Robust Gaussian-base radial kernel fuzzy clustering algorithm for image segmentation

To perform the image segmentation task, in this Letter, a kernel fuzzy C-means algorithm is introduced, strengthened by a robust Gaussian radial basis function kernel based on M-estimators. It is well-known that these kernels consider the squared difference as a similarity measure, which is not robu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics letters Ročník 55; číslo 15; s. 835 - 837
Hlavní autoři: Mújica-Vargas, Dante, Carvajal-Gámez, Blanca, Ochoa, Genaro, Rubio, José
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 25.07.2019
Témata:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To perform the image segmentation task, in this Letter, a kernel fuzzy C-means algorithm is introduced, strengthened by a robust Gaussian radial basis function kernel based on M-estimators. It is well-known that these kernels consider the squared difference as a similarity measure, which is not robust to atypical data. In this regard, the main motivation of this contribution is to improve the atypical information tolerance of these kernels, in order to make a better clustering of pixels. Experimental tests were developed considering colour images. The robustness and effectiveness of this proposal are verified by quantitative and qualitative results.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2019.1281