Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform

Brain complexity and non-stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different motor-imagery (MI) tasks in brain–computer interface (BCI). In the proposed Letter, a novel framework is proposed for the automated accurate cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 56; H. 25; S. 1367 - 1369
Hauptverfasser: Sadiq, Muhammad Tariq, Yu, Xiaojun, Yuan, Zhaohui, Aziz, Muhammad Zulkifal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 10.12.2020
Schlagworte:
ISSN:0013-5194, 1350-911X, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Brain complexity and non-stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different motor-imagery (MI) tasks in brain–computer interface (BCI). In the proposed Letter, a novel framework is proposed for the automated accurate classification of MI tasks. First, raw EEG signals are denoised with multiscale principal component analysis. Secondly, denoised signals are decomposed by empirical wavelet transform into different modes. Thirdly, the two-dimensional (2D) modelling of modes is introduced to identify the variations of different signals. Fourthly, a single geometrical feature name as, a summation of distance from each point relative to a coordinate centre is extracted from 2D modelling of modes. Finally, the extracted feature vectors are provided to the feedforward neural network and cascade forward neural networks for classification check. The proposed study achieved 95.3% of total classification accuracy with 100% outcome for subject with very small training samples, which is outperforming existing methods on the same database.
AbstractList Brain complexity and non‐stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different motor‐imagery (MI) tasks in brain–computer interface (BCI). In the proposed Letter, a novel framework is proposed for the automated accurate classification of MI tasks. First, raw EEG signals are denoised with multiscale principal component analysis. Secondly, denoised signals are decomposed by empirical wavelet transform into different modes. Thirdly, the two‐dimensional (2D) modelling of modes is introduced to identify the variations of different signals. Fourthly, a single geometrical feature name as, a summation of distance from each point relative to a coordinate centre is extracted from 2D modelling of modes. Finally, the extracted feature vectors are provided to the feedforward neural network and cascade forward neural networks for classification check. The proposed study achieved 95.3% of total classification accuracy with 100% outcome for subject with very small training samples, which is outperforming existing methods on the same database.
Author Aziz, Muhammad Zulkifal
Yu, Xiaojun
Yuan, Zhaohui
Sadiq, Muhammad Tariq
Author_xml – sequence: 1
  givenname: Muhammad Tariq
  orcidid: 0000-0002-7410-5951
  surname: Sadiq
  fullname: Sadiq, Muhammad Tariq
  email: tariq.sadiq@mail.nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
– sequence: 2
  givenname: Xiaojun
  surname: Yu
  fullname: Yu, Xiaojun
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
– sequence: 3
  givenname: Zhaohui
  surname: Yuan
  fullname: Yuan, Zhaohui
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
– sequence: 4
  givenname: Muhammad Zulkifal
  surname: Aziz
  fullname: Aziz, Muhammad Zulkifal
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
BookMark eNp9kDtP8zAUQC0EEuWx8QM8MDCQcv1KmhGq8pCCWEBii5zkGvzJiSs7UPXf41KGTwiYbMnnXNvngOwOfkBCThhMGcjyAt2UA4cpV1DukAkTCrKSseddMgFgIlOslPvkOEbbAJNM5iDZhLze-9EHanv9gmFNr-Z3tHU6Qca2erR-oI2O2NG0Gfw7OjqufNbZHoeYDrWjve_QOTu8UDtQ7Jc2JNHRlU4wjnQMeojGh_6I7BntIh5_rYfk6XrxOL_Nqoebu_lllbVCCshMAznHDrFQrEBuDKhOGWMaRGxmM6Z4IwWKHPUMlcQSpOE58nJWSGWYLMQh4du5bfAxBjR1a8fPn6SnWFczqDe5anT1Jle9yZWk82_SMqQkYf0brrb4yjpc_8nWi6riV9dQiBySd7b1LI71P_8WUsD42xWnP6CL6r_Jy86ID0UImI4
CitedBy_id crossref_primary_10_1007_s13755_021_00139_7
crossref_primary_10_1109_TNSRE_2024_3391936
crossref_primary_10_3390_s22103696
crossref_primary_10_1007_s11760_025_03851_z
crossref_primary_10_1109_ACCESS_2024_3378732
crossref_primary_10_1016_j_prime_2024_100845
crossref_primary_10_1109_ACCESS_2023_3321067
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1080_1206212X_2024_2417847
crossref_primary_10_1080_10255842_2025_2514132
crossref_primary_10_3389_fpubh_2022_894920
crossref_primary_10_3390_medicina59040737
crossref_primary_10_32604_cmc_2022_023886
crossref_primary_10_1007_s13755_022_00187_7
crossref_primary_10_1038_s41598_024_77609_x
crossref_primary_10_1016_j_bspc_2023_105239
crossref_primary_10_1016_j_bspc_2023_105910
crossref_primary_10_1088_1741_2552_ac1d32
crossref_primary_10_1007_s42044_021_00087_1
crossref_primary_10_3233_JIFS_231145
crossref_primary_10_1007_s13755_023_00237_8
crossref_primary_10_1109_ACCESS_2023_3328618
crossref_primary_10_3390_bios12080555
crossref_primary_10_1109_ACCESS_2024_3517639
crossref_primary_10_3390_math11051169
crossref_primary_10_32604_cmc_2022_027922
crossref_primary_10_32604_cmc_2022_025823
crossref_primary_10_32604_cmc_2022_021987
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1109_ACCESS_2024_3351204
crossref_primary_10_1109_ACCESS_2025_3540202
crossref_primary_10_1109_TNSRE_2024_3451716
crossref_primary_10_1109_ACCESS_2025_3564156
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_1109_JBHI_2024_3452701
crossref_primary_10_3390_biomimetics8030322
crossref_primary_10_1007_s10586_024_04590_5
crossref_primary_10_1016_j_chaos_2022_112036
crossref_primary_10_3390_app112411650
crossref_primary_10_1109_ACCESS_2021_3060096
crossref_primary_10_1007_s13246_020_00963_3
crossref_primary_10_1109_ACCESS_2023_3346674
crossref_primary_10_1109_JSEN_2022_3156152
crossref_primary_10_1007_s11760_023_02986_1
crossref_primary_10_3390_s25072134
crossref_primary_10_1038_s41598_024_73755_4
crossref_primary_10_1007_s11227_025_07199_6
crossref_primary_10_1109_ACCESS_2025_3531979
crossref_primary_10_3390_diagnostics13182871
crossref_primary_10_1109_TCE_2025_3540970
crossref_primary_10_1186_s40708_025_00265_y
crossref_primary_10_1109_ACCESS_2024_3384378
crossref_primary_10_1109_ACCESS_2024_3467154
crossref_primary_10_1080_15368378_2024_2415089
crossref_primary_10_1109_ACCESS_2025_3541176
crossref_primary_10_1109_ACCESS_2021_3076347
crossref_primary_10_1038_s41598_024_84429_6
crossref_primary_10_1038_s41598_025_00071_w
crossref_primary_10_1007_s10489_024_05669_7
crossref_primary_10_1109_ACCESS_2024_3368637
crossref_primary_10_3390_s20247083
crossref_primary_10_1016_j_bspc_2022_103715
crossref_primary_10_1016_j_compbiomed_2022_105242
crossref_primary_10_1155_2021_6283900
crossref_primary_10_1109_TNSRE_2024_3516393
crossref_primary_10_1016_j_asoc_2023_111107
crossref_primary_10_1016_j_jneumeth_2021_109425
crossref_primary_10_1007_s13755_021_00142_y
crossref_primary_10_3389_fnhum_2023_1243750
crossref_primary_10_3390_app12010370
crossref_primary_10_1109_ACCESS_2025_3542390
crossref_primary_10_1007_s10586_023_04008_8
crossref_primary_10_1088_2057_1976_ad3cde
crossref_primary_10_3390_buildings12050507
crossref_primary_10_1109_JBHI_2022_3151570
crossref_primary_10_1016_j_compbiomed_2021_104922
crossref_primary_10_3390_app14146347
crossref_primary_10_1016_j_asoc_2021_107939
crossref_primary_10_1109_ACCESS_2024_3472909
crossref_primary_10_1016_j_bspc_2022_104147
crossref_primary_10_1016_j_neucom_2022_01_004
crossref_primary_10_1016_j_bbr_2022_114210
crossref_primary_10_1080_10255842_2024_2319701
crossref_primary_10_1088_1741_2552_acb102
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1109_ACCESS_2021_3050196
crossref_primary_10_1007_s13755_023_00227_w
crossref_primary_10_1088_1741_2552_abed81
crossref_primary_10_1007_s12008_022_00847_8
crossref_primary_10_1186_s12938_025_01369_6
crossref_primary_10_1088_1741_2552_ad83f4
crossref_primary_10_3390_s21030728
Cites_doi 10.1016/j.measurement.2016.02.059
10.1109/ACCESS.2019.2956018
10.1109/ACCESS.2019.2939623
10.1371/journal.pone.0074433
10.1016/j.cmpb.2020.105325
10.1109/TBME.2010.2082540
10.1016/j.bspc.2016.09.007
10.1016/j.cmpb.2013.12.020
10.1504/IJBRA.2013.052447
10.1109/TNSRE.2006.875642
10.1155/2007/57180
10.1016/j.cmpb.2010.11.014
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2509
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1369
ExternalDocumentID 10_1049_el_2020_2509
ELL2BF07360
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3430-fb062edee7517e2ff05d5fffbeeeb88152b43e36ea8e54e904f26e298745f1473
IEDL.DBID 24P
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Wed Oct 29 21:17:30 EDT 2025
Tue Nov 18 22:41:39 EST 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 06:33:42 EST 2021
Wed Jan 06 04:41:12 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords cascade forward neural networks
brain-computer interfaces
wavelet transforms
MI tasks
automated accurate classification
signal denoising
nonstationary nature
feature extraction
brain complexity
empirical wavelet
multiscale principal component analysis
extracted feature vectors
electroencephalography
total classification accuracy
denoised signals
single geometrical feature name
different motor-imagery tasks
brain–computer interface
electroencephalography signal
signal classification
medical signal processing
feedforward neural network
motor imagery BCI classification
raw EEG signals
considerable challenges
principal component analysis
neural nets
classification check
feedforward neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3430-fb062edee7517e2ff05d5fffbeeeb88152b43e36ea8e54e904f26e298745f1473
ORCID 0000-0002-7410-5951
PageCount 3
ParticipantIDs crossref_primary_10_1049_el_2020_2509
crossref_citationtrail_10_1049_el_2020_2509
wiley_primary_10_1049_el_2020_2509_ELL2BF07360
iet_journals_10_1049_el_2020_2509
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Kevric, J.; Subasi, A. (C8) 2017; 31
Chaudhary, S.; Taran, S.; Bajaj, V. (C2) 2020; 187
Sadiq, M.T.; Yu, X.; Yuan, Z. (C6) 2019; 7
Siuly, S.; Li, Y.; Wen, P. (C4) 2013; 9
Blankertz, B.; Muller, K.R.; Krusienski, D.J. (C7) 2006; 14
Song, L.; Epps, J. (C10) 2007; 2007
Sadiq, M.T.; Yu, X.; Yuan, Z. (C1) 2019; 7
Siuly, S.; Wang, H.; Zhang, Y. (C3) 2016; 86
Siuly, S.; Li, Y.; Wen, P.P. (C5) 2014; 113
Siuly, S.; Li, Y.; Wen, P.P. (C9) 2011; 104
Lu, H.; Eng, H.L.; Guan, C. (C11) 2010; 57
Zhang, R.; Xu, P.; Guo, L. (C12) 2013; 8
2019; 7
2016; 86
2011; 104
2017; 31
2010; 57
2013; 8
2020; 187
2007; 2007
2013; 9
2006; 14
2014; 113
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_11_2
References_xml – volume: 14
  start-page: 153
  issue: 2
  year: 2006
  end-page: 159
  ident: C7
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 86
  start-page: 148
  year: 2016
  end-page: 158
  ident: C3
  article-title: Detection of motor imagery eeg signals employing Naïve Bayes based learning process
  publication-title: Measurement
– volume: 7
  start-page: 127678
  year: 2019
  end-page: 127692
  ident: C6
  article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform
  publication-title: IEEE Access
– volume: 8
  issue: 9
  year: 2013
  ident: C12
  article-title: Z-score linear discriminant analysis for EEG based brain-computer interfaces
  publication-title: PLOS One
– volume: 9
  start-page: 156
  issue: 2
  year: 2013
  end-page: 172
  ident: C4
  article-title: Identification of motor imagery tasks through CC–LR algorithm in brain–computer interface
  publication-title: Int. J. Bioinf. Res. Appl.
– volume: 31
  start-page: 398
  year: 2017
  end-page: 406
  ident: C8
  article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system
  publication-title: Biomed. Signal Process. Control
– volume: 187
  start-page: 105325
  year: 2020
  ident: C2
  article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications
  publication-title: Comput. Methods Programs Biomed.
– volume: 7
  start-page: 171431
  year: 2019
  end-page: 171451
  ident: C1
  article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces
  publication-title: IEEE Access
– volume: 104
  start-page: 358
  issue: 3
  year: 2011
  end-page: 372
  ident: C9
  article-title: Clustering technique-based least square support vector machine for EEG signal classification
  publication-title: Comput. Methods Programs Biomed.
– volume: 2007
  year: 2007
  ident: C10
  article-title: Classifying EEG for brain-computer interface: learning optimal filters for dynamical system features
  publication-title: Computational Intelligence and Neuroscience
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  end-page: 2946
  ident: C11
  article-title: Regularized common spatial pattern with aggregation for eeg classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 113
  start-page: 767
  issue: 3
  year: 2014
  end-page: 780
  ident: C5
  article-title: Modified cc-lr algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface
  publication-title: Comput. Methods Programs Biomed.
– volume: 86
  start-page: 148
  year: 2016
  end-page: 158
  article-title: Detection of motor imagery eeg signals employing Naïve Bayes based learning process
  publication-title: Measurement
– volume: 31
  start-page: 398
  year: 2017
  end-page: 406
  article-title: Comparison of signal decomposition methods in classification of EEG signals for motor‐imagery BCI system
  publication-title: Biomed. Signal Process. Control
– volume: 7
  start-page: 127678
  year: 2019
  end-page: 127692
  article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform
  publication-title: IEEE Access
– volume: 9
  start-page: 156
  issue: 2
  year: 2013
  end-page: 172
  article-title: Identification of motor imagery tasks through CC–LR algorithm in brain–computer interface
  publication-title: Int. J. Bioinf. Res. Appl.
– volume: 113
  start-page: 767
  issue: 3
  year: 2014
  end-page: 780
  article-title: Modified cc‐lr algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain‐computer interface
  publication-title: Comput. Methods Programs Biomed.
– volume: 104
  start-page: 358
  issue: 3
  year: 2011
  end-page: 372
  article-title: Clustering technique‐based least square support vector machine for EEG signal classification
  publication-title: Comput. Methods Programs Biomed.
– volume: 7
  start-page: 171431
  year: 2019
  end-page: 171451
  article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform‐based framework for robust brain–computer interfaces
  publication-title: IEEE Access
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  end-page: 159
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 187
  start-page: 105325
  year: 2020
  article-title: A flexible analytic wavelet transform based approach for motor‐imagery tasks classification in BCI applications
  publication-title: Comput. Methods Programs Biomed.
– volume: 2007
  year: 2007
  article-title: Classifying EEG for brain‐computer interface: learning optimal filters for dynamical system features
  publication-title: Computational Intelligence and Neuroscience
– volume: 8
  issue: 9
  year: 2013
  article-title: Z‐score linear discriminant analysis for EEG based brain‐computer interfaces
  publication-title: PLOS One
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  end-page: 2946
  article-title: Regularized common spatial pattern with aggregation for eeg classification in small‐sample setting
  publication-title: IEEE Trans. Biomed. Eng.
– ident: e_1_2_6_4_2
  doi: 10.1016/j.measurement.2016.02.059
– ident: e_1_2_6_2_2
  doi: 10.1109/ACCESS.2019.2956018
– ident: e_1_2_6_7_2
  doi: 10.1109/ACCESS.2019.2939623
– ident: e_1_2_6_13_2
  doi: 10.1371/journal.pone.0074433
– ident: e_1_2_6_3_2
  doi: 10.1016/j.cmpb.2020.105325
– ident: e_1_2_6_12_2
  doi: 10.1109/TBME.2010.2082540
– ident: e_1_2_6_9_2
  doi: 10.1016/j.bspc.2016.09.007
– ident: e_1_2_6_6_2
  doi: 10.1016/j.cmpb.2013.12.020
– ident: e_1_2_6_5_2
  doi: 10.1504/IJBRA.2013.052447
– ident: e_1_2_6_8_2
  doi: 10.1109/TNSRE.2006.875642
– ident: e_1_2_6_11_2
  doi: 10.1155/2007/57180
– ident: e_1_2_6_10_2
  doi: 10.1016/j.cmpb.2010.11.014
SSID ssib014146041
ssj0012997
Score 2.6173456
Snippet Brain complexity and non-stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different...
Brain complexity and non‐stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1367
SubjectTerms automated accurate classification
brain complexity
brain‐computer interfaces
brain–computer interface
cascade forward neural networks
classification check
considerable challenges
denoised signals
different motor‐imagery tasks
electroencephalography
electroencephalography signal
empirical wavelet
extracted feature vectors
feature extraction
feedforward neural nets
feedforward neural network
medical signal processing
MI tasks
motor imagery BCI classification
multiscale principal component analysis
neural nets
nonstationary nature
principal component analysis
raw EEG signals
signal classification
signal denoising
single geometrical feature name
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
total classification accuracy
wavelet transforms
Title Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2509
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2509
Volume 56
WOSCitedRecordID wos000604957700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA2-FrrwLY4vIuhKqmmTPrJUmcEBHVwozq407Q1Uxs7g1BF3foLf6JeYm9bRWSiIm1Lae2nJfTZJzyHkIAAplfFeR2qROSJUzFEhR8h9HbiBAg4ps2QTYacTdbvyup5ww39hKnyI8YQbRobN1xjgiapYSExTi0bEhQOPHZsaLqfJrOvyCKkbPHE9XkUwqdaSq3CfYVB3643vRv_ku_ZESZrOoZxsVG2laS399x2XyWLdY9LTyilWyBQUq2ThG_LgGrm_6puPbZo_IITFCz07b9MU-2jcOGRtRbG8ZdScFP0R9Gj53H9_fcuQC6DC8aCWQwd_Zqd5QeFhkFuwEfqcIJVFScvPjnid3LaaN-cXTk274KRccOZoxQIPMoDQd0PwtGZ-5mutFQCoKDIFXwkOPIAkAl-AZEJ7AXgSgfO1K0K-QWaKfgGbhGowfpCZlMETXwQJiyBNMsTsS5Wpg0w2yNHnyMdpjUmO1Bi92K6NCxlDL8YRjHEEG-RwLD2osDh-kNs3RozrYBz-ILM7IdO8_LoXDzLdIJVhf32Q0br0zlomSwZs668K22Qer-PWGJftkJny8Ql2yVw6KvPh4551ZHO8a3c-AMj29Ag
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VilR6oNAWsTyNVE5VWm_sPHwExIoVy4oDqHuL4mQspdrNriCAeuMn8Bv5JXicsLAHkCpukTKjRPa87LG_D-BHiEppa72eMjL3ZKS5pyNBkPsmbIcaBWbckU1E_X48GKizhueU7sLU-BDTDTfyDBevycFpQ7pecEoCyUTqHPj8l03iag4-SltrEHfDn25_2kawsdaxq4iAk1cPmpPvVv_3S-2ZnDRXYDVbqbpU0_ny7p9chqWmymT7tVmswAcsv8LnF9iD3-Dv6dgut1kxIhCLf-zgsMsyqqTp6JCbLUYJLmf2oRzf4JBVt-OHu_uc2ABqJA_mWHToOjsrSoajSeHgRthtSmQWFaueauLvcNE5Oj889hriBS8TUnDPaB76mCNGQTtC3xge5IExRiOijmOb8rUUKEJMYwwkKi6NH6KvCDrftGUkVmG-HJe4BsygtYTcBg2RBjJMeYxZmhNqX6ZtJuSqBT-fhj7JGlRyIscYJq47LlWCw4RGMKERbMHeVHpSo3G8IrdrZzFp3PHqFZmtGZmj3vO7ZJKbFtQz--aHrFbPP-jYOBny9f9V2IFPx-envaTX7Z9swCLJ0EGZNt-E-eryGrdgIbupiqvLbWfVjzfD91E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB1kKYr2kHRJEWdpWaA9FUookVp4zGY0qGv40AK-CaI0BBTYspEoNnrrJ_Qb8yXhUIoTH1IgyE2AZkCBs1Ik3wP4EqFS2nqvp4wsPBlr7ulYEOS-ifxIo8CcO7KJuN9PhkM1aHlO6S5Mgw-x-OFGkeHyNQU4TgvTLDglgWQi7RwE_MAWcbUK6zKMfXLrQA4W2wg21zp2FRFyiuphe_Ld6h8-1F6qSasl1sudqis13c1nf-Qb2Gi7THbUuMVbWMHqHbx-gD34Hi5-Tuxym5VjArH4w45PzllOnTQdHXLWYlTgCmYfqskMR6yeT27-_iuIDaBB8mCORYeus7OyYjielg5uhM0zIrOoWX3XE2_B7-7Zr5PvXku84OVCCu4ZzaMAC8Q49GMMjOFhERpjNCLqJLElX0uBIsIswVCi4tIEEQaKoPONL2PxAdaqSYXbwAxaTyhs0hBZKKOMJ5hnBaH25dpWQq468O1u6tO8RSUncoxR6nbHpUpxlNIMpjSDHfi6kJ42aByPyH22VkzbcLx6RGZ_Seasd_8utUbsQGPZ_w5ktXrBcdfmyYjvPFXhE7wcnHbT3nn_xy68IhE6J-PzPVirL69xH17ks7q8uvzonPoWUFT2aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+imagery+BCI+classification+based+on+novel+two%E2%80%90dimensional+modelling+in+empirical+wavelet+transform&rft.jtitle=Electronics+letters&rft.au=Sadiq%2C+Muhammad+Tariq&rft.au=Yu%2C+Xiaojun&rft.au=Yuan%2C+Zhaohui&rft.au=Aziz%2C+Muhammad+Zulkifal&rft.date=2020-12-10&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1367&rft.epage=1369&rft_id=info:doi/10.1049%2Fel.2020.2509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2020_2509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon