Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform
Brain complexity and non-stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different motor-imagery (MI) tasks in brain–computer interface (BCI). In the proposed Letter, a novel framework is proposed for the automated accurate cla...
Saved in:
| Published in: | Electronics letters Vol. 56; no. 25; pp. 1367 - 1369 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
The Institution of Engineering and Technology
10.12.2020
|
| Subjects: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Brain complexity and non-stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different motor-imagery (MI) tasks in brain–computer interface (BCI). In the proposed Letter, a novel framework is proposed for the automated accurate classification of MI tasks. First, raw EEG signals are denoised with multiscale principal component analysis. Secondly, denoised signals are decomposed by empirical wavelet transform into different modes. Thirdly, the two-dimensional (2D) modelling of modes is introduced to identify the variations of different signals. Fourthly, a single geometrical feature name as, a summation of distance from each point relative to a coordinate centre is extracted from 2D modelling of modes. Finally, the extracted feature vectors are provided to the feedforward neural network and cascade forward neural networks for classification check. The proposed study achieved 95.3% of total classification accuracy with 100% outcome for subject with very small training samples, which is outperforming existing methods on the same database. |
|---|---|
| AbstractList | Brain complexity and non‐stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different motor‐imagery (MI) tasks in brain–computer interface (BCI). In the proposed Letter, a novel framework is proposed for the automated accurate classification of MI tasks. First, raw EEG signals are denoised with multiscale principal component analysis. Secondly, denoised signals are decomposed by empirical wavelet transform into different modes. Thirdly, the two‐dimensional (2D) modelling of modes is introduced to identify the variations of different signals. Fourthly, a single geometrical feature name as, a summation of distance from each point relative to a coordinate centre is extracted from 2D modelling of modes. Finally, the extracted feature vectors are provided to the feedforward neural network and cascade forward neural networks for classification check. The proposed study achieved 95.3% of total classification accuracy with 100% outcome for subject with very small training samples, which is outperforming existing methods on the same database. |
| Author | Aziz, Muhammad Zulkifal Yu, Xiaojun Yuan, Zhaohui Sadiq, Muhammad Tariq |
| Author_xml | – sequence: 1 givenname: Muhammad Tariq orcidid: 0000-0002-7410-5951 surname: Sadiq fullname: Sadiq, Muhammad Tariq email: tariq.sadiq@mail.nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China – sequence: 2 givenname: Xiaojun surname: Yu fullname: Yu, Xiaojun organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China – sequence: 3 givenname: Zhaohui surname: Yuan fullname: Yuan, Zhaohui organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China – sequence: 4 givenname: Muhammad Zulkifal surname: Aziz fullname: Aziz, Muhammad Zulkifal organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China |
| BookMark | eNp9kDtP8zAUQC0EEuWx8QM8MDCQcv1KmhGq8pCCWEBii5zkGvzJiSs7UPXf41KGTwiYbMnnXNvngOwOfkBCThhMGcjyAt2UA4cpV1DukAkTCrKSseddMgFgIlOslPvkOEbbAJNM5iDZhLze-9EHanv9gmFNr-Z3tHU6Qca2erR-oI2O2NG0Gfw7OjqufNbZHoeYDrWjve_QOTu8UDtQ7Jc2JNHRlU4wjnQMeojGh_6I7BntIh5_rYfk6XrxOL_Nqoebu_lllbVCCshMAznHDrFQrEBuDKhOGWMaRGxmM6Z4IwWKHPUMlcQSpOE58nJWSGWYLMQh4du5bfAxBjR1a8fPn6SnWFczqDe5anT1Jle9yZWk82_SMqQkYf0brrb4yjpc_8nWi6riV9dQiBySd7b1LI71P_8WUsD42xWnP6CL6r_Jy86ID0UImI4 |
| CitedBy_id | crossref_primary_10_1007_s13755_021_00139_7 crossref_primary_10_1109_TNSRE_2024_3391936 crossref_primary_10_3390_s22103696 crossref_primary_10_1007_s11760_025_03851_z crossref_primary_10_1109_ACCESS_2024_3378732 crossref_primary_10_1016_j_prime_2024_100845 crossref_primary_10_1109_ACCESS_2023_3321067 crossref_primary_10_1109_ACCESS_2023_3347336 crossref_primary_10_1080_1206212X_2024_2417847 crossref_primary_10_1080_10255842_2025_2514132 crossref_primary_10_3389_fpubh_2022_894920 crossref_primary_10_3390_medicina59040737 crossref_primary_10_32604_cmc_2022_023886 crossref_primary_10_1007_s13755_022_00187_7 crossref_primary_10_1038_s41598_024_77609_x crossref_primary_10_1016_j_bspc_2023_105239 crossref_primary_10_1016_j_bspc_2023_105910 crossref_primary_10_1088_1741_2552_ac1d32 crossref_primary_10_1007_s42044_021_00087_1 crossref_primary_10_3233_JIFS_231145 crossref_primary_10_1007_s13755_023_00237_8 crossref_primary_10_1109_ACCESS_2023_3328618 crossref_primary_10_3390_bios12080555 crossref_primary_10_1109_ACCESS_2024_3517639 crossref_primary_10_3390_math11051169 crossref_primary_10_32604_cmc_2022_027922 crossref_primary_10_32604_cmc_2022_025823 crossref_primary_10_32604_cmc_2022_021987 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1109_ACCESS_2024_3351204 crossref_primary_10_1109_ACCESS_2025_3540202 crossref_primary_10_1109_TNSRE_2024_3451716 crossref_primary_10_1109_ACCESS_2025_3564156 crossref_primary_10_1109_TAI_2021_3097307 crossref_primary_10_1109_JBHI_2024_3452701 crossref_primary_10_3390_biomimetics8030322 crossref_primary_10_1007_s10586_024_04590_5 crossref_primary_10_1016_j_chaos_2022_112036 crossref_primary_10_3390_app112411650 crossref_primary_10_1109_ACCESS_2021_3060096 crossref_primary_10_1007_s13246_020_00963_3 crossref_primary_10_1109_ACCESS_2023_3346674 crossref_primary_10_1109_JSEN_2022_3156152 crossref_primary_10_1007_s11760_023_02986_1 crossref_primary_10_3390_s25072134 crossref_primary_10_1038_s41598_024_73755_4 crossref_primary_10_1007_s11227_025_07199_6 crossref_primary_10_1109_ACCESS_2025_3531979 crossref_primary_10_3390_diagnostics13182871 crossref_primary_10_1109_TCE_2025_3540970 crossref_primary_10_1186_s40708_025_00265_y crossref_primary_10_1109_ACCESS_2024_3384378 crossref_primary_10_1109_ACCESS_2024_3467154 crossref_primary_10_1080_15368378_2024_2415089 crossref_primary_10_1109_ACCESS_2025_3541176 crossref_primary_10_1109_ACCESS_2021_3076347 crossref_primary_10_1038_s41598_024_84429_6 crossref_primary_10_1038_s41598_025_00071_w crossref_primary_10_1007_s10489_024_05669_7 crossref_primary_10_1109_ACCESS_2024_3368637 crossref_primary_10_3390_s20247083 crossref_primary_10_1016_j_bspc_2022_103715 crossref_primary_10_1016_j_compbiomed_2022_105242 crossref_primary_10_1155_2021_6283900 crossref_primary_10_1109_TNSRE_2024_3516393 crossref_primary_10_1016_j_asoc_2023_111107 crossref_primary_10_1016_j_jneumeth_2021_109425 crossref_primary_10_1007_s13755_021_00142_y crossref_primary_10_3389_fnhum_2023_1243750 crossref_primary_10_3390_app12010370 crossref_primary_10_1109_ACCESS_2025_3542390 crossref_primary_10_1007_s10586_023_04008_8 crossref_primary_10_1088_2057_1976_ad3cde crossref_primary_10_3390_buildings12050507 crossref_primary_10_1109_JBHI_2022_3151570 crossref_primary_10_1016_j_compbiomed_2021_104922 crossref_primary_10_3390_app14146347 crossref_primary_10_1016_j_asoc_2021_107939 crossref_primary_10_1109_ACCESS_2024_3472909 crossref_primary_10_1016_j_bspc_2022_104147 crossref_primary_10_1016_j_neucom_2022_01_004 crossref_primary_10_1016_j_bbr_2022_114210 crossref_primary_10_1080_10255842_2024_2319701 crossref_primary_10_1088_1741_2552_acb102 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_1109_ACCESS_2021_3050196 crossref_primary_10_1007_s13755_023_00227_w crossref_primary_10_1088_1741_2552_abed81 crossref_primary_10_1007_s12008_022_00847_8 crossref_primary_10_1186_s12938_025_01369_6 crossref_primary_10_1088_1741_2552_ad83f4 crossref_primary_10_3390_s21030728 |
| Cites_doi | 10.1016/j.measurement.2016.02.059 10.1109/ACCESS.2019.2956018 10.1109/ACCESS.2019.2939623 10.1371/journal.pone.0074433 10.1016/j.cmpb.2020.105325 10.1109/TBME.2010.2082540 10.1016/j.bspc.2016.09.007 10.1016/j.cmpb.2013.12.020 10.1504/IJBRA.2013.052447 10.1109/TNSRE.2006.875642 10.1155/2007/57180 10.1016/j.cmpb.2010.11.014 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2020.2509 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 1369 |
| ExternalDocumentID | 10_1049_el_2020_2509 ELL2BF07360 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3430-fb062edee7517e2ff05d5fffbeeeb88152b43e36ea8e54e904f26e298745f1473 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Wed Oct 29 21:17:30 EDT 2025 Tue Nov 18 22:41:39 EST 2025 Wed Jan 22 16:31:52 EST 2025 Wed Jan 06 06:33:42 EST 2021 Wed Jan 06 04:41:12 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | cascade forward neural networks brain-computer interfaces wavelet transforms MI tasks automated accurate classification signal denoising nonstationary nature feature extraction brain complexity empirical wavelet multiscale principal component analysis extracted feature vectors electroencephalography total classification accuracy denoised signals single geometrical feature name different motor-imagery tasks brain–computer interface electroencephalography signal signal classification medical signal processing feedforward neural network motor imagery BCI classification raw EEG signals considerable challenges principal component analysis neural nets classification check feedforward neural nets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3430-fb062edee7517e2ff05d5fffbeeeb88152b43e36ea8e54e904f26e298745f1473 |
| ORCID | 0000-0002-7410-5951 |
| PageCount | 3 |
| ParticipantIDs | crossref_primary_10_1049_el_2020_2509 crossref_citationtrail_10_1049_el_2020_2509 wiley_primary_10_1049_el_2020_2509_ELL2BF07360 iet_journals_10_1049_el_2020_2509 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Kevric, J.; Subasi, A. (C8) 2017; 31 Chaudhary, S.; Taran, S.; Bajaj, V. (C2) 2020; 187 Sadiq, M.T.; Yu, X.; Yuan, Z. (C6) 2019; 7 Siuly, S.; Li, Y.; Wen, P. (C4) 2013; 9 Blankertz, B.; Muller, K.R.; Krusienski, D.J. (C7) 2006; 14 Song, L.; Epps, J. (C10) 2007; 2007 Sadiq, M.T.; Yu, X.; Yuan, Z. (C1) 2019; 7 Siuly, S.; Wang, H.; Zhang, Y. (C3) 2016; 86 Siuly, S.; Li, Y.; Wen, P.P. (C5) 2014; 113 Siuly, S.; Li, Y.; Wen, P.P. (C9) 2011; 104 Lu, H.; Eng, H.L.; Guan, C. (C11) 2010; 57 Zhang, R.; Xu, P.; Guo, L. (C12) 2013; 8 2019; 7 2016; 86 2011; 104 2017; 31 2010; 57 2013; 8 2020; 187 2007; 2007 2013; 9 2006; 14 2014; 113 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_11_2 |
| References_xml | – volume: 14 start-page: 153 issue: 2 year: 2006 end-page: 159 ident: C7 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 86 start-page: 148 year: 2016 end-page: 158 ident: C3 article-title: Detection of motor imagery eeg signals employing Naïve Bayes based learning process publication-title: Measurement – volume: 7 start-page: 127678 year: 2019 end-page: 127692 ident: C6 article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform publication-title: IEEE Access – volume: 8 issue: 9 year: 2013 ident: C12 article-title: Z-score linear discriminant analysis for EEG based brain-computer interfaces publication-title: PLOS One – volume: 9 start-page: 156 issue: 2 year: 2013 end-page: 172 ident: C4 article-title: Identification of motor imagery tasks through CC–LR algorithm in brain–computer interface publication-title: Int. J. Bioinf. Res. Appl. – volume: 31 start-page: 398 year: 2017 end-page: 406 ident: C8 article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system publication-title: Biomed. Signal Process. Control – volume: 187 start-page: 105325 year: 2020 ident: C2 article-title: A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications publication-title: Comput. Methods Programs Biomed. – volume: 7 start-page: 171431 year: 2019 end-page: 171451 ident: C1 article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces publication-title: IEEE Access – volume: 104 start-page: 358 issue: 3 year: 2011 end-page: 372 ident: C9 article-title: Clustering technique-based least square support vector machine for EEG signal classification publication-title: Comput. Methods Programs Biomed. – volume: 2007 year: 2007 ident: C10 article-title: Classifying EEG for brain-computer interface: learning optimal filters for dynamical system features publication-title: Computational Intelligence and Neuroscience – volume: 57 start-page: 2936 issue: 12 year: 2010 end-page: 2946 ident: C11 article-title: Regularized common spatial pattern with aggregation for eeg classification in small-sample setting publication-title: IEEE Trans. Biomed. Eng. – volume: 113 start-page: 767 issue: 3 year: 2014 end-page: 780 ident: C5 article-title: Modified cc-lr algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface publication-title: Comput. Methods Programs Biomed. – volume: 86 start-page: 148 year: 2016 end-page: 158 article-title: Detection of motor imagery eeg signals employing Naïve Bayes based learning process publication-title: Measurement – volume: 31 start-page: 398 year: 2017 end-page: 406 article-title: Comparison of signal decomposition methods in classification of EEG signals for motor‐imagery BCI system publication-title: Biomed. Signal Process. Control – volume: 7 start-page: 127678 year: 2019 end-page: 127692 article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform publication-title: IEEE Access – volume: 9 start-page: 156 issue: 2 year: 2013 end-page: 172 article-title: Identification of motor imagery tasks through CC–LR algorithm in brain–computer interface publication-title: Int. J. Bioinf. Res. Appl. – volume: 113 start-page: 767 issue: 3 year: 2014 end-page: 780 article-title: Modified cc‐lr algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain‐computer interface publication-title: Comput. Methods Programs Biomed. – volume: 104 start-page: 358 issue: 3 year: 2011 end-page: 372 article-title: Clustering technique‐based least square support vector machine for EEG signal classification publication-title: Comput. Methods Programs Biomed. – volume: 7 start-page: 171431 year: 2019 end-page: 171451 article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform‐based framework for robust brain–computer interfaces publication-title: IEEE Access – volume: 14 start-page: 153 issue: 2 year: 2006 end-page: 159 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 187 start-page: 105325 year: 2020 article-title: A flexible analytic wavelet transform based approach for motor‐imagery tasks classification in BCI applications publication-title: Comput. Methods Programs Biomed. – volume: 2007 year: 2007 article-title: Classifying EEG for brain‐computer interface: learning optimal filters for dynamical system features publication-title: Computational Intelligence and Neuroscience – volume: 8 issue: 9 year: 2013 article-title: Z‐score linear discriminant analysis for EEG based brain‐computer interfaces publication-title: PLOS One – volume: 57 start-page: 2936 issue: 12 year: 2010 end-page: 2946 article-title: Regularized common spatial pattern with aggregation for eeg classification in small‐sample setting publication-title: IEEE Trans. Biomed. Eng. – ident: e_1_2_6_4_2 doi: 10.1016/j.measurement.2016.02.059 – ident: e_1_2_6_2_2 doi: 10.1109/ACCESS.2019.2956018 – ident: e_1_2_6_7_2 doi: 10.1109/ACCESS.2019.2939623 – ident: e_1_2_6_13_2 doi: 10.1371/journal.pone.0074433 – ident: e_1_2_6_3_2 doi: 10.1016/j.cmpb.2020.105325 – ident: e_1_2_6_12_2 doi: 10.1109/TBME.2010.2082540 – ident: e_1_2_6_9_2 doi: 10.1016/j.bspc.2016.09.007 – ident: e_1_2_6_6_2 doi: 10.1016/j.cmpb.2013.12.020 – ident: e_1_2_6_5_2 doi: 10.1504/IJBRA.2013.052447 – ident: e_1_2_6_8_2 doi: 10.1109/TNSRE.2006.875642 – ident: e_1_2_6_11_2 doi: 10.1155/2007/57180 – ident: e_1_2_6_10_2 doi: 10.1016/j.cmpb.2010.11.014 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.6173456 |
| Snippet | Brain complexity and non-stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different... Brain complexity and non‐stationary nature of electroencephalography (EEG) signal make considerable challenges for the accurate identification of different... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1367 |
| SubjectTerms | automated accurate classification brain complexity brain‐computer interfaces brain–computer interface cascade forward neural networks classification check considerable challenges denoised signals different motor‐imagery tasks electroencephalography electroencephalography signal empirical wavelet extracted feature vectors feature extraction feedforward neural nets feedforward neural network medical signal processing MI tasks motor imagery BCI classification multiscale principal component analysis neural nets nonstationary nature principal component analysis raw EEG signals signal classification signal denoising single geometrical feature name Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications total classification accuracy wavelet transforms |
| Title | Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.2509 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2509 |
| Volume | 56 |
| WOSCitedRecordID | wos000604957700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access Journals customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-DnrwLa4vIuhJqmmSps1RxUVBFw-Keyt9TKCydhetijd_gr_RX2Imrat7UBAvpbQztMxkMpPX9xGywzVy0Wjm8VAxT0otvFRJ39M504YrSIQyjmwi7HSibldfNhNueBamxocYTrhhZLj-GgM8SWsWElvUohNx4YCzfZvD9TiZ9H0RIXUDl5fDVQTb1TpyFREwDOpus_Hd6h981x5JSeMFVKOFqss07bn__uM8mW1qTHpYN4oFMgblIpn5hjy4RG4v-nawTYs7hLB4oUfHZzTDOho3DjlfUUxvObU3Zf8JerR67r-_vuXIBVDjeFDHoYOH2WlRUrgbFA5shD4nSGVR0eqzIl4m1-2Tq-NTr6Fd8DIhBfNMyhSHHCAM_BC4MSzIA2NMCgBpFNmEn0oBwvoxgkCCZhKdyjUC5xtfhmKFTJT9ElYJ1SnLle8nQa6MjFIVQRjqLEkSITm3-i2y92n5OGswyZEaoxe7tXGpY-jFaMEYLdgiu0PpQY3F8YPctnVi3ATjww8ymyMyJ-df7-JBblqkduyvH7Ja5_yobXtJxdb-qrBOpvE5bo3x2QaZqO4fYZNMZU9V8XC_5Rqyvd6cdT4A4ofzSw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWqnlQF9U3VKoK5VTldaxHSc-AmLFqsuqB6ruLcpjLAXtZleQgrjxE_iN_SV4nLBlDyBV3CJlRolmPA-_vg_gizDERWN4IGLNA6WMDHKtwsCU3FihMZPaerKJeDRKxmPzs-M5pbswLT7EYsGNIsPnawpwWpBuJ5yKQDKRdg4E_-aKuFmBp8r1GsTd8HswWmwjuFzr2VVkxCmqx93Jd6f__a72Uk1aqbBZ7lR9qem_fPRPvoL1rstku-2weA1PsH4Da3ewB9_CydHMTbdZNSUQi0u2tz9gBXXSdHTIe4tRgSuZe6hn5zhhzcXs79V1SWwALZIH8yw6dJ2dVTXD6bzycCPsIiMyi4Y1tz3xBvzqHxzvHwYd8UJQSCV5YHOuBZaIcRTGKKzlURlZa3NEzJPElfxcSZTOkwlGCg1X5FZhCDrfhiqW72C1ntX4HpjJeanDMItKbVWS6wTj2BRZlkklhNPvwddb06dFh0pO5BiT1O-OK5PiJCULpmTBHuwspOctGsc9cp-dF9MuHM_ukdlakjkY_nuXzkvbg9azD37IaQ3FXt_lSc0__K_CJ3h-eHw0TIeD0Y9NeEEydFAm5B9htTn9g1vwrDhvqrPTbT-qbwBK_PaU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWlXtgdKWii0vV6KnKq1jO058BMoKxLLaQ5H2FuUxloKW7AoCqLf-hP7G_hI8TljYA5Wq3iJlRo5mPA_H9vcB7ApDXDSGByLWPFDKyCDXKgxMyY0VGjOprSebiIfDZDw2o47nlO7CtPgQ8x9uFBk-X1OA46y07YJTEUgm0s6B4F9dETdL8FxFcUjTWqjRfBvB5VrPriIjTlE97k6-O_1vj7UXatJShc1ip-pLTf_Nf3_kKqx0XSbba6fFW3iG9Tt4_Qh78D2cn07dcptVFwRi8ZPtHxyzgjppOjrkvcWowJXMPdTTG5yw5nb659fvktgAWiQP5ll06Do7q2qGF7PKw42w24zILBrW3PfEa3DWP_xxcBR0xAtBIZXkgc25FlgixlEYo7CWR2Vkrc0RMU8SV_JzJVE6TyYYKTRckVuFIeh8G6pYfoDlelrjOjCT81KHYRaV2qok1wnGsSmyLJNKCKffgy_3pk-LDpWcyDEmqd8dVybFSUoWTMmCPfg8l561aBxPyH1yXky7cLx6QmZrQeZw8PAudU7sQevZvw7ktAZiv-_ypOYf_1VhB16OvvfTwfHwZANekQidkwn5Jiw3l9e4BS-Km6a6utz2k_oOZEr1qw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+imagery+BCI+classification+based+on+novel+two-dimensional+modelling+in+empirical+wavelet+transform&rft.jtitle=Electronics+letters&rft.au=Sadiq%2C+Muhammad+Tariq&rft.au=Yu%2C+Xiaojun&rft.au=Yuan%2C+Zhaohui&rft.au=Aziz%2C+Muhammad+Zulkifal&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1367&rft.epage=1369&rft_id=info:doi/10.1049%2Fel.2020.2509&rft.externalDocID=10_1049_el_2020_2509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |