Analysis of EEG signal for seizure detection based on WPT

Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally functioning part of the brain by monitoring electrical activities. An automated system has been proposed to create a computer-based expert opinio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 56; H. 25; S. 1381 - 1383
1. Verfasser: Arı, A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 10.12.2020
Schlagworte:
ISSN:0013-5194, 1350-911X, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally functioning part of the brain by monitoring electrical activities. An automated system has been proposed to create a computer-based expert opinion needed in the detection of epilepsy and to capture a more objective view. To this end, the approximation and detail coefficients of EEG signals are calculated by using the wavelet packet transform (WPT). The coefficients were subjected to feature extraction using dispersion entropy and line length methods. The extracted feature vector has been applied as input to the support vector machine (SVM) and k-nearest neighbour (KNN) classifiers. The proposed method was tested using the public EEG seizure dataset created by the University of Bonn. In this study, the dataset was evaluated in two different ways as binary cases and multiclass cases. Evaluated classification accuracy was 100% for binary classification with SVM. For multiclass classification evaluated accuracy was 99.85% with KNN. The proposed method was compared with other methods in the literature using the same dataset. The comparison results provide the superiority of the proposed method.
AbstractList Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally functioning part of the brain by monitoring electrical activities. An automated system has been proposed to create a computer‐based expert opinion needed in the detection of epilepsy and to capture a more objective view. To this end, the approximation and detail coefficients of EEG signals are calculated by using the wavelet packet transform (WPT). The coefficients were subjected to feature extraction using dispersion entropy and line length methods. The extracted feature vector has been applied as input to the support vector machine (SVM) and k‐nearest neighbour (KNN) classifiers. The proposed method was tested using the public EEG seizure dataset created by the University of Bonn. In this study, the dataset was evaluated in two different ways as binary cases and multiclass cases. Evaluated classification accuracy was 100% for binary classification with SVM. For multiclass classification evaluated accuracy was 99.85% with KNN. The proposed method was compared with other methods in the literature using the same dataset. The comparison results provide the superiority of the proposed method.
Author Arı, A
Author_xml – sequence: 1
  givenname: A
  surname: Arı
  fullname: Arı, A
  email: ali.ari@inonu.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey
BookMark eNp9kDFPwzAQhS1UJErpxg_wwMBAyl3sxGQsVVqQIsFQBJvlJDYyCkllp0Ll1-OoDAgVpjudvnf33p2SUdu1mpBzhBkCz651M4shhlksAI_IGFkCUYb4MiJjAGRRghk_IVPvbQnIkafAcUyyeauanbeedobm-Yp6-xom1HSOem0_t07TWve66m3X0lJ5XdPQPD-uz8ixUY3X0-86IU_LfL24i4qH1f1iXkQV4wyiSoHiDE2CCmvUqWYo4EYwU5XC6FiJlAsBZVzXSZpipVKGzKgwD4Qoy4pNyNV-b-U67502cuPsu3I7iSCH5FI3ckguh-QBj3_hle3V4L53yjZ_iZK96MM2evfvAZkXRXy7BMEEBN3FXmd1L9-6rQuv84H4gW9qE7DLA9hBJ18UUYUd
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108086
crossref_primary_10_1109_ACCESS_2021_3126065
crossref_primary_10_1109_ACCESS_2022_3232563
crossref_primary_10_1016_j_asoc_2024_111722
crossref_primary_10_1016_j_compbiomed_2024_108951
crossref_primary_10_1016_j_jestch_2025_102005
crossref_primary_10_1109_TIM_2022_3207799
crossref_primary_10_1109_ACCESS_2021_3076347
crossref_primary_10_3390_e27090983
Cites_doi 10.3390/e22020140
10.1103/PhysRevE.64.061907
10.1109/TNSRE.2020.3013429
10.1016/j.cmpb.2004.10.009
10.1016/j.eswa.2020.113676
10.1007/s10462‐019‐09755‐y
10.1016/j.bspc.2019.101707
10.1109/JVA.2006.17
10.1016/j.jneumeth.2010.05.020
10.1016/j.cmpb.2016.02.020
10.1504/IJBET.2011.044417
10.1016/j.compbiomed.2019.103549
10.1016/j.bspc.2011.07.007
10.1109/LSP.2016.2542881
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2701
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1383
ExternalDocumentID 10_1049_el_2020_2701
ELL2BF07370
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3430-ca0a431f51a1d1e6e3170873fcb7fe2a764770b2dd5661ca6313fa2a73fc7bbc3
IEDL.DBID 24P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:24:40 EST 2025
Wed Oct 29 21:27:59 EDT 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 04:41:12 EST 2021
Wed Jan 06 06:33:42 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords computer-based expert opinion
wavelet transforms
KNN
SVM
entropy
feature extraction
neighbour classifiers
automated system
multiclass cases
WPT
line length methods
binary classification
evaluated classification accuracy
electroencephalography
pattern classification
multiclass classification evaluated accuracy
diagnostic method
support vector machines
abnormally functioning part
medical signal detection
brain
EEG signal
wavelet packet
signal classification
medical signal processing
support vector machine
seizure detection
public EEG seizure dataset
electrical activities
binary cases
dispersion entropy
objective view
extracted feature vector
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3430-ca0a431f51a1d1e6e3170873fcb7fe2a764770b2dd5661ca6313fa2a73fc7bbc3
PageCount 3
ParticipantIDs wiley_primary_10_1049_el_2020_2701_ELL2BF07370
crossref_primary_10_1049_el_2020_2701
iet_journals_10_1049_el_2020_2701
crossref_citationtrail_10_1049_el_2020_2701
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Wu, J.; Zhou, T.; Li, T. (C10) 2020; 22
Jiang, Y.; Chen, W.; Li, M. (C4) 2020; 116
Guo, L.; Rivero, D.; Dorado, J. (C14) 2010; 191
Subasi, A.; Erçelebi, E. (C3) 2005; 78
Siuly, S.; Alçin, Ö. F.; Kabir, E. (C15) 2020; 28
Acharya, U.R.; Molinari, F.; Sree, S.V. (C5) 2012; 7
Rostaghi, M.; Azami, H. (C13) 2016; 23
Amin, H.U.; Yusoff, M.Z.; Ahmad, R.F. (C8) 2020; 56
Andrzejak, R.G.; Lehnertz, K.; Mormann, F. (C11) 2001; 64
Yang, B.; Li, H.; Wang, Q. (C12) 2016; 129
Siuly, S.; Li, Y.; Wen, P. (C1) 2011; 7
Murugavel, A.S.; Ramakrishnan, S. (C6) 2014; 41
Al-Hadeethi, H.; Abdulla, S.; Diykh, M. (C7) 2020; 161
Zeng, W.; Li, M.; Yuan, C. (C9) 2020; 53
October 2006
2020; 53
2016; 129
2020; 161
2020; 28
2020; 116
2020; 56
2020; 22
2014; 41
2012; 7
2010; 191
2011; 7
2005; 78
2001; 64
2016; 23
Murugavel A.S. (e_1_2_11_7_2) 2014; 41
e_1_2_11_13_2
e_1_2_11_9_2
e_1_2_11_12_2
e_1_2_11_8_2
e_1_2_11_11_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_5_2
e_1_2_11_16_2
e_1_2_11_4_2
e_1_2_11_15_2
e_1_2_11_3_2
e_1_2_11_14_2
e_1_2_11_2_2
References_xml – volume: 23
  start-page: 610
  issue: 5
  year: 2016
  end-page: 614
  ident: C13
  article-title: Dispersion entropy: A measure for time-series analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 28
  start-page: 1966
  issue: 9
  year: 2020
  end-page: 1976
  ident: C15
  article-title: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 78
  start-page: 87
  issue: 2
  year: 2005
  end-page: 99
  ident: C3
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput. Methods Programs Biomed.
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  end-page: 408
  ident: C5
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Proc. Control
– volume: 41
  start-page: 212
  issue: 4
  year: 2014
  end-page: 221
  ident: C6
  article-title: An optimized extreme learning machine for epileptic seizure detection
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 161
  start-page: 1
  year: 2020
  end-page: 14
  ident: C7
  article-title: Adaptive boost LS-SVM classification approach for time-series signal classification in epileptic seizure diagnosis applications
  publication-title: IEEE Expert Syst. Appl.
– volume: 7
  start-page: 390
  issue: 4
  year: 2011
  end-page: 409
  ident: C1
  article-title: EEG signal classification based on simple random sampling technique with least square support vector machine
  publication-title: Int. J. Biomed. Eng. Technol.
– volume: 56
  start-page: 1
  year: 2020
  end-page: 10
  ident: C8
  article-title: A novel approach based on wavelet analysis and arithmetic coding for automated detection and techniques
  publication-title: Biomed. Signal Proc. Control
– volume: 22
  start-page: 140
  issue: 2
  year: 2020
  ident: C10
  article-title: Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting
  publication-title: Entropy
– volume: 64
  start-page: 1
  issue: 6
  year: 2001
  end-page: 8
  ident: C11
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 116
  start-page: 1
  year: 2020
  end-page: 12
  ident: C4
  article-title: Symplectic geometry decomposition-based features for automatic epileptic seizure detection
  publication-title: Comput. Biol. Med.
– volume: 191
  start-page: 101
  issue: 1
  year: 2010
  end-page: 109
  ident: C14
  article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
  publication-title: J. Neurosci. Methods
– volume: 129
  start-page: 21
  year: 2016
  end-page: 28
  ident: C12
  article-title: Subject-based feature extraction by using fisher WPD-CSP in brain–computer interfaces
  publication-title: Comput. Methods Programs Biomed.
– volume: 53
  start-page: 3059
  issue: 4
  year: 2020
  end-page: 3088
  ident: C9
  article-title: Identification of epileptic seizures in EEG signals using time-scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks
  publication-title: Artif. Intell. Rev.
– volume: 78
  start-page: 87
  issue: 2
  year: 2005
  end-page: 99
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput. Methods Programs Biomed.
– volume: 23
  start-page: 610
  issue: 5
  year: 2016
  end-page: 614
  article-title: Dispersion entropy: A measure for time‐series analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 22
  start-page: 140
  issue: 2
  year: 2020
  article-title: Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting
  publication-title: Entropy
– volume: 116
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Symplectic geometry decomposition‐based features for automatic epileptic seizure detection
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  end-page: 408
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Proc. Control
– start-page: 120
  year: October 2006
  end-page: 124
  article-title: EEG signal classification using wavelet feature extraction and neural networks
– volume: 56
  start-page: 1
  year: 2020
  end-page: 10
  article-title: A novel approach based on wavelet analysis and arithmetic coding for automated detection and techniques
  publication-title: Biomed. Signal Proc. Control
– volume: 161
  start-page: 1
  year: 2020
  end-page: 14
  article-title: Adaptive boost LS‐SVM classification approach for time‐series signal classification in epileptic seizure diagnosis applications
  publication-title: IEEE Expert Syst. Appl.
– volume: 64
  start-page: 1
  issue: 6
  year: 2001
  end-page: 8
  article-title: Indications of nonlinear deterministic and finite‐dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 191
  start-page: 101
  issue: 1
  year: 2010
  end-page: 109
  article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
  publication-title: J. Neurosci. Methods
– volume: 41
  start-page: 212
  issue: 4
  year: 2014
  end-page: 221
  article-title: An optimized extreme learning machine for epileptic seizure detection
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 53
  start-page: 3059
  issue: 4
  year: 2020
  end-page: 3088
  article-title: Identification of epileptic seizures in EEG signals using time‐scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks
  publication-title: Artif. Intell. Rev.
– volume: 129
  start-page: 21
  year: 2016
  end-page: 28
  article-title: Subject‐based feature extraction by using fisher WPD‐CSP in brain–computer interfaces
  publication-title: Comput. Methods Programs Biomed.
– volume: 28
  start-page: 1966
  issue: 9
  year: 2020
  end-page: 1976
  article-title: A new framework for automatic detection of patients with mild cognitive impairment using resting‐state EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 7
  start-page: 390
  issue: 4
  year: 2011
  end-page: 409
  article-title: EEG signal classification based on simple random sampling technique with least square support vector machine
  publication-title: Int. J. Biomed. Eng. Technol.
– ident: e_1_2_11_11_2
  doi: 10.3390/e22020140
– ident: e_1_2_11_12_2
  doi: 10.1103/PhysRevE.64.061907
– ident: e_1_2_11_16_2
  doi: 10.1109/TNSRE.2020.3013429
– ident: e_1_2_11_4_2
  doi: 10.1016/j.cmpb.2004.10.009
– ident: e_1_2_11_8_2
  doi: 10.1016/j.eswa.2020.113676
– ident: e_1_2_11_10_2
  doi: 10.1007/s10462‐019‐09755‐y
– ident: e_1_2_11_9_2
  doi: 10.1016/j.bspc.2019.101707
– ident: e_1_2_11_3_2
  doi: 10.1109/JVA.2006.17
– ident: e_1_2_11_15_2
  doi: 10.1016/j.jneumeth.2010.05.020
– ident: e_1_2_11_13_2
  doi: 10.1016/j.cmpb.2016.02.020
– ident: e_1_2_11_2_2
  doi: 10.1504/IJBET.2011.044417
– ident: e_1_2_11_5_2
  doi: 10.1016/j.compbiomed.2019.103549
– ident: e_1_2_11_6_2
  doi: 10.1016/j.bspc.2011.07.007
– volume: 41
  start-page: 212
  issue: 4
  year: 2014
  ident: e_1_2_11_7_2
  article-title: An optimized extreme learning machine for epileptic seizure detection
  publication-title: IAENG Int. J. Comput. Sci.
– ident: e_1_2_11_14_2
  doi: 10.1109/LSP.2016.2542881
SSID ssib014146041
ssj0012997
Score 2.3777075
Snippet Electroencephalogram (EEG) is a diagnostic method that provides information about the functioning of the brain. EEG can be used to diagnose the abnormally...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1381
SubjectTerms abnormally functioning part
automated system
binary cases
binary classification
brain
computer‐based expert opinion
diagnostic method
dispersion entropy
EEG signal
electrical activities
electroencephalography
entropy
evaluated classification accuracy
extracted feature vector
feature extraction
KNN
line length methods
medical signal detection
medical signal processing
multiclass cases
multiclass classification evaluated accuracy
neighbour classifiers
objective view
pattern classification
public EEG seizure dataset
seizure detection
signal classification
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
support vector machine
support vector machines
SVM
wavelet packet
wavelet transforms
WPT
Title Analysis of EEG signal for seizure detection based on WPT
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2701
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2701
Volume 56
WOSCitedRecordID wos000604957700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86fdAHv8Wpkwj6JNV8dEv7qNKpMMYepttbSZoEBqMbW-eDf72XtpvbwwTxoaWkd2m5y-V-JJc7hG60CrQwPvMUwG_P9y33VJgIr24osVIyYvNyQB8t0W4H_X7YKRfc3FmYIj_EYsHNWUY-XzsDl6qoQgKg1inRbRwwcs-EO761RSkPXOkG5ncWuwgw1ebFVXidOKPul4HvwP-wzL3ikjYHJlsFqrmnae7_9x8P0F6JMfFjMSgO0YZJj9DuUubBYxTOk5HgkcVR9IJdHAfwAITFUzP4mk0M1ibL47RS7FydxvDQ63RP0Hsz6j6_emUVBS_hPideIokElGDrVFJNTcMAYiCB4DZRwhomhTuKShTTGpAdTWSDU24ltAOFUCrhp6iSjlJzhjBnRCqqLYFefLhCGRgOBkx9poykvIru5oKMkzLFuKt0MYzzrW4_jM0wdgKJnUCq6HZBPS5Sa6yhuwadxKVtTdfQ1FZootbPu3isbRUVevr1Q8DVYk9NmPQEOf8rwwXace0u0oWSS1TJJjNTQ9vJZzaYTq7ycQn33lv7G7Qv3zs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58gXrwLVatrqAnie6rbnNUaVWMxUPV3sJudhcKUqWtHvz1ziRptQcF8RAIyUwSZndmv-y8CDl0tu60VyKyAL8jpYKMbJzpqOY5C8YIFvJ2QI-JbrXqnU58X_Y5xVyYoj7EeMMNNSO316jguCFd_HAqLJLp0XMg2InQmL81qwBrYO-Gp5vW2I0AtjbvriJrDLW6U0a-A__pd-6JNWm664eTSDVfaprL__7IFbJUokx6XkyLVTLle2tk8VvtwXUSj8qR0JdAG40ripEcwAMglg589-Ot76nzwzxSq0dxsXMUTp7u2xvkodloX15HZR-FKJNKsigzzABOCDVuuOP-zANmYHUtQ2Z18MJoTEZlVjgH2I5n5kxyGQxcBwptbSY3yUzvpee3CJWCGctdYPAUBUds6l6CCnMlrDdcVsjxSJJpVhYZx14Xz2nu7FZx6p9TFEiKAqmQozH1a1Fc4we6AxiUtNSuwQ801QmaRvJ1L311oUKKgfr1RcCViIsmmD3Ntv_KsE_mr9t3SZrctG53yALSYNwLZ7tkZth_81Uyl70Pu4P-Xj5JPwFrY-KE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivEfRJqrnNrI9eNhXH2IOXvZWkOYHB2GSbPvjrPWm76R4UxIdCab_TliQn-dJzI-TY2arToERkkX5HSnkZ2TjVUQU488YI5rNyQM8N3WxW2-24VdQ5DbEweX6IyQ-3oBnZfB0UHF6dzzecKiTJhGA5EOxM6BC_NacqmodhLVRrYkbAuTarriIrLGh1u_B8R_nz79JTa9JsB0bTTDVbauor__7IVbJcsEx6mQ-LNTIDvXWy9C334AaJx-lIaN_TWu2WBk8OlEESS4fQ-XgbAHUwyjy1ejQsdo7iyUvrcZM81WuP13dRUUchSqWSLEoNM8gTfIUb7jhcAHIGVtXSp1Z7EEaHYFRmhXPI7XhqLiSX3uB1RGhrU7lFSr1-D7YJlYIZy51n-BSFR2yqIFGFuRIWDJdlcjpuySQtkoyHWhfdJDN2qziBbhIaJAkNUiYnE_RrnlzjB9wRdkpSaNfwB8z-FKbW-LqXYJ-USd5Rv74IpRriqo7TnmY7fxU4JAutm3rSuG8-7JLFAAluL5ztkdJo8Ab7ZD59H3WGg4NsjH4CqQbhmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+EEG+signal+for+seizure+detection+based+on+WPT&rft.jtitle=Electronics+letters&rft.au=Ar%C4%B1%2C+A.&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1381&rft.epage=1383&rft_id=info:doi/10.1049%2Fel.2020.2701&rft.externalDBID=10.1049%252Fel.2020.2701&rft.externalDocID=ELL2BF07370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon