Deep learning for electrolysis process anode effect prediction based on long short-term memory network and stacked denoising autoencoder

The anode effect is a common failure in the aluminium electrolysis industry. If the anode effect cannot be accurately predicted, it will cause increased energy consumption, harmful gas generation and even equipment damage in the aluminium electrolysis. In this paper, an anode effect prediction frame...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Rare metals Ročník 43; číslo 12; s. 6730 - 6741
Hlavní autori: Yin, Gang, Li, Yi-Hui, Yan, Fei-Ya, Quan, Peng-Cheng, Wang, Min, Cao, Wen-Qi, Xu, Heng-Quan, Lu, Jian, He, Wen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Beijing Nonferrous Metals Society of China 01.12.2024
Predmet:
ISSN:1001-0521, 1867-7185
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The anode effect is a common failure in the aluminium electrolysis industry. If the anode effect cannot be accurately predicted, it will cause increased energy consumption, harmful gas generation and even equipment damage in the aluminium electrolysis. In this paper, an anode effect prediction framework using multi-model merging based on deep learning technology is proposed. Different models are used to process aluminium electrolysis cell condition parameters with high dimensions and different characteristics, and hidden key fault information is deeply mined. A stacked denoising autoencoder is utilized to denoise and extract features from a large number of long-period parameter data. A long short-term memory network is implemented to identify the intrinsic links between the real-time voltage and current time series and the anode effect. By setting the model time step, the anode effect can be predicted precisely in advance, and the proposed method has good robustness and generalization. Moreover, the traditional Adam algorithm is improved, which enhances the performance and convergence speed of the model. The experimental results show that the classification accuracy and F1 score of the model are 97.14% and 0.9579%, respectively. The prediction time can reach 15 min. Graphical abstract
AbstractList The anode effect is a common failure in the aluminium electrolysis industry. If the anode effect cannot be accurately predicted, it will cause increased energy consumption, harmful gas generation and even equipment damage in the aluminium electrolysis. In this paper, an anode effect prediction framework using multi-model merging based on deep learning technology is proposed. Different models are used to process aluminium electrolysis cell condition parameters with high dimensions and different characteristics, and hidden key fault information is deeply mined. A stacked denoising autoencoder is utilized to denoise and extract features from a large number of long-period parameter data. A long short-term memory network is implemented to identify the intrinsic links between the real-time voltage and current time series and the anode effect. By setting the model time step, the anode effect can be predicted precisely in advance, and the proposed method has good robustness and generalization. Moreover, the traditional Adam algorithm is improved, which enhances the performance and convergence speed of the model. The experimental results show that the classification accuracy and F1 score of the model are 97.14% and 0.9579%, respectively. The prediction time can reach 15 min. Graphical abstract
The anode effect is a common failure in the aluminium electrolysis industry. If the anode effect cannot be accurately predicted, it will cause increased energy consumption, harmful gas generation and even equipment damage in the aluminium electrolysis. In this paper, an anode effect prediction framework using multi‐model merging based on deep learning technology is proposed. Different models are used to process aluminium electrolysis cell condition parameters with high dimensions and different characteristics, and hidden key fault information is deeply mined. A stacked denoising autoencoder is utilized to denoise and extract features from a large number of long‐period parameter data. A long short‐term memory network is implemented to identify the intrinsic links between the real‐time voltage and current time series and the anode effect. By setting the model time step, the anode effect can be predicted precisely in advance, and the proposed method has good robustness and generalization. Moreover, the traditional Adam algorithm is improved, which enhances the performance and convergence speed of the model. The experimental results show that the classification accuracy and F1 score of the model are 97.14% and 0.9579%, respectively. The prediction time can reach 15 min. Graphical 摘要 阳极效应是铝电解生产过程中最为常见的故障,阳极效应会增加能耗,产生有害气体,造成设备损坏。本文结合铝电解生产数据特点提出了一种基于深度学习的多模型融合阳极效应预测框架,采用不同的算法处理高维、不同特征的铝电解槽运行参数,充分挖掘隐藏的关键故障信息,具有很好的鲁棒性和泛化性。利用堆叠降噪自动编码器(SDAE)对大量日采集参数去噪并提取特征,采用长短期记忆网络(LSTM)识别实时电压和电流的时间序列与阳极效应的内在联系,通过设定模型时间步长对阳极效应进行预测。同时采用改进的Adam算法对模型进行优化,提高了模型的性能和收敛速度。实验结果表明,该模型的分类准确率为97.14%,F1分数为0.9579,预测时间可达15 min。
The anode effect is a common failure in the aluminium electrolysis industry. If the anode effect cannot be accurately predicted, it will cause increased energy consumption, harmful gas generation and even equipment damage in the aluminium electrolysis. In this paper, an anode effect prediction framework using multi‐model merging based on deep learning technology is proposed. Different models are used to process aluminium electrolysis cell condition parameters with high dimensions and different characteristics, and hidden key fault information is deeply mined. A stacked denoising autoencoder is utilized to denoise and extract features from a large number of long‐period parameter data. A long short‐term memory network is implemented to identify the intrinsic links between the real‐time voltage and current time series and the anode effect. By setting the model time step, the anode effect can be predicted precisely in advance, and the proposed method has good robustness and generalization. Moreover, the traditional Adam algorithm is improved, which enhances the performance and convergence speed of the model. The experimental results show that the classification accuracy and F1 score of the model are 97.14% and 0.9579%, respectively. The prediction time can reach 15 min. 阳极效应是铝电解生产过程中最为常见的故障,阳极效应会增加能耗,产生有害气体,造成设备损坏。本文结合铝电解生产数据特点提出了一种基于深度学习的多模型融合阳极效应预测框架,采用不同的算法处理高维、不同特征的铝电解槽运行参数,充分挖掘隐藏的关键故障信息,具有很好的鲁棒性和泛化性。利用堆叠降噪自动编码器(SDAE)对大量日采集参数去噪并提取特征,采用长短期记忆网络(LSTM)识别实时电压和电流的时间序列与阳极效应的内在联系,通过设定模型时间步长对阳极效应进行预测。同时采用改进的Adam算法对模型进行优化,提高了模型的性能和收敛速度。实验结果表明,该模型的分类准确率为97.14%,F1分数为0.9579,预测时间可达15 min。
Author Lu, Jian
Li, Yi-Hui
Cao, Wen-Qi
Yin, Gang
Xu, Heng-Quan
He, Wen
Quan, Peng-Cheng
Wang, Min
Yan, Fei-Ya
Author_xml – sequence: 1
  givenname: Gang
  surname: Yin
  fullname: Yin, Gang
  email: yk115@cqu.edu.cn
  organization: School of Resource and Safety Engineering, and State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University
– sequence: 2
  givenname: Yi-Hui
  orcidid: 0000-0002-6563-8772
  surname: Li
  fullname: Li, Yi-Hui
  organization: School of Resource and Safety Engineering, and State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University
– sequence: 3
  givenname: Fei-Ya
  surname: Yan
  fullname: Yan, Fei-Ya
  organization: Guiyang Aluminium Magnesium Design and Research Institute Co., Ltd
– sequence: 4
  givenname: Peng-Cheng
  surname: Quan
  fullname: Quan, Peng-Cheng
  organization: Aba Aluminium Factory
– sequence: 5
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: Chongqing Qineng Electric Aluminium Co., Ltd
– sequence: 6
  givenname: Wen-Qi
  surname: Cao
  fullname: Cao, Wen-Qi
  organization: Bomei Qimingxing Aluminium Co., Ltd
– sequence: 7
  givenname: Heng-Quan
  surname: Xu
  fullname: Xu, Heng-Quan
  organization: Aba Aluminium Factory
– sequence: 8
  givenname: Jian
  surname: Lu
  fullname: Lu, Jian
  organization: Guiyang Aluminium Magnesium Design and Research Institute Co., Ltd
– sequence: 9
  givenname: Wen
  surname: He
  fullname: He, Wen
  organization: Bomei Qimingxing Aluminium Co., Ltd
BookMark eNqNkMtOAyEUQInRxPr4AVf8wOiFmYFpXNVH1aSJidE1oXBHsVNoAKP9Az9bal25MC7IfcC5N5wDsuuDR0JOGJwyAHmWGG_HXQW8KUcKUX3skBHrhKwk69rdkgOwClrO9slBSq8ATSMEjMjnFeKKDqijd_6Z9iFSHNDkGIZ1comuYjCYEtU-WKTY9-WuNNE6k13wdK4TWlqSIRQ8vYSYq4xxSZe4DHFNPeb3EBeFtzRlbRbltUUfXNqs0285oDdldDwie70eEh7_xEPyNL1-vLytZvc3d5eTWWXqpmZVO5edRJyPTYfC9lpLkIKJ3gB2UrYcONixER1wNC1Y0EJrK4WseduYMYr6kHTbuSaGlCL2yrisN3_JUbtBMVAbo2prVBWj6tuo-igo_4WuolvquP4bOt9C727A9T8I9TB54BfTUjFW6HpLpwL6Z4zqNbxFXwT9tfMLQUahTg
CitedBy_id crossref_primary_10_1016_j_ultras_2025_107778
crossref_primary_10_1016_j_neucom_2025_131485
crossref_primary_10_1109_JSEN_2025_3547369
Cites_doi 10.1016/j.jmst.2023.05.010
10.1109/access.2020.3041834
10.1093/bioinformatics/btz682
10.1177/1475921719893594
10.1016/j.jmst.2022.05.051
10.1016/j.jclepro.2017.06.199
10.1007/s12598-021-01911-0
10.1007/bf03338607
10.1109/tii.2017.2780884
10.1109/tnnls.2016.2551940
10.1088/1361-6501/aaee5e
10.3390/rs10010016
10.5545/sv-jme.2018.5249
10.3934/jimo.2016066
10.1007/s40820-023-01192-5
10.1016/j.patrec.2014.01.008
10.1007/s12598-023-02282-4
10.1109/access.2019.2907000
10.1016/j.ress.2022.108445
10.1109/tim.2022.3225044
10.1016/j.apacoust.2020.107391
10.1016/j.sigpro.2016.07.028
10.3934/jimo.2018060
10.1007/s11837-016-2043-6
10.1098/rspa.2017.0844
10.1088/1361-6501/ab2b89
10.1109/tie.2015.2510977
10.1007/s12598-022-02238-0
10.1088/1361‐6501/ab2b89
10.1007/s12598‐022‐02238‐0
10.1007/s12598‐021‐01911‐0
10.5545/sv‐jme.2018.5249
10.1007/s12598‐023‐02282‐4
10.1007/s40820‐023‐01192‐5
10.1088/1361‐6501/aaee5e
10.1109/CAC.2017.8242789
10.1007/s11837‐016‐2043‐6
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024 Youke Publishing Co., Ltd.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024 Youke Publishing Co., Ltd.
DBID AAYXX
CITATION
DOI 10.1007/s12598-024-02766-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 6741
ExternalDocumentID 10_1007_s12598_024_02766_x
RAR2BF02711
Genre article
GrantInformation_xml – fundername: the General Program of National Natural Science Foundation of China
  grantid: 51374268
– fundername: the Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project
  grantid: CQYC202203091061
– fundername: the Major Projects for Technological Transformation
  grantid: H20201555
– fundername: Major Projects for Technological Transformation
  funderid: H20201555
– fundername: General Program of National Natural Science Foundation of China
  funderid: 51374268
– fundername: Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project
  funderid: CQYC202203091061
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
M7S
PHGZM
PHGZT
PQGLB
PTHSS
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c3431-5b787eeb9c8e6dfaa707616fc0e87752020d9c6802ec50d0a6aad7673254c9e63
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001266533300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1001-0521
IngestDate Tue Nov 18 21:38:53 EST 2025
Sat Nov 29 06:51:50 EST 2025
Thu Oct 09 10:00:25 EDT 2025
Fri Feb 21 02:38:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Deep learning
Improved Adam algorithm
Aluminium electrolysis
Merging model
Anode effect prediction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3431-5b787eeb9c8e6dfaa707616fc0e87752020d9c6802ec50d0a6aad7673254c9e63
Notes Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self‐archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright comment
ORCID 0000-0002-6563-8772
PageCount 12
ParticipantIDs crossref_citationtrail_10_1007_s12598_024_02766_x
crossref_primary_10_1007_s12598_024_02766_x
wiley_primary_10_1007_s12598_024_02766_x_RAR2BF02711
springer_journals_10_1007_s12598_024_02766_x
PublicationCentury 2000
PublicationDate 20241200
December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2024
Publisher Nonferrous Metals Society of China
Publisher_xml – name: Nonferrous Metals Society of China
References Lu, Wang, Qin, Ma (CR20) 2017; 130
Pan, Kong, Chen, Zhou, Liu, Xu (CR18) 2019; 30
Yin, Xiang, Wang, Xiang, He, Cao (CR22) 2023; 47
Yi, Bai, Zhou, He, Yao (CR5) 2018; 14
Wang, Wu, Dong, Pan, Zhou, Wang, Guo, Wu, Gao, Dai, Mao (CR11) 2023; 165
Chen, Jiang, Fang, Zhu, Ye, Liu (CR9) 2022; 41
Lee, Yoon, Kim, Kim, Kim, So, Kang (CR34) 2020; 36
Zhu, Pan, Wu, Zhou, Li, Ren, Shi, Yu, Wei, Wu, Yang (CR14) 2023; 42
CR15
Dion, Marks, Kiss, Poncsak, Lagace (CR2) 2017; 164
Liu, Yang, Cai, Wang, Lai, Hao, Wang (CR8) 2023; 42
CR33
Langkvist, Karlsson, Loutfi (CR19) 2014; 42
Liang, Shi, Zhang (CR27) 2018; 10
Vlachas, Byeon, Wan, Sapsis, Koumoutsakos (CR30) 2018; 474
Kong, Yu, Teo, Yang (CR4) 2017; 13
Wang, Zhao, Teng, Sun (CR25) 2020; 167
Yi, Huang, Fu, He, Li (CR6) 2016; 63
Zhou, Zhang, Liu, Hu, Duan, Xu (CR16) 2019; 30
Yin, Li, He, Cao, Wang, Yan, Xiang, Lu, Luo, Lu (CR10) 2023; 74
Chen, Li, Chen, Yang, Gui (CR17) 2019; 15
CR3
Li, Wu, Zhang, Wu, Pan, Wang, Liu, Liu, Yao, Zhang (CR13) 2023; 15
Dion, Kiss, Poncsak, Lagace (CR1) 2016; 68
De Bruin, Verbert, Babuska (CR29) 2017; 28
Chen, Wang, Xiong, Wu, Gao, Wu, Ma, Wu, Mao (CR12) 2023; 132
Zhou, Shi, Yin, He, Yi (CR24) 2020; 8
Farrow (CR7) 1984; 36
Yan, Liu, Jia (CR26) 2020; 19
Dai, Li, Li (CR21) 2019; 7
Zhou, Zheng, Yin, Pang, Yi (CR23) 2023; 72
Zhang, Hu, Yang (CR32) 2022; 222
Pan, He, Tang, Meng (CR31) 2018; 64
Yin, Chen, He, He, Luo, Tang (CR28) 2021; 45
2019; 7
2023; 74
2021; 45
2019; 30
2023; 15
2017; 28
2019; 15
2023; 165
2020; 36
2022; 41
2017; 130
2020; 167
2002
2018; 64
2020; 19
2014; 42
2023; 42
2020; 8
2022; 222
2018; 474
2023; 47
1984; 36
2017; 13
2023; 132
2016; 63
2017
2017; 164
2018; 10
2016; 68
2023; 72
2018; 14
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Yin G (e_1_2_9_23_1) 2023; 47
Yin G (e_1_2_9_29_1) 2021; 45
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Yin G (e_1_2_9_11_1) 2023; 74
References_xml – volume: 165
  start-page: 49
  year: 2023
  ident: CR11
  article-title: Atomic-scale simulations in multi-component alloys and compounds: a review on advances in interatomic potential
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2023.05.010
– volume: 8
  start-page: 220374
  year: 2020
  ident: CR24
  article-title: Optimal control for aluminum electrolysis process using adaptive dynamic programming
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3041834
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  ident: CR34
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– volume: 19
  start-page: 1602
  issue: 5
  year: 2020
  ident: CR26
  article-title: Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder
  publication-title: Struct Health Monit-Int J
  doi: 10.1177/1475921719893594
– volume: 132
  start-page: 213
  year: 2023
  ident: CR12
  article-title: Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2022.05.051
– volume: 164
  start-page: 357
  year: 2017
  ident: CR2
  article-title: Quantification of perfluorocarbons emissions during high voltage anode effects using non-linear approach
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.06.199
– volume: 41
  start-page: 1543
  issue: 5
  year: 2022
  ident: CR9
  article-title: Machine learning assisted discovering of new M2X3-type thermoelectric materials
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01911-0
– volume: 36
  start-page: 33
  issue: 11
  year: 1984
  ident: CR7
  article-title: Prediction of anode effects in aluminum reduction cells
  publication-title: J Metals
  doi: 10.1007/bf03338607
– ident: CR33
– volume: 14
  start-page: 3405
  issue: 8
  year: 2018
  ident: CR5
  article-title: Operating parameters optimization for the aluminum electrolysis process using an improved quantum-behaved particle swarm algorithm
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/tii.2017.2780884
– volume: 28
  start-page: 523
  issue: 3
  year: 2017
  ident: CR29
  article-title: Railway track circuit fault diagnosis using recurrent neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/tnnls.2016.2551940
– volume: 30
  start-page: 1
  issue: 1
  year: 2019
  ident: CR16
  article-title: Anode effect prediction based on a singular value thresholding and extreme gradient boosting approach
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aaee5e
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: CR27
  article-title: Remote sensing image classification based on stacked denoising autoencoder
  publication-title: Remote Sens
  doi: 10.3390/rs10010016
– volume: 47
  start-page: 273
  issue: 2
  year: 2023
  ident: CR22
  article-title: Prediction method of remaining life of aluminum reduction cell based on data drive
  publication-title: Chin J Rare Met
– volume: 74
  start-page: 3419
  issue: 8
  year: 2023
  ident: CR10
  article-title: Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM
  publication-title: CIESC J
– volume: 64
  start-page: 443
  issue: 7
  year: 2018
  ident: CR31
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: Stroj Vestn-J Mech E
  doi: 10.5545/sv-jme.2018.5249
– volume: 13
  start-page: 1149
  issue: 3
  year: 2017
  ident: CR4
  article-title: Robust real-time optimization for blending operation of alumina production
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2016066
– volume: 15
  start-page: 1
  issue: 1
  year: 2023
  ident: CR13
  article-title: Machine learning-assisted low-dimensional electrocatalysts design for hydrogen evolution reaction
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-023-01192-5
– volume: 42
  start-page: 11
  year: 2014
  ident: CR19
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2014.01.008
– volume: 42
  start-page: 2396
  issue: 7
  year: 2023
  ident: CR14
  article-title: Improved material descriptors for bulk modulus in intermetallic compounds via machine learning
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02282-4
– volume: 7
  start-page: 38287
  year: 2019
  ident: CR21
  article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2907000
– volume: 222
  start-page: 1
  year: 2022
  ident: CR32
  article-title: Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108445
– volume: 72
  start-page: 1
  year: 2023
  ident: CR23
  article-title: YOLOTrashCan: a deep learning marine debris detection network
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/tim.2022.3225044
– volume: 167
  start-page: 1
  year: 2020
  ident: CR25
  article-title: A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107391
– ident: CR3
– ident: CR15
– volume: 130
  start-page: 377
  year: 2017
  ident: CR20
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 45
  start-page: 428
  issue: 4
  year: 2021
  ident: CR28
  article-title: A method for anode effect prediction of aluminium electrolysis cell based on SDAE and random forest
  publication-title: Chin J Rare Met
– volume: 15
  start-page: 595
  issue: 2
  year: 2019
  ident: CR17
  article-title: Anode effect prediction based on collaborative two-dimensional forecast model in aluminum electrolysis production
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2018060
– volume: 68
  start-page: 2472
  issue: 9
  year: 2016
  ident: CR1
  article-title: Prediction of low-voltage tetrafluoromethane emissions based on the operating conditions of an aluminium electrolysis cell
  publication-title: JOM
  doi: 10.1007/s11837-016-2043-6
– volume: 474
  start-page: 1
  issue: 2213
  year: 2018
  ident: CR30
  article-title: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
  publication-title: Proc Royal Soc Math Phys Eng Sci
  doi: 10.1098/rspa.2017.0844
– volume: 30
  start-page: 1
  issue: 11
  year: 2019
  ident: CR18
  article-title: A modified neighborhood mutual information and light gradient boosting machine-based long-term prediction approach for anode effect
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ab2b89
– volume: 63
  start-page: 2488
  issue: 4
  year: 2016
  ident: CR6
  article-title: Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/tie.2015.2510977
– volume: 42
  start-page: 2713
  issue: 8
  year: 2023
  ident: CR8
  article-title: Prediction of sintered density of binary W(Mo) alloys using machine learning
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02238-0
– start-page: 1
  year: 2017
– volume: 132
  start-page: 213
  year: 2023
  article-title: Identifying facile material descriptors for Charpy impact toughness in low‐alloy steel via machine learning
  publication-title: J Mater Sci Technol
– volume: 30
  start-page: 1
  issue: 11
  year: 2019
  article-title: A modified neighborhood mutual information and light gradient boosting machine‐based long‐term prediction approach for anode effect
  publication-title: Meas Sci Technol
– volume: 68
  start-page: 2472
  issue: 9
  year: 2016
  article-title: Prediction of low‐voltage tetrafluoromethane emissions based on the operating conditions of an aluminium electrolysis cell
  publication-title: JOM
– volume: 13
  start-page: 1149
  issue: 3
  year: 2017
  article-title: Robust real‐time optimization for blending operation of alumina production
  publication-title: J Ind Manag Optim
– volume: 15
  start-page: 1
  issue: 1
  year: 2023
  article-title: Machine learning‐assisted low‐dimensional electrocatalysts design for hydrogen evolution reaction
  publication-title: Nano‐Micro Lett
– volume: 42
  start-page: 2396
  issue: 7
  year: 2023
  article-title: Improved material descriptors for bulk modulus in intermetallic compounds via machine learning
  publication-title: Rare Met
– volume: 42
  start-page: 11
  year: 2014
  article-title: A review of unsupervised feature learning and deep learning for time‐series modeling
  publication-title: Pattern Recogn Lett
– volume: 63
  start-page: 2488
  issue: 4
  year: 2016
  article-title: Multi‐objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process
  publication-title: IEEE Trans Ind Electron
– volume: 41
  start-page: 1543
  issue: 5
  year: 2022
  article-title: Machine learning assisted discovering of new M2X3‐type thermoelectric materials
  publication-title: Rare Met
– volume: 42
  start-page: 2713
  issue: 8
  year: 2023
  article-title: Prediction of sintered density of binary W(Mo) alloys using machine learning
  publication-title: Rare Met
– volume: 28
  start-page: 523
  issue: 3
  year: 2017
  article-title: Railway track circuit fault diagnosis using recurrent neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 474
  start-page: 1
  issue: 2213
  year: 2018
  article-title: Data‐driven forecasting of high‐dimensional chaotic systems with long short‐term memory networks
  publication-title: Proc Royal Soc Math Phys Eng Sci
– volume: 36
  start-page: 33
  issue: 11
  year: 1984
  article-title: Prediction of anode effects in aluminum reduction cells
  publication-title: J Metals
– volume: 15
  start-page: 595
  issue: 2
  year: 2019
  article-title: Anode effect prediction based on collaborative two‐dimensional forecast model in aluminum electrolysis production
  publication-title: J Ind Manag Optim
– volume: 167
  start-page: 1
  year: 2020
  article-title: A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data
  publication-title: Appl Acoust
– volume: 14
  start-page: 3405
  issue: 8
  year: 2018
  article-title: Operating parameters optimization for the aluminum electrolysis process using an improved quantum‐behaved particle swarm algorithm
  publication-title: IEEE Trans Ind Inf
– volume: 164
  start-page: 357
  year: 2017
  article-title: Quantification of perfluorocarbons emissions during high voltage anode effects using non‐linear approach
  publication-title: J Clean Prod
– volume: 47
  start-page: 273
  issue: 2
  year: 2023
  article-title: Prediction method of remaining life of aluminum reduction cell based on data drive
  publication-title: Chin J Rare Met
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  article-title: Remote sensing image classification based on stacked denoising autoencoder
  publication-title: Remote Sens
– volume: 8
  start-page: 220374
  year: 2020
  article-title: Optimal control for aluminum electrolysis process using adaptive dynamic programming
  publication-title: IEEE Access
– volume: 45
  start-page: 428
  issue: 4
  year: 2021
  article-title: A method for anode effect prediction of aluminium electrolysis cell based on SDAE and random forest
  publication-title: Chin J Rare Met
– start-page: 341
  year: 2017
– volume: 7
  start-page: 38287
  year: 2019
  article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction
  publication-title: IEEE Access
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  article-title: BioBERT: a pre‐trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
– volume: 19
  start-page: 1602
  issue: 5
  year: 2020
  article-title: Health condition identification for rolling bearing using a multi‐domain indicator‐based optimized stacked denoising autoencoder
  publication-title: Struct Health Monit‐Int J
– volume: 130
  start-page: 377
  year: 2017
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder‐based health state identification
  publication-title: Signal Process
– volume: 64
  start-page: 443
  issue: 7
  year: 2018
  article-title: An improved bearing fault diagnosis method using one‐dimensional CNN and LSTM
  publication-title: Stroj Vestn‐J Mech E
– volume: 222
  start-page: 1
  year: 2022
  article-title: Anomaly detection and diagnosis for wind turbines using long short‐term memory‐based stacked denoising autoencoders and XGBoost
  publication-title: Reliab Eng Syst Saf
– volume: 74
  start-page: 3419
  issue: 8
  year: 2023
  article-title: Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM
  publication-title: CIESC J
– volume: 30
  start-page: 1
  issue: 1
  year: 2019
  article-title: Anode effect prediction based on a singular value thresholding and extreme gradient boosting approach
  publication-title: Meas Sci Technol
– volume: 72
  start-page: 1
  year: 2023
  article-title: YOLOTrashCan: a deep learning marine debris detection network
  publication-title: IEEE Trans Instrum Meas
– start-page: 503
  year: 2002
– volume: 165
  start-page: 49
  year: 2023
  article-title: Atomic‐scale simulations in multi‐component alloys and compounds: a review on advances in interatomic potential
  publication-title: J Mater Sci Technol
– ident: e_1_2_9_19_1
  doi: 10.1088/1361‐6501/ab2b89
– volume: 47
  start-page: 273
  issue: 2
  year: 2023
  ident: e_1_2_9_23_1
  article-title: Prediction method of remaining life of aluminum reduction cell based on data drive
  publication-title: Chin J Rare Met
– ident: e_1_2_9_9_1
  doi: 10.1007/s12598‐022‐02238‐0
– ident: e_1_2_9_26_1
  doi: 10.1016/j.apacoust.2020.107391
– ident: e_1_2_9_21_1
  doi: 10.1016/j.sigpro.2016.07.028
– ident: e_1_2_9_10_1
  doi: 10.1007/s12598‐021‐01911‐0
– ident: e_1_2_9_31_1
  doi: 10.1098/rspa.2017.0844
– ident: e_1_2_9_35_1
  doi: 10.1093/bioinformatics/btz682
– ident: e_1_2_9_32_1
  doi: 10.5545/sv‐jme.2018.5249
– ident: e_1_2_9_15_1
  doi: 10.1007/s12598‐023‐02282‐4
– volume: 45
  start-page: 428
  issue: 4
  year: 2021
  ident: e_1_2_9_29_1
  article-title: A method for anode effect prediction of aluminium electrolysis cell based on SDAE and random forest
  publication-title: Chin J Rare Met
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jmst.2023.05.010
– ident: e_1_2_9_22_1
  doi: 10.1109/access.2019.2907000
– ident: e_1_2_9_14_1
  doi: 10.1007/s40820‐023‐01192‐5
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jclepro.2017.06.199
– ident: e_1_2_9_7_1
  doi: 10.1109/tie.2015.2510977
– ident: e_1_2_9_30_1
  doi: 10.1109/tnnls.2016.2551940
– ident: e_1_2_9_20_1
  doi: 10.1016/j.patrec.2014.01.008
– ident: e_1_2_9_27_1
  doi: 10.1177/1475921719893594
– ident: e_1_2_9_6_1
  doi: 10.1109/tii.2017.2780884
– ident: e_1_2_9_17_1
  doi: 10.1088/1361‐6501/aaee5e
– ident: e_1_2_9_25_1
  doi: 10.1109/access.2020.3041834
– ident: e_1_2_9_4_1
– ident: e_1_2_9_5_1
  doi: 10.3934/jimo.2016066
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ress.2022.108445
– ident: e_1_2_9_24_1
  doi: 10.1109/tim.2022.3225044
– ident: e_1_2_9_28_1
  doi: 10.3390/rs10010016
– ident: e_1_2_9_8_1
  doi: 10.1007/bf03338607
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jmst.2022.05.051
– ident: e_1_2_9_18_1
  doi: 10.3934/jimo.2018060
– ident: e_1_2_9_16_1
  doi: 10.1109/CAC.2017.8242789
– ident: e_1_2_9_34_1
– ident: e_1_2_9_2_1
  doi: 10.1007/s11837‐016‐2043‐6
– volume: 74
  start-page: 3419
  issue: 8
  year: 2023
  ident: e_1_2_9_11_1
  article-title: Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM
  publication-title: CIESC J
SSID ssj0044660
Score 2.3707716
Snippet The anode effect is a common failure in the aluminium electrolysis industry. If the anode effect cannot be accurately predicted, it will cause increased energy...
SourceID crossref
wiley
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 6730
SubjectTerms Aluminium electrolysis
Anode effect prediction
Biomaterials
Chemistry and Materials Science
Deep learning
Energy
Improved Adam algorithm
Materials Engineering
Materials Science
Merging model
Metallic Materials
Nanoscale Science and Technology
Original Article
Physical Chemistry
Title Deep learning for electrolysis process anode effect prediction based on long short-term memory network and stacked denoising autoencoder
URI https://link.springer.com/article/10.1007/s12598-024-02766-x
https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs12598-024-02766-x
Volume 43
WOSCitedRecordID wos001266533300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1867-7185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044660
  issn: 1001-0521
  databaseCode: RSV
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQ4QAHdkTZ5AM3sJSlsZNjWSoOCKGyqLfIsR2oVJKqaRH8AZ_NTOJQKqEKuCWRl8gez3te5pmQY-FHiQRoZUqEmoFReCzxTQoj3hgBCAMYUarrX4ubm7DXi25tUFhRn3avtyRLTz0NdgOmHjLAFNx35JwBc1wEuAtxOHbvHmv_ixuUlQYBTpQBnWyozM9lzMJRXfEsUy2hprP2v59cJ6uWWtJ2ZQsbZMFkm2Tlm-DgFvm4MGZI7U0RTxQIK7X34JTKJHRYhQ1QmeXa0OqsB3zEzRzsQIqYpyk8DHLIXjwDd2fo2-kLHth9p1l1qBzyawq0EzyEpuDY8j6uSFA5Geeom6nNaJs8dC7vz6-YvYuBKR84BgsSGNnGJJEKDdeplAIXQHiqHBMKEXjAOnWkeOh4RgWOdiSXUgsufJiAqshwf4c0sjwzu4QGMtGBDFwhorSFeoc89VtQvIRivUDzJnHrLomVFSrH-zIG8VRiGVs5hlaOy1aO35rk5CvPsJLpmJv6tO692A7ZYm7yVmkNvyg57ra73lkH3lx372-17JNlD-3G9ZjnHpDGeDQxh2RJvY77xeioNPFPVzn1_A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBfXBuzivefBNA10vSfs4L2PiHDKn7K2kSaqD2Y51E_0H_mxP0tY5EFHf2pJLSU7O9yU5-YLQMXOCiAO0EsF8ScAobBI5KoYRrxQDhAGMMOr6LdZu-71ecFscCsvKaPdyS9J46ulhN2DqPgFM0fuOlBJgjvMuIJYO5OvcPZT-V29Q5hoEeqIM6FQclfm-jFk4KiueZaoGahqr__vJNbRSUEtcz21hHc2pZAMtfxEc3ETvF0oNcXFTxCMGwoqLe3CMMgke5scGME9SqXAe6wEf9WaO7kCsMU9ieBikkD17Au5OtG_Hzzpg9w0neVA55JcYaCd4CInBsaV9vSKB-WScat1MqUZb6L5x2T1vkuIuBiIc4BjEi2BkKxUFwldUxpwzvQBCY2EpnzHPBtYpA0F9y1bCs6TFKeeSUebABFQEijrbqJKkidpB2OOR9LhXYyyIXa13SGPHheI5FGt7klZRreySUBRC5fq-jEE4lVjWrRxCK4emlcPXKjr5zDPMZTp-TH1a9l5YDNnsx-SusYZflBx26h37rAFvtdru32o5QovN7k0rbF21r_fQkq1tyITN7KPKeDRRB2hBvIz72ejQmPsH5fn43g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBuzivefBNw7Z2TdrH6RyKY4x5YW8lTVIdzHbsIvoP_Nme04vbQETxrS1JGpKTnC8553yHkFNhe4EE1cqUcDUDobBYYJsQVrwxAjQM6IiEXb8pWi232_XaM1H8ibd7bpJMYxqQpSkalwY6LE0D3wC1uwz0C9ogOWeAIhermDQIz-t3j_lejMbKlI8AD82gqbKwme_bmFdNeSfmUWuidhrr_-_wBlnLICetpTKySRZMtEVWZ4gIt8lH3ZgBzTJIPFEAsjTLj5MwltBBGk5AZRRrQ1MfEPiIRh6cWIq6UFN46MdQffQMmJ7hnk9f0JH3nUapsznU1xTgKOwcmsKGF_fwpoLKyThGPk1thjvkoXF1f3nNshwNTNmAPZgTwIo3JvCUa7gOpRR4McJDVTauEI4FaFR7irtlyyinrMuSS6kFFzYcTJVnuL1LClEcmT1CHRloRzoVIbywijyIPLSr0LyEZi1H8yKp5NPjq4zAHPNo9P0p9TKOsg-j7Cej7L8VydlXnUFK3_Fj6fN8Jv1sKY9-LF5NJOMXLfudWse6aMBbpbL_t7-ckOV2veE3b1q3B2TFQhFKvGkOSWE8nJgjsqRex73R8DiR_E_IQAHR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+electrolysis+process+anode+effect+prediction+based+on+long+short%E2%80%90term+memory+network+and+stacked+denoising+autoencoder&rft.jtitle=Rare+metals&rft.au=Yin%2C+Gang&rft.au=Li%2C+Yi%E2%80%90Hui&rft.au=Yan%2C+Fei%E2%80%90Ya&rft.au=Quan%2C+Peng%E2%80%90Cheng&rft.date=2024-12-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=43&rft.issue=12&rft.spage=6730&rft.epage=6741&rft_id=info:doi/10.1007%2Fs12598-024-02766-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_024_02766_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon