The MAX phase borides Zr2SB and Hf2SB

Zr2SB and Hf2SB were synthesized via solid-state reactions and the crystal structures were determined by powder X-ray diffraction. Both compounds crystallize in the hexagonal Cr2AlC-type structure (P63/mmc; Z = 2; Zr2SB a = 3.5001(1) Å, c = 12.2712(2) Å; Hf2SB a = 3.4671(1) Å, c = 12.1046(2) Å). The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Solid state sciences Ročník 106; s. 106316
Hlavní autoři: Rackl, Tobias, Johrendt, Dirk
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Masson SAS 01.08.2020
Témata:
ISSN:1293-2558, 1873-3085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Zr2SB and Hf2SB were synthesized via solid-state reactions and the crystal structures were determined by powder X-ray diffraction. Both compounds crystallize in the hexagonal Cr2AlC-type structure (P63/mmc; Z = 2; Zr2SB a = 3.5001(1) Å, c = 12.2712(2) Å; Hf2SB a = 3.4671(1) Å, c = 12.1046(2) Å). The lattice parameters and bond lengths are slightly longer and the M6X octahedra are less distorted compared to the known carbides. Resistivity and magnetic measurements reveal that Zr2SB and Hf2SB are good metallic conductors and Pauli paramagnets. Ab-initio DFT calculations of the electronic structure confirm the nonmagnetic metallic state and show mainly ionic bonds, which are weaker than in the carbides. The elastic constants indicate that Zr2SB and Hf2SB are brittle and exhibit a less two-dimensional character compared to other MAX phases. [Display omitted] •The new MAX phase borides Zr2SB and Hf2SB have been discovered and characterized.•DFT calculations confirm the nonmagnetic metallic state and reveal mainly ionic bonds.•The bulk moduli are slightly smaller than in the carbides due to weaker Zr,Hf–B bonding.
AbstractList Zr2SB and Hf2SB were synthesized via solid-state reactions and the crystal structures were determined by powder X-ray diffraction. Both compounds crystallize in the hexagonal Cr2AlC-type structure (P63/mmc; Z = 2; Zr2SB a = 3.5001(1) Å, c = 12.2712(2) Å; Hf2SB a = 3.4671(1) Å, c = 12.1046(2) Å). The lattice parameters and bond lengths are slightly longer and the M6X octahedra are less distorted compared to the known carbides. Resistivity and magnetic measurements reveal that Zr2SB and Hf2SB are good metallic conductors and Pauli paramagnets. Ab-initio DFT calculations of the electronic structure confirm the nonmagnetic metallic state and show mainly ionic bonds, which are weaker than in the carbides. The elastic constants indicate that Zr2SB and Hf2SB are brittle and exhibit a less two-dimensional character compared to other MAX phases. [Display omitted] •The new MAX phase borides Zr2SB and Hf2SB have been discovered and characterized.•DFT calculations confirm the nonmagnetic metallic state and reveal mainly ionic bonds.•The bulk moduli are slightly smaller than in the carbides due to weaker Zr,Hf–B bonding.
ArticleNumber 106316
Author Rackl, Tobias
Johrendt, Dirk
Author_xml – sequence: 1
  givenname: Tobias
  surname: Rackl
  fullname: Rackl, Tobias
– sequence: 2
  givenname: Dirk
  surname: Johrendt
  fullname: Johrendt, Dirk
  email: johrendt@lmu.de
BookMark eNqVj0FLwzAYhoNMcJv-h14EL61JvjbNbs7hnDLx4ATxEtLkC8uo7UiK4L-3ZTvpRU_fC9_L8_JMyKhpGyTkitGMUSaud1lsa29jpzuMxmNjMGac8uEtgIkTMmayhBSoLEZ95jNIeVHIMzKJcUcpFaLMx-Rys8Xkaf6W7Lc6YlK1wVuMyXvgL7eJbmyycn06J6dO1xEvjndKXpd3m8UqXT_fPyzm69RAzrvU6SLXUFbOlcyJyjDpxExLTSV1_SCrDJQ5GAsGsaAgjREVlwBQCV1YU8KU3By4JrQxBnRqH_yHDl-KUTVoq536ra0GbXXQ7hHLHwjj-7Jvmy5oX_8H9HgAYS_86TGoY836gKZTtvV_h30DTcqFnw
CitedBy_id crossref_primary_10_1002_anie_202308436
crossref_primary_10_1016_j_solidstatesciences_2024_107603
crossref_primary_10_1016_j_jallcom_2021_160248
crossref_primary_10_1016_j_jmst_2023_01_022
crossref_primary_10_1016_j_solidstatesciences_2023_107404
crossref_primary_10_1016_j_mattod_2023_11_010
crossref_primary_10_3390_ma16155455
crossref_primary_10_1103_stpc_qkpy
crossref_primary_10_1111_jace_20299
crossref_primary_10_1002_pssb_202500082
crossref_primary_10_1111_jace_19731
crossref_primary_10_1016_j_mtcomm_2022_105147
crossref_primary_10_1007_s12648_021_02050_z
crossref_primary_10_1016_j_ceramint_2023_11_009
crossref_primary_10_1016_j_diamond_2024_111668
crossref_primary_10_1007_s10853_023_08286_w
crossref_primary_10_1016_j_inoche_2023_110515
crossref_primary_10_1063_5_0160012
crossref_primary_10_1016_j_inoche_2025_115076
crossref_primary_10_1038_s41598_022_17539_8
crossref_primary_10_1016_j_jpcs_2023_111251
crossref_primary_10_1007_s40843_024_3073_7
crossref_primary_10_1016_j_ceramint_2024_04_171
crossref_primary_10_1016_j_comptc_2024_114497
crossref_primary_10_1088_1361_648X_abf9bc
crossref_primary_10_1111_jace_70186
crossref_primary_10_1016_j_jmgm_2025_108965
crossref_primary_10_1016_j_pmatsci_2025_101433
crossref_primary_10_1016_j_mtcomm_2024_109679
crossref_primary_10_1016_j_jeurceramsoc_2022_09_051
crossref_primary_10_1038_s41598_021_81346_w
crossref_primary_10_1016_j_matchemphys_2024_130310
crossref_primary_10_1038_s44160_025_00855_y
crossref_primary_10_1016_j_jallcom_2021_160344
crossref_primary_10_1016_j_surfin_2024_104678
crossref_primary_10_1039_D1RA02345D
crossref_primary_10_1007_s40145_022_0646_7
crossref_primary_10_1016_j_mtcomm_2021_102411
crossref_primary_10_1016_j_jeurceramsoc_2021_02_002
crossref_primary_10_1021_jacs_0c08113
crossref_primary_10_1016_j_mtcomm_2024_108437
crossref_primary_10_1016_j_jeurceramsoc_2022_03_019
crossref_primary_10_1007_s40145_022_0577_3
crossref_primary_10_1016_j_jmst_2022_05_026
crossref_primary_10_1016_j_heliyon_2024_e33651
crossref_primary_10_1016_j_ceramint_2024_01_110
crossref_primary_10_1016_j_jpcs_2024_112335
crossref_primary_10_1016_j_ceramint_2021_12_084
crossref_primary_10_1111_ijac_14223
crossref_primary_10_1111_jace_19271
crossref_primary_10_1016_j_jallcom_2020_158264
crossref_primary_10_1016_j_mtcomm_2023_107182
crossref_primary_10_1002_advs_202308589
crossref_primary_10_1002_ange_202308436
crossref_primary_10_1063_5_0055711
crossref_primary_10_1016_j_mtcomm_2025_113522
crossref_primary_10_1016_j_jeurceramsoc_2022_08_044
crossref_primary_10_1016_j_apmt_2025_102893
crossref_primary_10_1007_s00339_023_06743_6
crossref_primary_10_1016_j_coelec_2021_100764
crossref_primary_10_1016_j_vacuum_2022_111072
crossref_primary_10_1111_jace_19567
crossref_primary_10_1016_j_ceramint_2023_08_261
crossref_primary_10_1002_eng2_12911
crossref_primary_10_1016_j_mtcomm_2023_105759
crossref_primary_10_1016_j_physleta_2025_130551
crossref_primary_10_1016_j_solidstatesciences_2022_107019
crossref_primary_10_1016_j_jallcom_2021_158930
crossref_primary_10_1007_s40820_025_01673_9
crossref_primary_10_1016_j_ceramint_2022_01_285
crossref_primary_10_1088_1402_4896_ace500
Cites_doi 10.1002/zamm.19290090104
10.1063/1.4819174
10.1002/jcc.23424
10.1016/S1005-0302(10)60064-3
10.1038/srep33451
10.1016/j.physleta.2008.08.066
10.1088/0370-1298/65/5/307
10.1088/0953-8984/26/50/505503
10.1002/pssb.201046163
10.1103/PhysRevB.95.184106
10.1524/zkri.1960.114.16.447
10.1016/j.trechm.2019.02.016
10.1021/j100135a014
10.1016/j.actamat.2017.03.055
10.1103/PhysRevB.71.024105
10.1103/PhysRevLett.77.3865
10.1146/annurev-matsci-062910-100448
10.1016/j.matchemphys.2017.09.050
10.1103/PhysRevB.76.104104
10.1088/2053-1591/aace7f
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.51.17431
10.1103/PhysRevB.79.125122
10.1146/annurev.matsci.31.1.1
10.1080/01418610208239596
10.1103/PhysRevMaterials.2.103605
10.1016/0927-0256(96)00008-0
10.1016/0022-3697(63)90067-2
10.1088/0953-8984/16/16/006
10.1016/S0079-6786(00)00006-6
10.1103/PhysRevB.59.1758
10.1088/0953-8984/20/13/135211
10.1111/j.1151-2916.1996.tb08018.x
10.1016/j.commatsci.2005.04.010
10.1016/j.tsf.2009.07.184
10.1063/1.2959738
ContentType Journal Article
Copyright 2020 Elsevier Masson SAS
Copyright_xml – notice: 2020 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.solidstatesciences.2020.106316
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3085
ExternalDocumentID 10_1016_j_solidstatesciences_2020_106316
S1293255820303320
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c342t-fa54a37bff71f6bc18f69a8a080f0061bc3743cd3cee5038cc6b28333b6a5dc73
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591263200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1293-2558
IngestDate Sat Nov 29 07:02:23 EST 2025
Tue Nov 18 22:14:54 EST 2025
Fri Feb 23 02:45:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MAX phases
Borides
Elastic properties
Structural properties
DFT calculations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-fa54a37bff71f6bc18f69a8a080f0061bc3743cd3cee5038cc6b28333b6a5dc73
ParticipantIDs crossref_primary_10_1016_j_solidstatesciences_2020_106316
crossref_citationtrail_10_1016_j_solidstatesciences_2020_106316
elsevier_sciencedirect_doi_10_1016_j_solidstatesciences_2020_106316
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Solid state sciences
PublicationYear 2020
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Kresse, Joubert (bib17) 1999; 59
Voigt (bib25) 1928
Nye (bib38) 1985
Surucu (bib9) 2018; 203
Barsoum, El-Raghy (bib34) 1996; 79
Wang, Zhou (bib1) 2010; 26
Fast, Wills, Johansson, Eriksson (bib24) 1995; 51
Hill (bib27) 1952; 65
Wang, Zhou (bib39) 2004; 16
Chakraborty, Das, Nafday, Boeri, Saha-Dasgupta (bib37) 2017; 95
Gencer, Surucu (bib8) 2018; 5
Maintz, Deringer, Tchougréeff, Dronskowski (bib20) 2013; 34
Gruber, Lang, Griggs, Taheri, Tucker, Barsoum (bib6) 2016; 6
Shein, Ivanovskii (bib28) 2011; 248
Barsoum, Radovic (bib3) 2011; 41
Coelho (bib14) 2007
Mattesini, Magnuson, Tasnádi, Höglund, Abrikosov, Hultman (bib41) 2009; 79
Wang, Zhou, Liao, Lin (bib45) 2006; 89
Henkelman, Arnaldsson, Jónsson (bib23) 2006; 36
Bouhemadou, Khenata (bib32) 2008; 372
Eklund, Beckers, Jansson, Högberg, Hultman (bib36) 2010; 518
Griggs, Lang, Gruber, Tucker, Taheri, Barsoum (bib5) 2017; 131
Hug, Jaouen, Barsoum (bib33) 2005; 71
Kresse, Furthmüller (bib16) 1996; 6
Kulkarni, Phatak, Saxena, Fei, Hu (bib31) 2008; 20
Scabarozi, Amini, Finkel, Leaffer, Spanier, Barsoum, Drulis, Drulis, Tambussi, Hettinger, Lofland (bib35) 2008; 104
Foata-Prestavoine, Robert, Nadal, Bernard (bib42) 2007; 76
Dronskowski, Blöchl (bib21) 1993; 97
Chakraborty, Chakrabarty, Dutta, Saha-Dasgupta (bib11) 2018; 2
Sokol, Natu, Kota, Barsoum (bib7) 2019; 1
Pauw (bib15) 1958; 20
Barsoum, Zhao, Shanazarov, Romanchuk, Koumlis, Pagano, Lamberson, Tucker (bib4) 2019; 3
Rackl, Eisenburger, Niklaus, Johrendt (bib13) 2019; 3
Rohde, Kudielka (bib30) 1960
Mohammad, Masao, Taizo, Mehdi, Yoshio (bib10) 2014; 26
Reuss (bib26) 1929; 9
Kota, Sokol, Barsoum (bib12) 2019
Perdew, Burke, Ernzerhof (bib19) 1996; 77
Blöchl (bib18) 1994; 50
Brazhkin, Lyapin, Hemley (bib44) 2002; 82
Bader (bib22) 1990
Barsoum (bib2) 2000; 28
Anderson (bib29) 1963; 24
Yang, Tang, Guo, Cheng, Zhu, Yang (bib40) 2013; 114
Haines, Léger, Bocquillon (bib43) 2001; 31
Barsoum (10.1016/j.solidstatesciences.2020.106316_bib2) 2000; 28
Voigt (10.1016/j.solidstatesciences.2020.106316_bib25) 1928
Hill (10.1016/j.solidstatesciences.2020.106316_bib27) 1952; 65
Rohde (10.1016/j.solidstatesciences.2020.106316_bib30) 1960
Foata-Prestavoine (10.1016/j.solidstatesciences.2020.106316_bib42) 2007; 76
Haines (10.1016/j.solidstatesciences.2020.106316_bib43) 2001; 31
Fast (10.1016/j.solidstatesciences.2020.106316_bib24) 1995; 51
Wang (10.1016/j.solidstatesciences.2020.106316_bib45) 2006; 89
Anderson (10.1016/j.solidstatesciences.2020.106316_bib29) 1963; 24
Kota (10.1016/j.solidstatesciences.2020.106316_bib12) 2019
Barsoum (10.1016/j.solidstatesciences.2020.106316_bib3) 2011; 41
Gruber (10.1016/j.solidstatesciences.2020.106316_bib6) 2016; 6
Henkelman (10.1016/j.solidstatesciences.2020.106316_bib23) 2006; 36
Coelho (10.1016/j.solidstatesciences.2020.106316_bib14) 2007
Gencer (10.1016/j.solidstatesciences.2020.106316_bib8) 2018; 5
Yang (10.1016/j.solidstatesciences.2020.106316_bib40) 2013; 114
Surucu (10.1016/j.solidstatesciences.2020.106316_bib9) 2018; 203
Mohammad (10.1016/j.solidstatesciences.2020.106316_bib10) 2014; 26
Kulkarni (10.1016/j.solidstatesciences.2020.106316_bib31) 2008; 20
Rackl (10.1016/j.solidstatesciences.2020.106316_bib13) 2019; 3
Hug (10.1016/j.solidstatesciences.2020.106316_bib33) 2005; 71
Mattesini (10.1016/j.solidstatesciences.2020.106316_bib41) 2009; 79
Wang (10.1016/j.solidstatesciences.2020.106316_bib39) 2004; 16
Kresse (10.1016/j.solidstatesciences.2020.106316_bib17) 1999; 59
Perdew (10.1016/j.solidstatesciences.2020.106316_bib19) 1996; 77
Pauw (10.1016/j.solidstatesciences.2020.106316_bib15) 1958; 20
Bouhemadou (10.1016/j.solidstatesciences.2020.106316_bib32) 2008; 372
Kresse (10.1016/j.solidstatesciences.2020.106316_bib16) 1996; 6
Nye (10.1016/j.solidstatesciences.2020.106316_bib38) 1985
Brazhkin (10.1016/j.solidstatesciences.2020.106316_bib44) 2002; 82
Dronskowski (10.1016/j.solidstatesciences.2020.106316_bib21) 1993; 97
Eklund (10.1016/j.solidstatesciences.2020.106316_bib36) 2010; 518
Sokol (10.1016/j.solidstatesciences.2020.106316_bib7) 2019; 1
Blöchl (10.1016/j.solidstatesciences.2020.106316_bib18) 1994; 50
Bader (10.1016/j.solidstatesciences.2020.106316_bib22) 1990
Shein (10.1016/j.solidstatesciences.2020.106316_bib28) 2011; 248
Chakraborty (10.1016/j.solidstatesciences.2020.106316_bib11) 2018; 2
Chakraborty (10.1016/j.solidstatesciences.2020.106316_bib37) 2017; 95
Griggs (10.1016/j.solidstatesciences.2020.106316_bib5) 2017; 131
Maintz (10.1016/j.solidstatesciences.2020.106316_bib20) 2013; 34
Reuss (10.1016/j.solidstatesciences.2020.106316_bib26) 1929; 9
Wang (10.1016/j.solidstatesciences.2020.106316_bib1) 2010; 26
Barsoum (10.1016/j.solidstatesciences.2020.106316_bib34) 1996; 79
Barsoum (10.1016/j.solidstatesciences.2020.106316_bib4) 2019; 3
Scabarozi (10.1016/j.solidstatesciences.2020.106316_bib35) 2008; 104
References_xml – volume: 26
  start-page: 505503
  year: 2014
  ident: bib10
  article-title: Trends in electronic structures and structural properties of MAX phases: a first-principles study on M
  publication-title: J. Phys. Condens. Matter
– volume: 31
  start-page: 1
  year: 2001
  end-page: 23
  ident: bib43
  article-title: Synthesis and Design of superhard materials
  publication-title: Annu. Rev. Mater. Res.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: bib17
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B Condens. Matter
– volume: 104
  year: 2008
  ident: bib35
  article-title: Electrical, thermal, and elastic properties of the MAX phase Ti
  publication-title: J. Appl. Phys.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib19
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 372
  start-page: 6448
  year: 2008
  end-page: 6452
  ident: bib32
  article-title: Structural, electronic and elastic properties of M
  publication-title: Phys. Lett.
– volume: 82
  start-page: 231
  year: 2002
  end-page: 253
  ident: bib44
  article-title: Harder than diamond: dreams and reality
  publication-title: Philos. Mag. A
– volume: 79
  start-page: 1953
  year: 1996
  end-page: 1956
  ident: bib34
  article-title: Synthesis and characterization of a remarkable ceramic: Ti
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 33451
  year: 2016
  ident: bib6
  article-title: Evidence for bulk ripplocations in layered solids
  publication-title: Sci. Rep. - UK
– volume: 24
  start-page: 909
  year: 1963
  end-page: 917
  ident: bib29
  article-title: A simplified method for calculating the Debye temperature from elastic constants
  publication-title: J. Phys. Chem. Solid.
– volume: 3
  year: 2019
  ident: bib13
  article-title: Syntheses and physical properties of the MAX phase boride Nb
  publication-title: Phys. Rev. Mater.
– volume: 203
  start-page: 106
  year: 2018
  end-page: 117
  ident: bib9
  article-title: Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: an Ab-initio study on hypothetical M
  publication-title: Mater. Chem. Phys.
– volume: 20
  start-page: 220
  year: 1958
  end-page: 224
  ident: bib15
  article-title: A method of measuring the resistivity and Hall coefficient on lamellae and arbitrary shape
  publication-title: Philips Tech. Rev.
– volume: 76
  start-page: 104104
  year: 2007
  ident: bib42
  article-title: First-principles study of the relations between the elastic constants, phonon dispersion curves, and melting temperatures of bcc Ta at pressures up to 1000 GPa
  publication-title: Phys. Rev. B Condens. Matter
– start-page: 447
  year: 1960
  ident: bib30
  article-title: Strukturuntersuchungen an Carbosulfiden von Titan und Zirkon
  publication-title: Z. für Kristallogr. - Cryst. Mater.
– volume: 114
  year: 2013
  ident: bib40
  article-title: Origin of c-axis ultraincompressibility of Zr
  publication-title: J. Appl. Phys.
– volume: 71
  year: 2005
  ident: bib33
  article-title: X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti
  publication-title: Phys. Rev. B Condens. Matter
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib16
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 518
  start-page: 1851
  year: 2010
  end-page: 1878
  ident: bib36
  article-title: The M
  publication-title: Thin Solid Films
– volume: 3
  year: 2019
  ident: bib4
  article-title: Ripplocations: a universal deformation mechanism in layered solids
  publication-title: Phys. Rev. Mater.
– volume: 97
  start-page: 8617
  year: 1993
  end-page: 8624
  ident: bib21
  article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
  publication-title: J. Phys. Chem.
– volume: 36
  start-page: 354
  year: 2006
  end-page: 360
  ident: bib23
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
– volume: 89
  year: 2006
  ident: bib45
  article-title: First-principles prediction of low shear-strain resistance of Al
  publication-title: Appl. Phys. Lett.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: bib18
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B Condens. Matter
– volume: 34
  start-page: 2557
  year: 2013
  end-page: 2567
  ident: bib20
  article-title: Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
  publication-title: J. Comput. Chem.
– volume: 1
  start-page: 210
  year: 2019
  end-page: 223
  ident: bib7
  article-title: On the chemical diversity of the MAX phases
  publication-title: Trends Chem
– volume: 131
  start-page: 141
  year: 2017
  end-page: 155
  ident: bib5
  article-title: Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti
  publication-title: Acta Mater.
– volume: 28
  start-page: 201
  year: 2000
  end-page: 281
  ident: bib2
  article-title: The M
  publication-title: Prog. Solid State Chem.
– volume: 9
  start-page: 49
  year: 1929
  end-page: 58
  ident: bib26
  article-title: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
  publication-title: ZAMM - Z. Angew. Math. Me.
– volume: 26
  start-page: 385
  year: 2010
  end-page: 416
  ident: bib1
  article-title: Layered machinable and electrically conductive Ti
  publication-title: J. Mater. Sci. Technol.
– year: 1990
  ident: bib22
  article-title: Atoms in Molecules - A Quantum Theory
– volume: 5
  year: 2018
  ident: bib8
  article-title: Electronic and lattice dynamical properties of Ti
  publication-title: Mater. Res. Express
– volume: 248
  start-page: 228
  year: 2011
  end-page: 232
  ident: bib28
  article-title: Elastic properties of superconducting MAX phases from first-principles calculations
  publication-title: Phys. Status Solidi B
– volume: 16
  start-page: 2819
  year: 2004
  end-page: 2827
  ident: bib39
  article-title: Ab initio elastic stiffness of nano-laminate (M
  publication-title: J. Phys. Condens. Matter
– year: 2007
  ident: bib14
  article-title: TOPAS-academic
– start-page: 1
  year: 2019
  end-page: 30
  ident: bib12
  article-title: A progress report on the MAB phases: atomically laminated, ternary transition metal borides
  publication-title: Int. Mater. Rev.
– year: 1985
  ident: bib38
  article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
– volume: 79
  start-page: 125122
  year: 2009
  ident: bib41
  article-title: Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: a first-principles study
  publication-title: Phys. Rev. B Condens. Matter
– volume: 20
  start-page: 135211
  year: 2008
  ident: bib31
  article-title: High pressure structural behavior and synthesis of Zr
  publication-title: J. Phys. Condens. Matter
– volume: 95
  start-page: 184106
  year: 2017
  ident: bib37
  article-title: Manipulating the mechanical properties Ti
  publication-title: Phys. Rev. B Condens. Matter
– volume: 2
  start-page: 103605
  year: 2018
  ident: bib11
  article-title: Soft MAX phases with boron substitution: a computational prediction
  publication-title: Phys. Rev. Mater.
– volume: 41
  start-page: 195
  year: 2011
  end-page: 227
  ident: bib3
  article-title: Elastic and mechanical properties of the MAX phases
  publication-title: Annu. Rev. Mater. Res.
– volume: 51
  start-page: 17431
  year: 1995
  end-page: 17438
  ident: bib24
  article-title: Elastic constants of hexagonal transition metals: Theory
  publication-title: Phys. Rev. B Condens. Matter
– year: 1928
  ident: bib25
  article-title: Lehrbuch der Kristallphysik
– volume: 65
  start-page: 349
  year: 1952
  end-page: 354
  ident: bib27
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc. Phys. Soc. A
– volume: 9
  start-page: 49
  year: 1929
  ident: 10.1016/j.solidstatesciences.2020.106316_bib26
  article-title: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
  publication-title: ZAMM - Z. Angew. Math. Me.
  doi: 10.1002/zamm.19290090104
– volume: 114
  year: 2013
  ident: 10.1016/j.solidstatesciences.2020.106316_bib40
  article-title: Origin of c-axis ultraincompressibility of Zr2InC above 70 GPa via first-principles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4819174
– volume: 34
  start-page: 2557
  year: 2013
  ident: 10.1016/j.solidstatesciences.2020.106316_bib20
  article-title: Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23424
– volume: 26
  start-page: 385
  year: 2010
  ident: 10.1016/j.solidstatesciences.2020.106316_bib1
  article-title: Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(10)60064-3
– volume: 6
  start-page: 33451
  year: 2016
  ident: 10.1016/j.solidstatesciences.2020.106316_bib6
  article-title: Evidence for bulk ripplocations in layered solids
  publication-title: Sci. Rep. - UK
  doi: 10.1038/srep33451
– volume: 372
  start-page: 6448
  year: 2008
  ident: 10.1016/j.solidstatesciences.2020.106316_bib32
  article-title: Structural, electronic and elastic properties of M2SC (M=Ti, Zr, Hf) compounds
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2008.08.066
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.solidstatesciences.2020.106316_bib27
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc. Phys. Soc. A
  doi: 10.1088/0370-1298/65/5/307
– volume: 26
  start-page: 505503
  year: 2014
  ident: 10.1016/j.solidstatesciences.2020.106316_bib10
  article-title: Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/26/50/505503
– volume: 248
  start-page: 228
  year: 2011
  ident: 10.1016/j.solidstatesciences.2020.106316_bib28
  article-title: Elastic properties of superconducting MAX phases from first-principles calculations
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201046163
– volume: 95
  start-page: 184106
  year: 2017
  ident: 10.1016/j.solidstatesciences.2020.106316_bib37
  article-title: Manipulating the mechanical properties Ti2C MXene: effect of substitutional doping
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.95.184106
– start-page: 447
  year: 1960
  ident: 10.1016/j.solidstatesciences.2020.106316_bib30
  article-title: Strukturuntersuchungen an Carbosulfiden von Titan und Zirkon
  publication-title: Z. für Kristallogr. - Cryst. Mater.
  doi: 10.1524/zkri.1960.114.16.447
– volume: 1
  start-page: 210
  year: 2019
  ident: 10.1016/j.solidstatesciences.2020.106316_bib7
  article-title: On the chemical diversity of the MAX phases
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2019.02.016
– volume: 97
  start-page: 8617
  year: 1993
  ident: 10.1016/j.solidstatesciences.2020.106316_bib21
  article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100135a014
– volume: 131
  start-page: 141
  year: 2017
  ident: 10.1016/j.solidstatesciences.2020.106316_bib5
  article-title: Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.055
– volume: 71
  year: 2005
  ident: 10.1016/j.solidstatesciences.2020.106316_bib33
  article-title: X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.71.024105
– year: 1990
  ident: 10.1016/j.solidstatesciences.2020.106316_bib22
– volume: 89
  year: 2006
  ident: 10.1016/j.solidstatesciences.2020.106316_bib45
  article-title: First-principles prediction of low shear-strain resistance of Al3BC3: a metal borocarbide containing short linear BC2 units
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.solidstatesciences.2020.106316_bib19
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 41
  start-page: 195
  year: 2011
  ident: 10.1016/j.solidstatesciences.2020.106316_bib3
  article-title: Elastic and mechanical properties of the MAX phases
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-062910-100448
– volume: 203
  start-page: 106
  year: 2018
  ident: 10.1016/j.solidstatesciences.2020.106316_bib9
  article-title: Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: an Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.09.050
– volume: 76
  start-page: 104104
  year: 2007
  ident: 10.1016/j.solidstatesciences.2020.106316_bib42
  article-title: First-principles study of the relations between the elastic constants, phonon dispersion curves, and melting temperatures of bcc Ta at pressures up to 1000 GPa
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.76.104104
– volume: 5
  year: 2018
  ident: 10.1016/j.solidstatesciences.2020.106316_bib8
  article-title: Electronic and lattice dynamical properties of Ti2SiB MAX phase
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aace7f
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.solidstatesciences.2020.106316_bib18
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.50.17953
– volume: 3
  year: 2019
  ident: 10.1016/j.solidstatesciences.2020.106316_bib4
  article-title: Ripplocations: a universal deformation mechanism in layered solids
  publication-title: Phys. Rev. Mater.
– volume: 51
  start-page: 17431
  year: 1995
  ident: 10.1016/j.solidstatesciences.2020.106316_bib24
  article-title: Elastic constants of hexagonal transition metals: Theory
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.51.17431
– volume: 79
  start-page: 125122
  year: 2009
  ident: 10.1016/j.solidstatesciences.2020.106316_bib41
  article-title: Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: a first-principles study
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.79.125122
– volume: 31
  start-page: 1
  year: 2001
  ident: 10.1016/j.solidstatesciences.2020.106316_bib43
  article-title: Synthesis and Design of superhard materials
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.31.1.1
– year: 2007
  ident: 10.1016/j.solidstatesciences.2020.106316_bib14
– volume: 82
  start-page: 231
  year: 2002
  ident: 10.1016/j.solidstatesciences.2020.106316_bib44
  article-title: Harder than diamond: dreams and reality
  publication-title: Philos. Mag. A
  doi: 10.1080/01418610208239596
– volume: 2
  start-page: 103605
  year: 2018
  ident: 10.1016/j.solidstatesciences.2020.106316_bib11
  article-title: Soft MAX phases with boron substitution: a computational prediction
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.103605
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.solidstatesciences.2020.106316_bib16
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 24
  start-page: 909
  year: 1963
  ident: 10.1016/j.solidstatesciences.2020.106316_bib29
  article-title: A simplified method for calculating the Debye temperature from elastic constants
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/0022-3697(63)90067-2
– year: 1928
  ident: 10.1016/j.solidstatesciences.2020.106316_bib25
– volume: 16
  start-page: 2819
  year: 2004
  ident: 10.1016/j.solidstatesciences.2020.106316_bib39
  article-title: Ab initio elastic stiffness of nano-laminate (MxM'2−x)AlC (M and M = Ti, V and Cr) solid solution
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/16/16/006
– volume: 3
  year: 2019
  ident: 10.1016/j.solidstatesciences.2020.106316_bib13
  article-title: Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x (x = 0 – 1)
  publication-title: Phys. Rev. Mater.
– volume: 28
  start-page: 201
  year: 2000
  ident: 10.1016/j.solidstatesciences.2020.106316_bib2
  article-title: The Mn+1AXn phases: a new class of solids: thermodynamically stable nanolaminates
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/S0079-6786(00)00006-6
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.solidstatesciences.2020.106316_bib17
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.59.1758
– start-page: 1
  year: 2019
  ident: 10.1016/j.solidstatesciences.2020.106316_bib12
  article-title: A progress report on the MAB phases: atomically laminated, ternary transition metal borides
  publication-title: Int. Mater. Rev.
– volume: 20
  start-page: 220
  year: 1958
  ident: 10.1016/j.solidstatesciences.2020.106316_bib15
  article-title: A method of measuring the resistivity and Hall coefficient on lamellae and arbitrary shape
  publication-title: Philips Tech. Rev.
– year: 1985
  ident: 10.1016/j.solidstatesciences.2020.106316_bib38
– volume: 20
  start-page: 135211
  year: 2008
  ident: 10.1016/j.solidstatesciences.2020.106316_bib31
  article-title: High pressure structural behavior and synthesis of Zr2SC
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/13/135211
– volume: 79
  start-page: 1953
  year: 1996
  ident: 10.1016/j.solidstatesciences.2020.106316_bib34
  article-title: Synthesis and characterization of a remarkable ceramic: Ti3SiC2
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1996.tb08018.x
– volume: 36
  start-page: 354
  year: 2006
  ident: 10.1016/j.solidstatesciences.2020.106316_bib23
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 518
  start-page: 1851
  year: 2010
  ident: 10.1016/j.solidstatesciences.2020.106316_bib36
  article-title: The Mn+1AXn phases: materials science and thin-film processing
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.07.184
– volume: 104
  year: 2008
  ident: 10.1016/j.solidstatesciences.2020.106316_bib35
  article-title: Electrical, thermal, and elastic properties of the MAX phase Ti2SC
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2959738
SSID ssj0006674
Score 2.5484917
Snippet Zr2SB and Hf2SB were synthesized via solid-state reactions and the crystal structures were determined by powder X-ray diffraction. Both compounds crystallize...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106316
SubjectTerms Borides
DFT calculations
Elastic properties
MAX phases
Structural properties
Title The MAX phase borides Zr2SB and Hf2SB
URI https://dx.doi.org/10.1016/j.solidstatesciences.2020.106316
Volume 106
WOSCitedRecordID wos000591263200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6dGx7Kd1Habe1-GGFgVGxJVuyn0YWOtpByyAphL0YSbZo2uKEJBv983eS5Ti0ZbSwvQgh2_r6yaefpNMdwCeqOBeGx0QpnZIkN4ZIXnJCM6OFsQdRSjtnE-L8PBuP8x_eo97CuRMQdZ3d3uaz_wo1piHY9ursE-BeZYoJGEfQMUTYMXw08Gf9cTi7xAkqtJ6vymoR_pzT4Vd3UnBiMLbOSYfTm0kZuptFoZ8QOwV4qa_dJvFoqiayUzecWi290glwFJrX63sHtNNc8xta7aWWMyTqVjz1h2uiEIkAwQVHIx2rJi0TjLCocbKzkp_OZMB9WdxsC1wdLWwrXCPaNhzZuuALnMV3zGC7iXVoi7YlU5RAjNHoGWxSkeZZDzb7p8fj76upFseZUxtoq_oCPncKfH8v92EessYtRtuw5RcFQb8B8zVsVPUbeDloffG9hUMENUBQAwdq4EENHKgBgho4UN_Bxbfj0eCEeAcXRLOELomRaSKZUMaI2HCl48zwXGYSWbyx3FJphgRPlwyZjDXbozVXSAcZU1ympRZsB3r1tK52IUiVkXGlJK1MlAgpVJKIqNRRolQUVyLegy9tcwvtrb9bJyQ3Ravmd1Xc77DCdljRdNge5KscZo0llCd8O2h7uPDPG8ZW4GB5dC7v_0kuH-BV9yt8hN5y_qvah-f693KymB_4EfYHMrh8yQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MAX+phase+borides+Zr2SB+and+Hf2SB&rft.jtitle=Solid+state+sciences&rft.au=Rackl%2C+Tobias&rft.au=Johrendt%2C+Dirk&rft.date=2020-08-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1293-2558&rft.eissn=1873-3085&rft.volume=106&rft_id=info:doi/10.1016%2Fj.solidstatesciences.2020.106316&rft.externalDocID=S1293255820303320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1293-2558&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1293-2558&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1293-2558&client=summon