1109/EMBC.2015.7320065
10.1609/aaai.v31i2.19105
10.1109/JSEN.2018.2883497
10.1186/s40708‐020‐00111‐3
10.1109/ACCESS.2019.2908285
10.1155/2017/8317357
10.1109/T‐AFFC.2011.15
10.1023/A:1025667309714
10.1109/CVPR.2018.00474
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2685
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1364
ExternalDocumentID 10_1049_el_2020_2685
ELL2BF07367
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3437-d4d307ad539dec4b47877669b1b26ff9d6280e4478d775732754a444d58d6dd53
IEDL.DBID 24P
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Wed Oct 29 21:27:59 EDT 2025
Tue Nov 18 21:22:46 EST 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 04:41:12 EST 2021
Wed Jan 06 06:33:42 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords wavelet transforms
diverse insight
emotional states
continuous wavelet
electroencephalogram signals
pre-trained convolutional neural networks model
emotion recognition
delta rhythm
feature extraction
EEG signals
low-pass filtering
learning (artificial intelligence)
deep feature selection
electroencephalography
efficient features
EEG rhythm images
deep features
health monitoring application
medical signal processing
long short term memory method
deep learning concept
EEG-based emotion recognition
human emotion
extracted rhythm signals
automatic identification
neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3437-d4d307ad539dec4b47877669b1b26ff9d6280e4478d775732754a444d58d6dd53
PageCount 4
ParticipantIDs iet_journals_10_1049_el_2020_2685
crossref_citationtrail_10_1049_el_2020_2685
wiley_primary_10_1049_el_2020_2685_ELL2BF07367
crossref_primary_10_1049_el_2020_2685
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Ismael, A.M.; Alçin, Ö.F.; Abdalla, K.H. (C13) 2020; 7
Zhu Zhuang, N.; Zeng, Y.; Tong, L. (C14) 2017; 17
Chao, H.; Dong, L.; Liu, Y. (C2) 2019; 19
Robnik-Sikonja, M.; Kononenko, I. (C15) 2003; 53
Hochreiter, S.; Schmidhuber, J. (C19) 1997; 9
Lerner, J.S.; Li, Y.; Valdesolo, P. (C3) 2015; 66
Deniz, E.; Şengür, A.; Kadiroğlu, Z. (C17) 2018; 6
Gupta, V.; Chopda, M.D.; Pachori, R.B. (C5) 2018; 19
Koelstra, S.; Muhl, C.; Soleymani, M. (C6) 2011; 3
Zhang, Y.; Ji, X.; Zhang, S. (C9) 2016; 633
Dolan, R.J. (C1) 2002; 298
Budak, U.; Bajaj, V.; Akbulut, Y. (C20) 2019; 19
Alazrai, R.; Homoud, R.; Alwanni, H. (C4) 2018; 18
Zhang, X.; Hu, B.; Chen, J. (C8) 2013; 16
Chen, J.X.; Zhang, P.W.; Mao, Z.J. (C12) 2019; 7
2018; 19
2019; 7
2020; 7
2018; 6
2018; 18
2013; 16
2017; 17
2002; 298
2015; 66
May 2013
2019; 19
August 2015
2018
2016; 633
2011; 3
February 2017
2003; 53
1997; 9
1999
e_1_2_9_10_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
Polikar R. (e_1_2_9_17_2) 1999
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_19_2
References_xml – volume: 19
  start-page: 2212
  issue: 9
  year: 2019
  ident: C2
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
– volume: 633
  start-page: 152
  year: 2016
  end-page: 157
  ident: C9
  article-title: An approach to EEG-based emotion recognition using combined feature extraction method
  publication-title: Neurosci. Lett.
– volume: 19
  start-page: 2266
  issue: 6
  year: 2018
  end-page: 2274
  ident: C5
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sens. J.
– volume: 53
  start-page: 23
  issue: 1–2
  year: 2003
  end-page: 69
  ident: C15
  article-title: Theoretical and empirical analysis of Relieff and RReliefF
  publication-title: Mach. Learn.
– volume: 19
  start-page: 7624
  issue: 17
  year: 2019
  end-page: 7631
  ident: C20
  article-title: An effective hybrid model for EEG-based drowsiness detection
  publication-title: IEEE Sens. J.
– volume: 298
  start-page: 1191
  issue: 5596
  year: 2002
  end-page: 1194
  ident: C1
  article-title: Emotion, cognition, and behavior
  publication-title: Science
– volume: 17
  start-page: 1
  year: 2017
  end-page: 10
  ident: C14
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  end-page: 31
  ident: C6
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 18
  start-page: 2739
  issue: 9
  year: 2018
  ident: C4
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
– volume: 16
  start-page: 497
  issue: 4
  year: 2013
  end-page: 513
  ident: C8
  article-title: Ontology-based context modeling for emotion recognition in an intelligent web
  publication-title: World Wide Web
– volume: 66
  start-page: 799
  year: 2015
  end-page: 823
  ident: C3
  article-title: Emotion and decision making
  publication-title: Annu. Rev. Psychol.
– volume: 7
  start-page: 44317
  year: 2019
  end-page: 44328
  ident: C12
  article-title: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks
  publication-title: IEEE Access
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: C19
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 6
  start-page: 1
  issue: 18
  year: 2018
  end-page: 7
  ident: C17
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health. Inf. Sci. Syst.
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  ident: C13
  article-title: Two stepped majority voting for efficient EEG based emotion classification
  publication-title: Brain. Inform.
– start-page: 7250
  year: August 2015
  end-page: 7253
  article-title: Investigation of window size in classification of EEG‐emotion signal with wavelet entropy and support vector machine
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  end-page: 31
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
– start-page: 4746
  year: February 2017
  end-page: 4752
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset
– volume: 53
  start-page: 23
  issue: 1–2
  year: 2003
  end-page: 69
  article-title: Theoretical and empirical analysis of Relieff and RReliefF
  publication-title: Mach. Learn.
– volume: 19
  start-page: 7624
  issue: 17
  year: 2019
  end-page: 7631
  article-title: An effective hybrid model for EEG‐based drowsiness detection
  publication-title: IEEE Sens. J.
– start-page: 4510‐4520
  year: 2018
  article-title: Mobilenetv2: inverted residuals and linear bottlenecks
– start-page: 1286
  year: May 2013
  end-page: 1290
  article-title: Robust EEG emotion classification using segment level decision fusion
– volume: 6
  start-page: 1
  issue: 18
  year: 2018
  end-page: 7
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health. Inf. Sci. Syst.
– volume: 7
  start-page: 44317
  year: 2019
  end-page: 44328
  article-title: Accurate EEG‐based emotion recognition on combined features using deep convolutional neural networks
  publication-title: IEEE Access
– volume: 298
  start-page: 1191
  issue: 5596
  year: 2002
  end-page: 1194
  article-title: Emotion, cognition, and behavior
  publication-title: Science
– volume: 19
  start-page: 2212
  issue: 9
  year: 2019
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
– volume: 17
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– volume: 66
  start-page: 799
  year: 2015
  end-page: 823
  article-title: Emotion and decision making
  publication-title: Annu. Rev. Psychol.
– volume: 18
  start-page: 2739
  issue: 9
  year: 2018
  article-title: EEG‐based emotion recognition using quadratic time‐frequency distribution
  publication-title: Sensors
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– volume: 633
  start-page: 152
  year: 2016
  end-page: 157
  article-title: An approach to EEG‐based emotion recognition using combined feature extraction method
  publication-title: Neurosci. Lett.
– volume: 19
  start-page: 2266
  issue: 6
  year: 2018
  end-page: 2274
  article-title: Cross‐subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sens. J.
– volume: 16
  start-page: 497
  issue: 4
  year: 2013
  end-page: 513
  article-title: Ontology‐based context modeling for emotion recognition in an intelligent web
  publication-title: World Wide Web
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Two stepped majority voting for efficient EEG based emotion classification
  publication-title: Brain. Inform.
– year: 1999
– ident: e_1_2_9_4_2
  doi: 10.1146/annurev‐psych‐010213‐115043
– ident: e_1_2_9_9_2
  doi: 10.1007/s11280‐012‐0181‐5
– ident: e_1_2_9_5_2
  doi: 10.3390/s18082739
– ident: e_1_2_9_21_2
  doi: 10.1109/JSEN.2019.2917850
– volume-title: The wavelet tutorial. Glassboro
  year: 1999
  ident: e_1_2_9_17_2
– ident: e_1_2_9_18_2
  doi: 10.1007/s13755‐018‐0057‐x
– ident: e_1_2_9_12_2
  doi: 10.1109/ICASSP.2013.6637858
– ident: e_1_2_9_20_2
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_3_2
  doi: 10.3390/s19092212
– ident: e_1_2_9_2_2
  doi: 10.1126/science.1076358
– ident: e_1_2_9_10_2
  doi: 10.1016/j.neulet.2016.09.037
– ident: e_1_2_9_11_2
  doi: 10.1109/EMBC.2015.7320065
– ident: e_1_2_9_8_2
  doi: 10.1609/aaai.v31i2.19105
– ident: e_1_2_9_6_2
  doi: 10.1109/JSEN.2018.2883497
– ident: e_1_2_9_14_2
  doi: 10.1186/s40708‐020‐00111‐3
– ident: e_1_2_9_13_2
  doi: 10.1109/ACCESS.2019.2908285
– ident: e_1_2_9_15_2
  doi: 10.1155/2017/8317357
– ident: e_1_2_9_7_2
  doi: 10.1109/T‐AFFC.2011.15
– ident: e_1_2_9_16_2
  doi: 10.1023/A:1025667309714
– ident: e_1_2_9_19_2
  doi: 10.1109/CVPR.2018.00474
SSID ssib014146041
ssj0012997
Score 2.4384255
Snippet Identification of human emotion involving electroencephalogram (EEG) signals has become an emerging field in health monitoring application as EEG signals can...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1361
SubjectTerms automatic identification
continuous wavelet
deep feature selection
deep features
deep learning concept
delta rhythm
diverse insight
EEG rhythm images
EEG signals
EEG‐based emotion recognition
efficient features
electroencephalogram signals
electroencephalography
emotion recognition
emotional states
extracted rhythm signals
feature extraction
health monitoring application
human emotion
learning (artificial intelligence)
long short term memory method
low‐pass filtering
medical signal processing
neural nets
pre‐trained convolutional neural networks model
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
wavelet transforms
Title Efficient approach for EEG-based emotion recognition
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2685
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2685
Volume 56
WOSCitedRecordID wos000604957700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1aXejCt1i1MoKuZHQm7yxVpiqU0oVid0NeA4UyLW117Sf4jX6Jycy0tosK4mYWmXtJSHIfJDfnAHCRyQhqm0UhEZqFzhJ1KCWLQoW0NMpF5JiVZBOs3ebdruhUB27-LUyJDzE7cPOWUfhrb-BSlSwkLqn1i-gvDmB0DSknq2AtjhH31A0Qd2a3CM7VFuQqiETeqLtV4bvTv5nXXghJqz07WUxUi0jT3P7vGHfAVpVjBrflptgFKzbfA5tzyIP7gCYFdISLOMEUVTxw6WuQJA9fH58-tJnAlgw_wazGaJAfgJdm8nz_GFYUCqFGGLHQYOOMWBqChLEaKw_FwygVKlaQZpkwFPLIYtdsGCMMQUawxBgbwg01Tu0Q1PJBbo9AQHiGmRZQKoSxf0BLrRI8s4QqxInI6uBqOouprvDFPc1FPy3uubFIbT_1s5H62aiDy5n0sMTVWCJ37hYkrQxrvESmsSCTtH7-pUPjRlYu0q8dOa0WvGs6j0fZ8V8VTsCGb_dlLnF0CmqT0ZttgHX9PumNR2fFpnTf16f2N92W3x0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20CurCt1i1GkFXEk3nmVmqpLYYi4uK3YXMI1AoaWmraz_Bb_RLnEnS2C4qiNvkXjLMzH1k7p1zALhIYg9KnXgu4ZK5xhKlG8fMcwWSsRImItdZTjbB2m2_2-XPBc-pvQuT40OUB27WMjJ_bQ3cHkjnP5zYgmRqWzmA3jWkPlkGK9jkGpa74bXVLssIxtdm7CqIeNaqu0Xnu9G_mdWei0nLPT2Zz1SzUNPY-vcgt8FmkWU6t_m22AFLOt0FGzPYg3uABhl4hIk5zhRX3DEJrBMED18fnza4KUfnHD9O2WU0SPfBSyPo3DfdgkTBlQgj5iqsjBnHiiCutMTCgvEwSrmoC0iThCsKfU9j81gxRhiCjOAYY6yIr6gyagegkg5SfQgc4ieYSQ5jgTC2V2ipFtxPNKEC-YQnVXA1ncZIFgjjluiiH2WVbswj3Y_sbER2NqrgspQe5sgaC-TOzYpEhWmNF8jU5mSC8OddNFRmZPkq_fohoxXCu4bxeZQd_VXhDKw1O09hFLbaj8dg3crYppe6dwIqk9GbroFV-T7pjUen2Q79BpDW4mY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sFdGDb7FqNYKeJJps9pE9-khULKUHhd5CsruBQklLWz37E_yN_hJ3kzS2hwriNZkhYd7JzH4DcJ7GDhIqdWzCBbO1Jwo7jpljJ56IZaIzssuKZROs3fa7Xd4p95yaszAFPkT1w814Rh6vjYOroUyLD05sQDKV6Rwg5wpRn9RgGRPmGrNGuFO1EXSszbereMQxXt0tJ981__Us91xOqvXUZL5SzVNNuPnvl9yCjbLKtG4Ks9iGJZXtwPoM9uAu0CAHj9A5x5riilu6gLWC4OHr49MkN2mpYsePVU0ZDbI9eA2Dl7tHu1yiYAsPe8yWWGo3jiXxuFQCJwaMh1HKEzdBNE25pMh3FNaXJWOEeYgRHGOMJfEllZptH-rZIFMHYBE_xUxwFCcexuYILVUJ91NFaOL5hKcNuJyKMRIlwrhZdNGP8k435pHqR0YakZFGAy4q6mGBrLGA7kxrJCpda7yApjlHE7R-7kVaIQ0otPTrgzRXC92GOuZRdvhXhlNY7dyHUeup_XwEa4bEzLy4zjHUJ6M31YQV8T7pjUcnuYF-A8-W4X0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+approach+for+EEG%E2%80%90based+emotion+recognition&rft.jtitle=Electronics+letters&rft.au=%C5%9Eeng%C3%BCr%2C+D.&rft.au=Siuly%2C+S.&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1361&rft.epage=1364&rft_id=info:doi/10.1049%2Fel.2020.2685&rft.externalDBID=10.1049%252Fel.2020.2685&rft.externalDocID=ELL2BF07367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon