Analysis of EEG signal for seizure detection based on WPT
Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally functioning part of the brain by monitoring electrical activities. An automated system has been proposed to create a computer-based expert opinio...
Gespeichert in:
| Veröffentlicht in: | Electronics letters Jg. 56; H. 25; S. 1381 - 1383 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
10.12.2020
|
| Schlagworte: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally functioning part of the brain by monitoring electrical activities. An automated system has been proposed to create a computer-based expert opinion needed in the detection of epilepsy and to capture a more objective view. To this end, the approximation and detail coefficients of EEG signals are calculated by using the wavelet packet transform (WPT). The coefficients were subjected to feature extraction using dispersion entropy and line length methods. The extracted feature vector has been applied as input to the support vector machine (SVM) and k-nearest neighbour (KNN) classifiers. The proposed method was tested using the public EEG seizure dataset created by the University of Bonn. In this study, the dataset was evaluated in two different ways as binary cases and multiclass cases. Evaluated classification accuracy was 100% for binary classification with SVM. For multiclass classification evaluated accuracy was 99.85% with KNN. The proposed method was compared with other methods in the literature using the same dataset. The comparison results provide the superiority of the proposed method. |
|---|---|
| AbstractList | Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally functioning part of the brain by monitoring electrical activities. An automated system has been proposed to create a computer‐based expert opinion needed in the detection of epilepsy and to capture a more objective view. To this end, the approximation and detail coefficients of EEG signals are calculated by using the wavelet packet transform (WPT). The coefficients were subjected to feature extraction using dispersion entropy and line length methods. The extracted feature vector has been applied as input to the support vector machine (SVM) and k‐nearest neighbour (KNN) classifiers. The proposed method was tested using the public EEG seizure dataset created by the University of Bonn. In this study, the dataset was evaluated in two different ways as binary cases and multiclass cases. Evaluated classification accuracy was 100% for binary classification with SVM. For multiclass classification evaluated accuracy was 99.85% with KNN. The proposed method was compared with other methods in the literature using the same dataset. The comparison results provide the superiority of the proposed method. |
| Author | Arı, A |
| Author_xml | – sequence: 1 givenname: A surname: Arı fullname: Arı, A email: ali.ari@inonu.edu.tr organization: Department of Computer Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey |
| BookMark | eNp9kDFPwzAQhS1UJErpxg_wwMBAyl3sxGQsVVqQIsFQBJvlJDYyCkllp0Ll1-OoDAgVpjudvnf33p2SUdu1mpBzhBkCz651M4shhlksAI_IGFkCUYb4MiJjAGRRghk_IVPvbQnIkafAcUyyeauanbeedobm-Yp6-xom1HSOem0_t07TWve66m3X0lJ5XdPQPD-uz8ixUY3X0-86IU_LfL24i4qH1f1iXkQV4wyiSoHiDE2CCmvUqWYo4EYwU5XC6FiJlAsBZVzXSZpipVKGzKgwD4Qoy4pNyNV-b-U67502cuPsu3I7iSCH5FI3ckguh-QBj3_hle3V4L53yjZ_iZK96MM2evfvAZkXRXy7BMEEBN3FXmd1L9-6rQuv84H4gW9qE7DLA9hBJ18UUYUd |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108086 crossref_primary_10_1109_ACCESS_2021_3126065 crossref_primary_10_1109_ACCESS_2022_3232563 crossref_primary_10_1016_j_asoc_2024_111722 crossref_primary_10_1016_j_compbiomed_2024_108951 crossref_primary_10_1016_j_jestch_2025_102005 crossref_primary_10_1109_TIM_2022_3207799 crossref_primary_10_1109_ACCESS_2021_3076347 crossref_primary_10_3390_e27090983 |
| Cites_doi | 10.3390/e22020140 10.1103/PhysRevE.64.061907 10.1109/TNSRE.2020.3013429 10.1016/j.cmpb.2004.10.009 10.1016/j.eswa.2020.113676 10.1007/s10462‐019‐09755‐y 10.1016/j.bspc.2019.101707 10.1109/JVA.2006.17 10.1016/j.jneumeth.2010.05.020 10.1016/j.cmpb.2016.02.020 10.1504/IJBET.2011.044417 10.1016/j.compbiomed.2019.103549 10.1016/j.bspc.2011.07.007 10.1109/LSP.2016.2542881 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2020.2701 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 1383 |
| ExternalDocumentID | 10_1049_el_2020_2701 ELL2BF07370 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3430-ca0a431f51a1d1e6e3170873fcb7fe2a764770b2dd5661ca6313fa2a73fc7bbc3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Tue Nov 18 22:24:40 EST 2025 Wed Oct 29 21:27:59 EDT 2025 Wed Jan 22 16:31:52 EST 2025 Wed Jan 06 04:41:12 EST 2021 Wed Jan 06 06:33:42 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | computer-based expert opinion wavelet transforms KNN SVM entropy feature extraction neighbour classifiers automated system multiclass cases WPT line length methods binary classification evaluated classification accuracy electroencephalography pattern classification multiclass classification evaluated accuracy diagnostic method support vector machines abnormally functioning part medical signal detection brain EEG signal wavelet packet signal classification medical signal processing support vector machine seizure detection public EEG seizure dataset electrical activities binary cases dispersion entropy objective view extracted feature vector |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3430-ca0a431f51a1d1e6e3170873fcb7fe2a764770b2dd5661ca6313fa2a73fc7bbc3 |
| PageCount | 3 |
| ParticipantIDs | wiley_primary_10_1049_el_2020_2701_ELL2BF07370 crossref_primary_10_1049_el_2020_2701 iet_journals_10_1049_el_2020_2701 crossref_citationtrail_10_1049_el_2020_2701 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Wu, J.; Zhou, T.; Li, T. (C10) 2020; 22 Jiang, Y.; Chen, W.; Li, M. (C4) 2020; 116 Guo, L.; Rivero, D.; Dorado, J. (C14) 2010; 191 Subasi, A.; Erçelebi, E. (C3) 2005; 78 Siuly, S.; Alçin, Ö. F.; Kabir, E. (C15) 2020; 28 Acharya, U.R.; Molinari, F.; Sree, S.V. (C5) 2012; 7 Rostaghi, M.; Azami, H. (C13) 2016; 23 Amin, H.U.; Yusoff, M.Z.; Ahmad, R.F. (C8) 2020; 56 Andrzejak, R.G.; Lehnertz, K.; Mormann, F. (C11) 2001; 64 Yang, B.; Li, H.; Wang, Q. (C12) 2016; 129 Siuly, S.; Li, Y.; Wen, P. (C1) 2011; 7 Murugavel, A.S.; Ramakrishnan, S. (C6) 2014; 41 Al-Hadeethi, H.; Abdulla, S.; Diykh, M. (C7) 2020; 161 Zeng, W.; Li, M.; Yuan, C. (C9) 2020; 53 October 2006 2020; 53 2016; 129 2020; 161 2020; 28 2020; 116 2020; 56 2020; 22 2014; 41 2012; 7 2010; 191 2011; 7 2005; 78 2001; 64 2016; 23 Murugavel A.S. (e_1_2_11_7_2) 2014; 41 e_1_2_11_13_2 e_1_2_11_9_2 e_1_2_11_12_2 e_1_2_11_8_2 e_1_2_11_11_2 e_1_2_11_10_2 e_1_2_11_6_2 e_1_2_11_5_2 e_1_2_11_16_2 e_1_2_11_4_2 e_1_2_11_15_2 e_1_2_11_3_2 e_1_2_11_14_2 e_1_2_11_2_2 |
| References_xml | – volume: 23 start-page: 610 issue: 5 year: 2016 end-page: 614 ident: C13 article-title: Dispersion entropy: A measure for time-series analysis publication-title: IEEE Signal Process. Lett. – volume: 28 start-page: 1966 issue: 9 year: 2020 end-page: 1976 ident: C15 article-title: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 78 start-page: 87 issue: 2 year: 2005 end-page: 99 ident: C3 article-title: Classification of EEG signals using neural network and logistic regression publication-title: Comput. Methods Programs Biomed. – volume: 7 start-page: 401 issue: 4 year: 2012 end-page: 408 ident: C5 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Proc. Control – volume: 41 start-page: 212 issue: 4 year: 2014 end-page: 221 ident: C6 article-title: An optimized extreme learning machine for epileptic seizure detection publication-title: IAENG Int. J. Comput. Sci. – volume: 161 start-page: 1 year: 2020 end-page: 14 ident: C7 article-title: Adaptive boost LS-SVM classification approach for time-series signal classification in epileptic seizure diagnosis applications publication-title: IEEE Expert Syst. Appl. – volume: 7 start-page: 390 issue: 4 year: 2011 end-page: 409 ident: C1 article-title: EEG signal classification based on simple random sampling technique with least square support vector machine publication-title: Int. J. Biomed. Eng. Technol. – volume: 56 start-page: 1 year: 2020 end-page: 10 ident: C8 article-title: A novel approach based on wavelet analysis and arithmetic coding for automated detection and techniques publication-title: Biomed. Signal Proc. Control – volume: 22 start-page: 140 issue: 2 year: 2020 ident: C10 article-title: Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting publication-title: Entropy – volume: 64 start-page: 1 issue: 6 year: 2001 end-page: 8 ident: C11 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E – volume: 116 start-page: 1 year: 2020 end-page: 12 ident: C4 article-title: Symplectic geometry decomposition-based features for automatic epileptic seizure detection publication-title: Comput. Biol. Med. – volume: 191 start-page: 101 issue: 1 year: 2010 end-page: 109 ident: C14 article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks publication-title: J. Neurosci. Methods – volume: 129 start-page: 21 year: 2016 end-page: 28 ident: C12 article-title: Subject-based feature extraction by using fisher WPD-CSP in brain–computer interfaces publication-title: Comput. Methods Programs Biomed. – volume: 53 start-page: 3059 issue: 4 year: 2020 end-page: 3088 ident: C9 article-title: Identification of epileptic seizures in EEG signals using time-scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks publication-title: Artif. Intell. Rev. – volume: 78 start-page: 87 issue: 2 year: 2005 end-page: 99 article-title: Classification of EEG signals using neural network and logistic regression publication-title: Comput. Methods Programs Biomed. – volume: 23 start-page: 610 issue: 5 year: 2016 end-page: 614 article-title: Dispersion entropy: A measure for time‐series analysis publication-title: IEEE Signal Process. Lett. – volume: 22 start-page: 140 issue: 2 year: 2020 article-title: Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting publication-title: Entropy – volume: 116 start-page: 1 year: 2020 end-page: 12 article-title: Symplectic geometry decomposition‐based features for automatic epileptic seizure detection publication-title: Comput. Biol. Med. – volume: 7 start-page: 401 issue: 4 year: 2012 end-page: 408 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Proc. Control – start-page: 120 year: October 2006 end-page: 124 article-title: EEG signal classification using wavelet feature extraction and neural networks – volume: 56 start-page: 1 year: 2020 end-page: 10 article-title: A novel approach based on wavelet analysis and arithmetic coding for automated detection and techniques publication-title: Biomed. Signal Proc. Control – volume: 161 start-page: 1 year: 2020 end-page: 14 article-title: Adaptive boost LS‐SVM classification approach for time‐series signal classification in epileptic seizure diagnosis applications publication-title: IEEE Expert Syst. Appl. – volume: 64 start-page: 1 issue: 6 year: 2001 end-page: 8 article-title: Indications of nonlinear deterministic and finite‐dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E – volume: 191 start-page: 101 issue: 1 year: 2010 end-page: 109 article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks publication-title: J. Neurosci. Methods – volume: 41 start-page: 212 issue: 4 year: 2014 end-page: 221 article-title: An optimized extreme learning machine for epileptic seizure detection publication-title: IAENG Int. J. Comput. Sci. – volume: 53 start-page: 3059 issue: 4 year: 2020 end-page: 3088 article-title: Identification of epileptic seizures in EEG signals using time‐scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks publication-title: Artif. Intell. Rev. – volume: 129 start-page: 21 year: 2016 end-page: 28 article-title: Subject‐based feature extraction by using fisher WPD‐CSP in brain–computer interfaces publication-title: Comput. Methods Programs Biomed. – volume: 28 start-page: 1966 issue: 9 year: 2020 end-page: 1976 article-title: A new framework for automatic detection of patients with mild cognitive impairment using resting‐state EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 7 start-page: 390 issue: 4 year: 2011 end-page: 409 article-title: EEG signal classification based on simple random sampling technique with least square support vector machine publication-title: Int. J. Biomed. Eng. Technol. – ident: e_1_2_11_11_2 doi: 10.3390/e22020140 – ident: e_1_2_11_12_2 doi: 10.1103/PhysRevE.64.061907 – ident: e_1_2_11_16_2 doi: 10.1109/TNSRE.2020.3013429 – ident: e_1_2_11_4_2 doi: 10.1016/j.cmpb.2004.10.009 – ident: e_1_2_11_8_2 doi: 10.1016/j.eswa.2020.113676 – ident: e_1_2_11_10_2 doi: 10.1007/s10462‐019‐09755‐y – ident: e_1_2_11_9_2 doi: 10.1016/j.bspc.2019.101707 – ident: e_1_2_11_3_2 doi: 10.1109/JVA.2006.17 – ident: e_1_2_11_15_2 doi: 10.1016/j.jneumeth.2010.05.020 – ident: e_1_2_11_13_2 doi: 10.1016/j.cmpb.2016.02.020 – ident: e_1_2_11_2_2 doi: 10.1504/IJBET.2011.044417 – ident: e_1_2_11_5_2 doi: 10.1016/j.compbiomed.2019.103549 – ident: e_1_2_11_6_2 doi: 10.1016/j.bspc.2011.07.007 – volume: 41 start-page: 212 issue: 4 year: 2014 ident: e_1_2_11_7_2 article-title: An optimized extreme learning machine for epileptic seizure detection publication-title: IAENG Int. J. Comput. Sci. – ident: e_1_2_11_14_2 doi: 10.1109/LSP.2016.2542881 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.3777075 |
| Snippet | Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1381 |
| SubjectTerms | abnormally functioning part automated system binary cases binary classification brain computer‐based expert opinion diagnostic method dispersion entropy EEG signal electrical activities electroencephalography entropy evaluated classification accuracy extracted feature vector feature extraction KNN line length methods medical signal detection medical signal processing multiclass cases multiclass classification evaluated accuracy neighbour classifiers objective view pattern classification public EEG seizure dataset seizure detection signal classification Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications support vector machine support vector machines SVM wavelet packet wavelet transforms WPT |
| Title | Analysis of EEG signal for seizure detection based on WPT |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.2701 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2701 |
| Volume | 56 |
| WOSCitedRecordID | wos000604957700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (Activated by CARLI) customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86fdAHv8Wpkwj6JNV8dEv7qNKpMMYepttbSZoEBqMbW-eDf72XtpvbwwTxoaWkd2m5y-V-JJc7hG60CrQwPvMUwG_P9y33VJgIr24osVIyYvNyQB8t0W4H_X7YKRfc3FmYIj_EYsHNWUY-XzsDl6qoQgKg1inRbRwwcs-EO761RSkPXOkG5ncWuwgw1ebFVXidOKPul4HvwP-wzL3ikjYHJlsFqrmnae7_9x8P0F6JMfFjMSgO0YZJj9DuUubBYxTOk5HgkcVR9IJdHAfwAITFUzP4mk0M1ibL47RS7FydxvDQ63RP0Hsz6j6_emUVBS_hPideIokElGDrVFJNTcMAYiCB4DZRwhomhTuKShTTGpAdTWSDU24ltAOFUCrhp6iSjlJzhjBnRCqqLYFefLhCGRgOBkx9poykvIru5oKMkzLFuKt0MYzzrW4_jM0wdgKJnUCq6HZBPS5Sa6yhuwadxKVtTdfQ1FZootbPu3isbRUVevr1Q8DVYk9NmPQEOf8rwwXace0u0oWSS1TJJjNTQ9vJZzaYTq7ycQn33lv7G7Qv3zs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58gXrwLVatrqAnie6rbnNUaVWMxUPV3sJudhcKUqWtHvz1ziRptQcF8RAIyUwSZndmv-y8CDl0tu60VyKyAL8jpYKMbJzpqOY5C8YIFvJ2QI-JbrXqnU58X_Y5xVyYoj7EeMMNNSO316jguCFd_HAqLJLp0XMg2InQmL81qwBrYO-Gp5vW2I0AtjbvriJrDLW6U0a-A__pd-6JNWm664eTSDVfaprL__7IFbJUokx6XkyLVTLle2tk8VvtwXUSj8qR0JdAG40ripEcwAMglg589-Ot76nzwzxSq0dxsXMUTp7u2xvkodloX15HZR-FKJNKsigzzABOCDVuuOP-zANmYHUtQ2Z18MJoTEZlVjgH2I5n5kxyGQxcBwptbSY3yUzvpee3CJWCGctdYPAUBUds6l6CCnMlrDdcVsjxSJJpVhYZx14Xz2nu7FZx6p9TFEiKAqmQozH1a1Fc4we6AxiUtNSuwQ801QmaRvJ1L311oUKKgfr1RcCViIsmmD3Ntv_KsE_mr9t3SZrctG53yALSYNwLZ7tkZth_81Uyl70Pu4P-Xj5JPwFrY-KE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivEfRJqrnNrI9eNhXH2IOXvZWkOYHB2GSbPvjrPWm76R4UxIdCab_TliQn-dJzI-TY2arToERkkX5HSnkZ2TjVUQU488YI5rNyQM8N3WxW2-24VdQ5DbEweX6IyQ-3oBnZfB0UHF6dzzecKiTJhGA5EOxM6BC_NacqmodhLVRrYkbAuTarriIrLGh1u_B8R_nz79JTa9JsB0bTTDVbauor__7IVbJcsEx6mQ-LNTIDvXWy9C334AaJx-lIaN_TWu2WBk8OlEESS4fQ-XgbAHUwyjy1ejQsdo7iyUvrcZM81WuP13dRUUchSqWSLEoNM8gTfIUb7jhcAHIGVtXSp1Z7EEaHYFRmhXPI7XhqLiSX3uB1RGhrU7lFSr1-D7YJlYIZy51n-BSFR2yqIFGFuRIWDJdlcjpuySQtkoyHWhfdJDN2qziBbhIaJAkNUiYnE_RrnlzjB9wRdkpSaNfwB8z-FKbW-LqXYJ-USd5Rv74IpRriqo7TnmY7fxU4JAutm3rSuG8-7JLFAAluL5ztkdJo8Ab7ZD59H3WGg4NsjH4CqQbhmw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+EEG+signal+for+seizure+detection+based+on+WPT&rft.jtitle=Electronics+letters&rft.au=Ar%C4%B1%2C+A.&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1381&rft.epage=1383&rft_id=info:doi/10.1049%2Fel.2020.2701&rft.externalDBID=10.1049%252Fel.2020.2701&rft.externalDocID=ELL2BF07370 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |