Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models

Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional strictly modular and sequential models. This paper reports experiments in which pcru – a generation framework that combines probabilistic gene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Natural language engineering Ročník 14; číslo 4; s. 431 - 455
Hlavní autor: BELZ, ANJA
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.10.2008
Témata:
ISSN:1351-3249, 1469-8110
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional strictly modular and sequential models. This paper reports experiments in which pcru – a generation framework that combines probabilistic generation methodology with a comprehensive model of the generation space – was used to semi-automatically create five different versions of a weather forecast generator. The generators were evaluated in terms of output quality, development time and computational efficiency against (i) human forecasters, (ii) a traditional handcrafted pipelined nlg system and (iii) a halogen-style statistical generator. The most striking result is that despite acquiring all decision-making abilities automatically, the best pcru generators produce outputs of high enough quality to be scored more highly by human judges than forecasts written by experts.
AbstractList Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional strictly modular and sequential models. This paper reports experiments in which p cru – a generation framework that combines probabilistic generation methodology with a comprehensive model of the generation space – was used to semi-automatically create five different versions of a weather forecast generator. The generators were evaluated in terms of output quality, development time and computational efficiency against (i) human forecasters, (ii) a traditional handcrafted pipelined nlg system and (iii) a halogen -style statistical generator. The most striking result is that despite acquiring all decision-making abilities automatically, the best p cru generators produce outputs of high enough quality to be scored more highly by human judges than forecasts written by experts.
Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional strictly modular and sequential models. This paper reports experiments in which pCRU - a generation framework that combines probabilistic generation methodology with a comprehensive model of the generation space was used to semi-automatically create five different versions of a weather forecast generator. The generators were evaluated in terms of output quality, development time and computational efficiency against (i) human forecasters, (ii) a traditional handcrafted pipelined NLG system and (iii) a HALOGEN-style statistical generator. The most striking result is that despite acquiring all decision-making abilities automatically, the best pCRU generators produce outputs of high enough quality to be scored more highly by human judges than forecasts written by experts. Adapted from the source document
Abstract Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional strictly modular and sequential models. This paper reports experiments in which pcru - a generation framework that combines probabilistic generation methodology with a comprehensive model of the generation space - was used to semi-automatically create five different versions of a weather forecast generator. The generators were evaluated in terms of output quality, development time and computational efficiency against (i) human forecasters, (ii) a traditional handcrafted pipelined nlg system and (iii) a halogen-style statistical generator. The most striking result is that despite acquiring all decision-making abilities automatically, the best pcru generators produce outputs of high enough quality to be scored more highly by human judges than forecasts written by experts. [PUBLICATION ABSTRACT]
Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional strictly modular and sequential models. This paper reports experiments in which pcru – a generation framework that combines probabilistic generation methodology with a comprehensive model of the generation space – was used to semi-automatically create five different versions of a weather forecast generator. The generators were evaluated in terms of output quality, development time and computational efficiency against (i) human forecasters, (ii) a traditional handcrafted pipelined nlg system and (iii) a halogen-style statistical generator. The most striking result is that despite acquiring all decision-making abilities automatically, the best pcru generators produce outputs of high enough quality to be scored more highly by human judges than forecasts written by experts.
Author BELZ, ANJA
Author_xml – sequence: 1
  givenname: ANJA
  surname: BELZ
  fullname: BELZ, ANJA
  organization: Natural Language Technology Group, School of Computing, Mathematical and Information Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
BookMark eNp9kE9P3DAQxa2KSgXaD8DN4sAtxY4dOzki_mwrkAABZ8txxruGJF5sh26_fQ2LigDBaUaa35t587bQxuhHQGiHkp-UULl_RVlFWckbIgnhQvAvaJNy0RQ1pWQj93lcPM6_oa0Yb0mGqOSbaHEwJT_o5Ayewwghd37E3uI_oNMCArY-gNEx4QSrFPEU3TjHxg_LAAsYo3sAvAy-1a3rXXy9pohLbQAPvoM-fkdfre4j_Hiu2-jm5Pj68Fdxdj77fXhwVhjGGS9sU2tCQRLDS9t2pmx50xhgkugGoCPCdHXDK2o5o1SLSpQaSM1aaTkI3Vi2jfbWe7Or-wliUoOLBvpej-CnqOpK1KKsqwzuvgFv_RTG7E2VNAcoy7rMkFxDJvgYA1hlXHp6LgXtekWJeoxfvYs_K-kb5TK4QYe_n2qKtSYnCav_Ah3ulJBMVkrMLpWcsYsjfnqtZObZ8w09tMF1c3j54eMr_wDzxKig
CODEN NLENFE
CitedBy_id crossref_primary_10_1080_02564602_2018_1516522
crossref_primary_10_3390_info12090355
crossref_primary_10_1136_amiajnl_2011_000193
crossref_primary_10_1186_s40537_023_00836_y
crossref_primary_10_1016_j_csl_2019_06_008
crossref_primary_10_1016_j_knosys_2020_106610
crossref_primary_10_1007_s41666_018_0036_7
crossref_primary_10_1016_j_ins_2020_03_080
crossref_primary_10_1162_tacl_a_00038
crossref_primary_10_1109_TVCG_2020_3030403
crossref_primary_10_1007_s10462_011_9216_z
crossref_primary_10_1002_widm_1154
crossref_primary_10_1145_3660639
crossref_primary_10_1017_S1351324910000069
crossref_primary_10_1007_s11257_010_9076_2
crossref_primary_10_3390_math12223596
crossref_primary_10_1016_j_trit_2016_12_004
crossref_primary_10_1016_j_artmed_2012_09_002
crossref_primary_10_1016_j_csl_2017_04_009
crossref_primary_10_1109_TVCG_2015_2396062
crossref_primary_10_1017_S1351324923000207
crossref_primary_10_1007_s40747_024_01675_x
crossref_primary_10_1007_s13173_012_0095_1
crossref_primary_10_1016_j_datak_2013_08_005
crossref_primary_10_1109_ACCESS_2019_2937505
crossref_primary_10_1016_j_fss_2015_06_019
crossref_primary_10_1145_1966407_1966410
crossref_primary_10_1016_j_eswa_2018_11_036
crossref_primary_10_1109_TKDE_2023_3304385
crossref_primary_10_1016_j_csl_2022_101388
crossref_primary_10_1016_j_neucom_2019_11_079
crossref_primary_10_1111_j_1756_8765_2012_01187_x
crossref_primary_10_1109_ACCESS_2020_2979115
Cites_doi 10.1007/11424574_11
10.1017/CBO9780511605611.007
10.3115/1117840.1117852
10.3115/1641417.1641436
10.3115/992730.992739
10.1007/s11168-006-6327-9
10.1017/CBO9780511519857
10.3115/977180.977184
10.1109/64.294135
10.1075/idj.9.2-3.05bou
10.3115/1073336.1073337
10.3115/1289189.1289273
10.3115/100964.100979
10.3115/1219840.1219848
10.3115/974358.974361
10.21437/ICSLP.2002-303
10.1017/S1351324997001502
10.3115/974557.974596
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2007
Copyright_xml – notice: Copyright © Cambridge University Press 2007
DBID BSCLL
AAYXX
CITATION
3V.
7T9
7XB
88G
8AL
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CPGLG
CRLPW
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M2M
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
PTHSS
Q9U
DOI 10.1017/S1351324907004664
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Linguistics Collection
Linguistics Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Psychology Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Linguistics Collection
ProQuest One Sustainability
ProQuest Engineering Collection
Health Research Premium Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
Engineering Database
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Linguistics Database
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate A. Belz
Comprehensive probabilistic generation of weather forecast texts
EISSN 1469-8110
EndPage 455
ExternalDocumentID 1606667731
10_1017_S1351324907004664
ark_67375_6GQ_7G3PD4KT_7
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09D
0E1
0R~
123
29M
4.4
5VS
6~7
6~8
74X
74Y
7~V
8FE
8FG
8FI
8FJ
8I0
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJB
AACJH
AAFUK
AAGFV
AAKNA
AAKTX
AALKF
AANRG
AAPYI
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYOK
ABBXD
ABBZL
ABCFY
ABHFL
ABITZ
ABIVO
ABJCF
ABJNI
ABJWI
ABKKG
ABLJU
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABTND
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACABY
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFS
ACHQT
ACIMK
ACIWK
ACOZI
ACQPF
ACRPL
ACUIJ
ACYZP
ACZBM
ACZBN
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADMLS
ADNMO
ADOVH
ADTCA
ADVJH
AEBAK
AEBPU
AEFOJ
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEUYN
AFFUJ
AFKQG
AFKRA
AFKRZ
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGHGI
AGJUD
AGLWM
AGQPQ
AGTDA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALVPG
ALWZO
ANFVQ
ANOYL
AOWSX
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AVDNQ
AYIQA
AZQEC
BBLKV
BBQHK
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CCUQV
CDIZJ
CFAFE
CFBFF
CGMFO
CGQII
CHEAL
CJCSC
COF
CPGLG
CRLPW
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
ED0
EGQIC
EJD
FYUFA
GNUQQ
HCIFZ
HG-
HOVLH
HSS
HST
HZ~
I.5
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JOSPZ
JPPIE
JQKCU
JRMXA
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2M
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PSYQQ
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
UKHRP
UT1
WFFJZ
WQ3
WXS
WXU
WYP
ZJOSE
ZMEZD
ZYDXJ
~A4
~V1
ABGDZ
AKMAY
BSCLL
PQGLB
PRQQA
PUEGO
AAYXX
AFFHD
CITATION
3V.
7T9
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c3434-f98a01e70c42fbdc2b499ce370a9eed06cd89451f4311a6562ae083b7f4e6a9f3
IEDL.DBID K7-
ISSN 1351-3249
IngestDate Thu Oct 02 10:19:50 EDT 2025
Wed Nov 12 04:41:31 EST 2025
Tue Nov 18 22:32:15 EST 2025
Sat Nov 29 01:32:20 EST 2025
Sun Aug 31 06:49:28 EDT 2025
Sun Jun 15 04:39:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3434-f98a01e70c42fbdc2b499ce370a9eed06cd89451f4311a6562ae083b7f4e6a9f3
Notes ArticleID:00466
istex:44D629424E402F90AE4DE5400D2C3B88827F2801
PII:S1351324907004664
ark:/67375/6GQ-7G3PD4KT-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://research.brighton.ac.uk/en/publications/19a320ca-f3c6-47ae-8787-3882addfc1a0
PQID 216647282
PQPubID 30339
PageCount 25
ParticipantIDs proquest_miscellaneous_85686285
proquest_journals_216647282
crossref_citationtrail_10_1017_S1351324907004664
crossref_primary_10_1017_S1351324907004664
istex_primary_ark_67375_6GQ_7G3PD4KT_7
cambridge_journals_10_1017_S1351324907004664
PublicationCentury 2000
PublicationDate 20081001
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 20081001
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Natural language engineering
PublicationTitleAlternate Nat. Lang. Eng
PublicationYear 2008
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Hovy (S1351324907004664_ref16) 1988
S1351324907004664_ref24
S1351324907004664_ref25
S1351324907004664_ref22
S1351324907004664_ref23
S1351324907004664_ref29
S1351324907004664_ref26
S1351324907004664_ref20
S1351324907004664_ref42
S1351324907004664_ref21
S1351324907004664_ref40
S1351324907004664_ref41
Isabelle (S1351324907004664_ref19) 1984
Manning (S1351324907004664_ref28) 1999
Briscoe (S1351324907004664_ref8) 1993; 19
S1351324907004664_ref35
S1351324907004664_ref13
S1351324907004664_ref14
Mann (S1351324907004664_ref27) 1985
S1351324907004664_ref36
S1351324907004664_ref11
S1351324907004664_ref33
S1351324907004664_ref34
Habash (S1351324907004664_ref15) 2004
S1351324907004664_ref12
S1351324907004664_ref17
S1351324907004664_ref39
S1351324907004664_ref18
S1351324907004664_ref37
S1351324907004664_ref38
White (S1351324907004664_ref43) 2004
S1351324907004664_ref31
S1351324907004664_ref10
S1351324907004664_ref32
S1351324907004664_ref9
S1351324907004664_ref30
S1351324907004664_ref7
S1351324907004664_ref6
S1351324907004664_ref5
S1351324907004664_ref4
S1351324907004664_ref3
S1351324907004664_ref2
S1351324907004664_ref1
References_xml – ident: S1351324907004664_ref22
  doi: 10.1007/11424574_11
– ident: S1351324907004664_ref39
– ident: S1351324907004664_ref13
  doi: 10.1017/CBO9780511605611.007
– ident: S1351324907004664_ref12
– ident: S1351324907004664_ref18
  doi: 10.3115/1117840.1117852
– start-page: 61
  volume-title: Proceedings of the Third International Conference on Natural Language Generation (INLG'04)
  year: 2004
  ident: S1351324907004664_ref15
– ident: S1351324907004664_ref35
  doi: 10.3115/1641417.1641436
– volume-title: Generating Natural Language under Pragmatic Constraints
  year: 1988
  ident: S1351324907004664_ref16
– ident: S1351324907004664_ref29
– start-page: 50
  volume-title: Systemic Perspectives on Discourse: Selected Papers from the 9th International Systemics Workshop
  year: 1985
  ident: S1351324907004664_ref27
– volume: 19
  start-page: 25
  year: 1993
  ident: S1351324907004664_ref8
  article-title: Generalised probabilistic LR parsing of natural language (corpora) with unification-based grammars
  publication-title: Computational Linguistics
– ident: S1351324907004664_ref1
– ident: S1351324907004664_ref33
  doi: 10.3115/992730.992739
– ident: S1351324907004664_ref26
– ident: S1351324907004664_ref30
– ident: S1351324907004664_ref5
– volume-title: Foundations of Statistical Natural Language Processing
  year: 1999
  ident: S1351324907004664_ref28
– ident: S1351324907004664_ref3
– ident: S1351324907004664_ref10
  doi: 10.1007/s11168-006-6327-9
– ident: S1351324907004664_ref34
– ident: S1351324907004664_ref37
  doi: 10.1017/CBO9780511519857
– ident: S1351324907004664_ref7
– ident: S1351324907004664_ref32
– ident: S1351324907004664_ref17
– ident: S1351324907004664_ref38
– ident: S1351324907004664_ref40
– ident: S1351324907004664_ref25
  doi: 10.3115/977180.977184
– ident: S1351324907004664_ref9
– volume-title: Machine Translation Today: The State of the Art
  year: 1984
  ident: S1351324907004664_ref19
– ident: S1351324907004664_ref14
  doi: 10.1109/64.294135
– ident: S1351324907004664_ref6
  doi: 10.1075/idj.9.2-3.05bou
– ident: S1351324907004664_ref21
– ident: S1351324907004664_ref42
  doi: 10.3115/1073336.1073337
– ident: S1351324907004664_ref11
  doi: 10.3115/1289189.1289273
– start-page: 182
  volume-title: Proceedings of the Third International Conference on Natural Language Generation (INLG'04)
  year: 2004
  ident: S1351324907004664_ref43
– ident: S1351324907004664_ref20
  doi: 10.3115/100964.100979
– ident: S1351324907004664_ref31
  doi: 10.3115/1219840.1219848
– ident: S1351324907004664_ref2
– ident: S1351324907004664_ref4
– ident: S1351324907004664_ref24
  doi: 10.3115/974358.974361
– ident: S1351324907004664_ref41
  doi: 10.21437/ICSLP.2002-303
– ident: S1351324907004664_ref36
  doi: 10.1017/S1351324997001502
– ident: S1351324907004664_ref23
  doi: 10.3115/974557.974596
SSID ssj0004174
Score 2.2121565
Snippet Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from traditional...
Abstract Two important recent trends in natural language generation are (i) probabilistic techniques and (ii) comprehensive approaches that move away from...
SourceID proquest
crossref
istex
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 431
SubjectTerms Automatic Text Generation
Computational Linguistics
Computer Modeling and Simulation
Decision making
Experiments
Forecasting
Language
Natural language
Natural Language Generation
Natural Language Processing
Probability
Statistical Analysis
Statistical methods
Subject specialists
Trends
Weather
Weather forecasting
Title Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models
URI https://www.cambridge.org/core/product/identifier/S1351324907004664/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-7G3PD4KT-7/fulltext.pdf
https://www.proquest.com/docview/216647282
https://www.proquest.com/docview/85686285
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-8110
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004174
  issn: 1351-3249
  databaseCode: P5Z
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1469-8110
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004174
  issn: 1351-3249
  databaseCode: K7-
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-8110
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004174
  issn: 1351-3249
  databaseCode: M7S
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Linguistics Database
  customDbUrl:
  eissn: 1469-8110
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004174
  issn: 1351-3249
  databaseCode: CRLPW
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/linguistics
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-8110
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004174
  issn: 1351-3249
  databaseCode: BENPR
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1469-8110
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004174
  issn: 1351-3249
  databaseCode: M2M
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BlwMXylMsheID4oCwiJ2H7RMq0BapdLVAQRWXyHGctiratJvdws9nxnmsqkp74eKDY0eR5-Fx5vM3AK9EEXldupin3lk8oBjDdZkZ7pUo8ASSlFUgnv_5RU0m-vjYTDtsTtPBKnufGBx1WTv6R_5OioyYzrV8f3HJqWgUJVe7Chq3YSSkFKTmB4qvrkW2JMxUg45j3GD6pCYxRlMn9UVE754R38CKWuHaFjWi1f57w1OH7Wdv8z8__D7c6-JOttMqygO45WcPYbOv6cA6E38EpzvLRR1oXNlJYKQmwbG6Yn_aWJFhkIvr3SwYQUYaRrj5E0bA9Lk_bcHwjIrUBOLe5vprOHov51kovtM8hh97u0cfP_OuGgN3cRInvDLaRsKryCWyKkonCzwsOR-ryBrcaKPMldokqagwJBEWw0RpPcZ3haoSn1lTxU9gY1bP_FNgBWqO0AUlVVVS6qhAxagcnt3QNVun4jG8HYSRdzbV5C0eTeU3ZDeGqJdX7jpmcyqw8XvdlDfDlIuW1mPd4NdBCYaRdn5OeDiV5tn-11ztx9NPycFRrsaw1avA6rMH-Y_h5fAUbZgSM3bm62WT65Tu6ej02dr5W3BX9mS84jlsLOZL_wLuuKvFWTPfhtGH3cn023YwAWwP5SG16ju20_TXP-N0DKU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VBgkulKcIBeoD9ICw2LftA4eqpQ8lRAEF6M14vd4WtcqWbELhR_EfmdlXVFXKrQeu3rW1sj_PY2fmG4BXfuo5mdmQx84adFCU4jJLFHfCT9EDibK8Ip7_OhSjkTw-VuM1-NvWwlBaZSsTK0GdFZb-kb8L_ISYzmXQJFAO3J9LdM_K90d7eJavg2D_w2T3kDcdBLgNozDiuZLG853wbBTkaWaDFA1860LhGYXKwUtsJlUU-zmqUd-gaRMYhzZJKvLIJUblIa67ffGTU5MqCuY2HTtuQU8mSqIc6O1-Ho6_LQsxa9pn6nrH0VJRbRiVOKppkMY8IpRPiOFgSeZwRSn26Hx_X9MNlcLb3_jPtuo-3Gssa7ZTX4UHsOamD2Gj7VrBGiH2CE53FvOiIqplJxXnNkGTFTm7rK1hhmY8IqqcM0qKKRlVBpwwSr2fudM63Z9RG56Kmri8ugxH-Wwdq9oLlY_hy41swRNYnxZT9xRYinfDlymFjUWUSS9F6OcWvVNUPsaKsA9vu8PXjdQodZ1xJ_Q1rPTBa_GhbcPdTi1EzldNedNNuaiJS1a9vF2BrnvTzM4o40_EOjn4pMVBON6LBhMt-rDZQm752R3e-rDVPUUpRaEnM3XFotQypkokGT9bOX8L7hxOPg718Gg02IS7QUs97D-H9fls4V7Abftr_qOcvWwuHoPvN43pf8WlZvg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VBCEuLU-RtlAfgAPC6r7tPSBUNaRUiaKACvTmer3eFrXKlmxC6U_j3zGzr6iqlFsPXL22tV5_8_B65huA127iWJkan4fWaDygxDGXaRRzK9wETyBBmpXE899HYjyWx8fxZA3-NrkwFFbZ6MRSUae5oX_ku54bEdO59HazOipi0h98vPzFqYAUXbQ21TQqhAzt9RWe3ooPh33c6jeeN_h0tP-Z1wUGuPEDP-BZLLXjWuGYwMuS1HgJ-v_G-sLRMdoOJzKpjIPQzdDKuho9H09bdFkSkQU20nHm47z3oCsjFJMOdPe_jiY_lkmZFQU0VcDj6LXEzZUq8VVTI7U5RC4fEdvBktjhhoHs0l7_uWUnSuM32PiPP9sjWK89brZXichjWLPTJ7DRVLNgtXJ7Cmd7i3leEtiy05KLmyDL8oxdVV4yQ_cekVbMGa2vYJQxcMooJH9mz6o0AEbleUrK4uLmNBz1trGsLDtUPINvd7Le59CZ5lP7AliCMuPKhK6TRZBKJ0GRyAyeWtEoaSP8HrxvgaBqbVKoKhJPqFu46YHTYEWZmtOdSotcrBryrh1yWRGarOr8tgRg21PPzikSUIQqOviixIE_6QfDIyV6sNXAb_naLfZ6sNM-Re1FV1J6avNFoWRIGUoy3Fw5fgceIGrV6HA83IKHXsNI7G5DZz5b2Jdw3_ye_yxmr2oZZHBy1_j9B9_bb64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+generation+of+Weather+forecast+texts+using+comprehensive+probabilistic+generation-space+models&rft.jtitle=Natural+language+engineering&rft.au=Belz%2C+Anja&rft.date=2008-10-01&rft.issn=1351-3249&rft.volume=14&rft.issue=4&rft.spage=431&rft.epage=455&rft_id=info:doi/10.1017%2FS1351324907004664&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-3249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-3249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-3249&client=summon