Utilizing the random forest algorithm and interpretable machine learning to inform post-stratification of commercial fisheries data

Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific Groundfish and Pacific Halibut Observer Program, which deploys observers and Electronic Monitoring systems into the fisheries to sample catch, a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fisheries research Ročník 281; s. 107253
Hlavní autoři: Gasper, Jason, Cahalan, Jennifer
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2025
Témata:
ISSN:0165-7836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific Groundfish and Pacific Halibut Observer Program, which deploys observers and Electronic Monitoring systems into the fisheries to sample catch, and industry-reported information. Catch is carefully monitored against limits that are based on biological constraints, quota allocations, or to control discard amounts. However, estimates of fish discarded at-sea (not retained for sale) can have large variance due to factors such as fishing behavior, species-specific vulnerability to fishing, and sample sizes. Post-stratification is a statistical approach widely used to improve the precision of catch estimates within a population because it controls for variance while also not relying on covariates known prior to sampling, which can be costly to collect or are unknown. Strategic use of post-stratification may increase the precision of estimates when compared to designs without post-stratification. However, choosing fishery characteristics to define post-strata may be elusive due to the high dimensionality of fishery data and complexity of creating post-strata that are optimized for multiple species. We propose a novel application of random forest classification and design-based estimation to explore multivariate post-stratification designs. These designs were evaluated by selecting the best performing trees from an ensemble using design-based estimation metrics. Results showed a large improvement in the precision of estimates by using the best-performing trees to label data and create post-strata. Moreover, through the use of subject matter expertise to evaluate the best performing trees, this method identified combinations of covariates that were not considered in previous estimation designs, and allows for exploration and testing of alternative post-strata designs that could be implemented in a management system.
AbstractList Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific Groundfish and Pacific Halibut Observer Program, which deploys observers and Electronic Monitoring systems into the fisheries to sample catch, and industry-reported information. Catch is carefully monitored against limits that are based on biological constraints, quota allocations, or to control discard amounts. However, estimates of fish discarded at-sea (not retained for sale) can have large variance due to factors such as fishing behavior, species-specific vulnerability to fishing, and sample sizes. Post-stratification is a statistical approach widely used to improve the precision of catch estimates within a population because it controls for variance while also not relying on covariates known prior to sampling, which can be costly to collect or are unknown. Strategic use of post-stratification may increase the precision of estimates when compared to designs without post-stratification. However, choosing fishery characteristics to define post-strata may be elusive due to the high dimensionality of fishery data and complexity of creating post-strata that are optimized for multiple species. We propose a novel application of random forest classification and design-based estimation to explore multivariate post-stratification designs. These designs were evaluated by selecting the best performing trees from an ensemble using design-based estimation metrics. Results showed a large improvement in the precision of estimates by using the best-performing trees to label data and create post-strata. Moreover, through the use of subject matter expertise to evaluate the best performing trees, this method identified combinations of covariates that were not considered in previous estimation designs, and allows for exploration and testing of alternative post-strata designs that could be implemented in a management system.
ArticleNumber 107253
Author Gasper, Jason
Cahalan, Jennifer
Author_xml – sequence: 1
  givenname: Jason
  surname: Gasper
  fullname: Gasper, Jason
  email: jason.gasper@noaa.gov
  organization: NOAA Fisheries, Alaska Regional Office, 907 W. 9th Street, Juneau, AK 99802, USA
– sequence: 2
  givenname: Jennifer
  surname: Cahalan
  fullname: Cahalan, Jennifer
  organization: Pacific States Marine Fisheries Commission, 7600 Sand Point Way NE, Seattle, WA 98115, USA
BookMark eNqFkD1v2zAQhjm4QD7an1CAYxe5lGSKEjoUhZG2AQx0aWbiRB3tMyjSJZkAydo_HtrOlMULCRzf58D3uWELHzwy9rkWy1rU3df90lLaRUzLRjSrMlONbBfsurzJSvVtd8VuUtoLIZTq6mv2_yGToxfyW553yCP4KczchrIhc3DbECnvZl7GnHzGeIiYYXTIZzA78sgdQvQnPJREAWd-CClXKUfIZMmUM3geLDdhnjEaAsePf8RImPgEGT6yDxZcwk9v9y17-Hn3d_272vz5db_-salMu2pyZTsxNqYXkzRyaGQjRyk7ARZWqhumwchuHFatAlNLgdDLXg3QKAOirfsR0La37Mt57yGGf4-loJ4pGXQOPIbHpNviqO9aJfoS_XaOmhhSimi1oXxqUmqR07XQR916r99066NufdZdaPmOPkSaIT5f5L6fOSwWngijTobQG5woosl6CnRhwys_P6Tg
CitedBy_id crossref_primary_10_1080_00032719_2025_2558840
Cites_doi 10.1016/j.fishres.2023.106790
10.1139/cjfas-2012-0535
10.1139/cjfr-2020-0379
10.1139/cjfas-2017-0181
10.1080/01621459.1993.10476368
10.1093/icesjms/fsz025
10.1139/x11-031
10.2307/2344652
10.1007/s13253-024-00631-z
10.7717/peerj.16215
10.1613/jair.953
10.1145/3531146.3533232
10.18653/v1/N16-3020
10.1080/01621459.1962.10500550
10.1038/s42256-019-0048-x
10.1109/ICDAR.1995.598994
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fishres.2024.107253
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_fishres_2024_107253
S0165783624003175
GeographicLocations Alaska
GeographicLocations_xml – name: Alaska
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAJYS
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SES
SEW
SPCBC
SSA
SSH
SSZ
T5K
TN5
UNMZH
VH1
WUQ
Y6R
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-f60b2c80d5c592525b5560afa4769d9c56b9437ac150ea85879a27ca0318baef3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397327400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-7836
IngestDate Fri Oct 03 00:07:31 EDT 2025
Sat Nov 29 07:46:43 EST 2025
Tue Nov 18 22:29:02 EST 2025
Sun Apr 06 06:54:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Post-Stratification
Random Forests
Catch Estimation
Alaska Fisheries
Machine Learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-f60b2c80d5c592525b5560afa4769d9c56b9437ac150ea85879a27ca0318baef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3165863708
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3165863708
crossref_citationtrail_10_1016_j_fishres_2024_107253
crossref_primary_10_1016_j_fishres_2024_107253
elsevier_sciencedirect_doi_10_1016_j_fishres_2024_107253
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Fisheries research
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rudin (bib21) 2019; 1
Hansen, Hurwitz, Madow (bib8) 1953; I & II
Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “Why Should I Trust You?”: Explaining the predictions of any classifier, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations.
Holt, Smith (bib10) 1979; 142
Little (bib13) 1991; 88
NPFMC (2020). Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands. North Pacific Fisheries Management Council. 1007 West Third, Suite 400 Anchorage, Alaska 99501. Available at
Minami, Lennert-Cody (bib14) 2024
Salman, Siddiqui, Shafait, Mian, Shortis, Khurshid, Ulges, Schwanecke (bib22) 2020; 77
Gasper, Kruse (bib7) 2013; 70
Thompson (bib24) 2012
Casella, G., and Berger, R.L. (2002). Statistical inference (2nd ed.). Thomson Learning. ISBN-13: ‎ 978-0534243128.
Chawla, Bowyer, Hall, Kegelmeyer (bib4) 2002; 16
Laman, Rooper, Turner, Rooney, Cooper, Zimmermann (bib11) 2018; 75
Zhang, Guo, Song, Yuan, Sui, Li (bib31) 2024
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (bib19) 2011; 12
Cahalan, J., Gasper, J., Mondragon, J.(2014) Catch sampling and estimation in the federal groundfish fisheries off Alaska, 2005 edition. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-286, 46 pages. Document available
Xin, Zhong, Chen, Takagi, Seltzer, Rudin (bib29) 2022; 35
Alaska Department of Fish and Game (ADF&G). 2024. Information by Fishery: Shellfish and Groundfish Statistical Areas. Available at
Westfall, Lister, Coulston, McRoberts (bib26) 2021; 51
Mini, Kumaran, Jayasankar (bib15) 2009; 38
Semenova, L., Rudin, C., Parr, R., 2022. On the existence of simpler machine learning models, in: ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), 2022. https://doi.org/10.1145/3531146.3533232.
Cochran (bib5) 1977
Lemaitre, Nogueira, Aridas (bib12) 2017; 18
.
Zuur, Ieno, Walker, Saveliev, Smith (bib32) 2009
National Marine Fisheries Service Office of Science and Technology (NMFSOST). 2023. Marine Recreational Information Program Survey Design and Statistical Methods for Estimation of Recreational Fisheries Catch and Effort. Silver Spring, MD.
Fisher, Rudin, Dominici (bib6) 2019; 20
Westfall, Patterson, Coulston (bib27) 2011; 41
Ho, T.K., 1995. Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, 1(1), pp. 278–282.
Yassir, Jai Andaloussi, Ouchetto, Mamza, Serghini (bib30) 2023; 266
Watson, Ames, Holycross, Suter, Somers, Kohler, Corrigan (bib25) 2023; 11
NMFS. (2023). 2024 Annual Deployment Plan for Observers and Electronic Monitoring in the Groundfish and Pacific halibut Fisheries off Alaska. National Oceanic and Atmospheric Administration, 709 West 9th Street, Juneau, Alaska 99802. Available at
Williams (bib28) 1962; 57
Mini (10.1016/j.fishres.2024.107253_bib15) 2009; 38
10.1016/j.fishres.2024.107253_bib16
10.1016/j.fishres.2024.107253_bib18
Yassir (10.1016/j.fishres.2024.107253_bib30) 2023; 266
Holt (10.1016/j.fishres.2024.107253_bib10) 1979; 142
10.1016/j.fishres.2024.107253_bib17
Westfall (10.1016/j.fishres.2024.107253_bib27) 2011; 41
Laman (10.1016/j.fishres.2024.107253_bib11) 2018; 75
Zuur (10.1016/j.fishres.2024.107253_bib32) 2009
Watson (10.1016/j.fishres.2024.107253_bib25) 2023; 11
Zhang (10.1016/j.fishres.2024.107253_bib31) 2024
10.1016/j.fishres.2024.107253_bib2
10.1016/j.fishres.2024.107253_bib3
10.1016/j.fishres.2024.107253_bib1
Westfall (10.1016/j.fishres.2024.107253_bib26) 2021; 51
Rudin (10.1016/j.fishres.2024.107253_bib21) 2019; 1
Salman (10.1016/j.fishres.2024.107253_bib22) 2020; 77
Minami (10.1016/j.fishres.2024.107253_bib14) 2024
10.1016/j.fishres.2024.107253_bib9
10.1016/j.fishres.2024.107253_bib20
10.1016/j.fishres.2024.107253_bib23
Chawla (10.1016/j.fishres.2024.107253_bib4) 2002; 16
Thompson (10.1016/j.fishres.2024.107253_bib24) 2012
Xin (10.1016/j.fishres.2024.107253_bib29) 2022; 35
Gasper (10.1016/j.fishres.2024.107253_bib7) 2013; 70
Cochran (10.1016/j.fishres.2024.107253_bib5) 1977
Lemaitre (10.1016/j.fishres.2024.107253_bib12) 2017; 18
Fisher (10.1016/j.fishres.2024.107253_bib6) 2019; 20
Pedregosa (10.1016/j.fishres.2024.107253_bib19) 2011; 12
Williams (10.1016/j.fishres.2024.107253_bib28) 1962; 57
Little (10.1016/j.fishres.2024.107253_bib13) 1991; 88
Hansen (10.1016/j.fishres.2024.107253_bib8) 1953; I & II
References_xml – volume: 11
  year: 2023
  ident: bib25
  article-title: Fishery catch records support machine learning-based prediction of illegal fishing off US West Coast
  publication-title: PeerJ
– volume: 70
  start-page: 1372
  year: 2013
  end-page: 1385
  ident: bib7
  article-title: Modeling of the spatial distribution of Pacific spiny dogfish (
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 18
  start-page: 1
  year: 2017
  end-page: 5
  ident: bib12
  article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– reference: NPFMC (2020). Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands. North Pacific Fisheries Management Council. 1007 West Third, Suite 400 Anchorage, Alaska 99501. Available at:
– reference: Semenova, L., Rudin, C., Parr, R., 2022. On the existence of simpler machine learning models, in: ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), 2022. https://doi.org/10.1145/3531146.3533232.
– reference: Cahalan, J., Gasper, J., Mondragon, J.(2014) Catch sampling and estimation in the federal groundfish fisheries off Alaska, 2005 edition. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-286, 46 pages. Document available:
– reference: Casella, G., and Berger, R.L. (2002). Statistical inference (2nd ed.). Thomson Learning. ISBN-13: ‎ 978-0534243128.
– volume: 142
  start-page: 33
  year: 1979
  end-page: 46
  ident: bib10
  article-title: Post stratification
  publication-title: J. R. Stat. Soc. Ser. A (Gen.)
– volume: 266
  year: 2023
  ident: bib30
  article-title: Acoustic fish species identification using deep learning and machine learning algorithms: a systematic review
  publication-title: Fish. Res.
– volume: 77
  start-page: 1295
  year: 2020
  end-page: 1307
  ident: bib22
  article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system
  publication-title: ICES J. Mar. Sci.
– reference: National Marine Fisheries Service Office of Science and Technology (NMFSOST). 2023. Marine Recreational Information Program Survey Design and Statistical Methods for Estimation of Recreational Fisheries Catch and Effort. Silver Spring, MD.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib4
  article-title: SMOTE: synthetic minority oversampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 41
  start-page: 1130
  year: 2011
  end-page: 1139
  ident: bib27
  article-title: Post-stratified estimation: within-strata and total sample size recommendations
  publication-title: Can. J. For. Res.
– volume: I & II
  year: 1953
  ident: bib8
  publication-title: Sample survey methods and theory
– volume: 38
  start-page: 464
  year: 2009
  end-page: 469
  ident: bib15
  article-title: On use of post-stratification for estimating the marine fish landings
  publication-title: Indian J. Mar. Sci.
– volume: 88
  start-page: 1001
  year: 1991
  end-page: 1012
  ident: bib13
  article-title: Post-stratification: a modeler's perspective
  publication-title: J. Am. Stat. Assoc.
– volume: 75
  start-page: 1230
  year: 2018
  end-page: 1255
  ident: bib11
  article-title: Using species distribution models to describe essential fish habitat in Alaska
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib19
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– reference: NMFS. (2023). 2024 Annual Deployment Plan for Observers and Electronic Monitoring in the Groundfish and Pacific halibut Fisheries off Alaska. National Oceanic and Atmospheric Administration, 709 West 9th Street, Juneau, Alaska 99802. Available at:
– year: 2024
  ident: bib14
  article-title: Regression tree and clustering for distributions, and homogeneous structure of population characteristics
  publication-title: J. Agric. Biol. Environ. Stat.
– volume: 51
  start-page: 1450
  year: 2021
  end-page: 1457
  ident: bib26
  article-title: Realized and potential efficiency for post-stratified estimation in a national forest inventory
  publication-title: Can. J. For. Res.
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: bib21
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
– year: 1977
  ident: bib5
  article-title: Sampling techniques (third ed.)
– year: 2024
  ident: bib31
  article-title: Evaluating the importance of vertical environmental variables for albacore fishing grounds in the tropical Atlantic Ocean using machine learning and Shapley additive explanations (SHAP) approach
  publication-title: Fish. Oceanogr.
– reference: .
– volume: 35
  start-page: 14071
  year: 2022
  end-page: 14084
  ident: bib29
  article-title: Exploring the whole rashomon set of sparse decision trees
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “Why Should I Trust You?”: Explaining the predictions of any classifier, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. 
– reference: Alaska Department of Fish and Game (ADF&G). 2024. Information by Fishery: Shellfish and Groundfish Statistical Areas. Available at
– volume: 57
  start-page: 622
  year: 1962
  end-page: 627
  ident: bib28
  article-title: The variance of an estimator with post-stratified weighting
  publication-title: J. Am. Stat. Assoc.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 81
  ident: bib6
  article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: bib24
  article-title: Sampling (third ed.)
– year: 2009
  ident: bib32
  article-title: Mixed Effects Models and Extensions in Ecology with R. 2009th ed. Statistics for Biology and Health
– reference: Ho, T.K., 1995. Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, 1(1), pp. 278–282.
– volume: 18
  start-page: 1
  issue: 17
  year: 2017
  ident: 10.1016/j.fishres.2024.107253_bib12
  article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.fishres.2024.107253_bib19
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 266
  year: 2023
  ident: 10.1016/j.fishres.2024.107253_bib30
  article-title: Acoustic fish species identification using deep learning and machine learning algorithms: a systematic review
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2023.106790
– volume: I & II
  year: 1953
  ident: 10.1016/j.fishres.2024.107253_bib8
– volume: 70
  start-page: 1372
  issue: 9
  year: 2013
  ident: 10.1016/j.fishres.2024.107253_bib7
  article-title: Modeling of the spatial distribution of Pacific spiny dogfish (Squalus suckleyi) in the Gulf of Alaska using generalized additive and generalized linear models
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/cjfas-2012-0535
– volume: 51
  start-page: 1450
  year: 2021
  ident: 10.1016/j.fishres.2024.107253_bib26
  article-title: Realized and potential efficiency for post-stratified estimation in a national forest inventory
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2020-0379
– ident: 10.1016/j.fishres.2024.107253_bib18
– year: 2024
  ident: 10.1016/j.fishres.2024.107253_bib31
  article-title: Evaluating the importance of vertical environmental variables for albacore fishing grounds in the tropical Atlantic Ocean using machine learning and Shapley additive explanations (SHAP) approach
  publication-title: Fish. Oceanogr.
– volume: 75
  start-page: 1230
  issue: 8
  year: 2018
  ident: 10.1016/j.fishres.2024.107253_bib11
  article-title: Using species distribution models to describe essential fish habitat in Alaska
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/cjfas-2017-0181
– volume: 88
  start-page: 1001
  issue: 423
  year: 1991
  ident: 10.1016/j.fishres.2024.107253_bib13
  article-title: Post-stratification: a modeler's perspective
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476368
– ident: 10.1016/j.fishres.2024.107253_bib16
– ident: 10.1016/j.fishres.2024.107253_bib3
– volume: 38
  start-page: 464
  issue: 4
  year: 2009
  ident: 10.1016/j.fishres.2024.107253_bib15
  article-title: On use of post-stratification for estimating the marine fish landings
  publication-title: Indian J. Mar. Sci.
– volume: 77
  start-page: 1295
  issue: 4
  year: 2020
  ident: 10.1016/j.fishres.2024.107253_bib22
  article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz025
– ident: 10.1016/j.fishres.2024.107253_bib1
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 10.1016/j.fishres.2024.107253_bib6
  article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: J. Mach. Learn. Res.
– volume: 41
  start-page: 1130
  year: 2011
  ident: 10.1016/j.fishres.2024.107253_bib27
  article-title: Post-stratified estimation: within-strata and total sample size recommendations
  publication-title: Can. J. For. Res.
  doi: 10.1139/x11-031
– volume: 142
  start-page: 33
  issue: 1
  year: 1979
  ident: 10.1016/j.fishres.2024.107253_bib10
  article-title: Post stratification
  publication-title: J. R. Stat. Soc. Ser. A (Gen.)
  doi: 10.2307/2344652
– year: 1977
  ident: 10.1016/j.fishres.2024.107253_bib5
– year: 2024
  ident: 10.1016/j.fishres.2024.107253_bib14
  article-title: Regression tree and clustering for distributions, and homogeneous structure of population characteristics
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-024-00631-z
– volume: 11
  year: 2023
  ident: 10.1016/j.fishres.2024.107253_bib25
  article-title: Fishery catch records support machine learning-based prediction of illegal fishing off US West Coast
  publication-title: PeerJ
  doi: 10.7717/peerj.16215
– year: 2012
  ident: 10.1016/j.fishres.2024.107253_bib24
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.fishres.2024.107253_bib4
  article-title: SMOTE: synthetic minority oversampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: 10.1016/j.fishres.2024.107253_bib23
  doi: 10.1145/3531146.3533232
– year: 2009
  ident: 10.1016/j.fishres.2024.107253_bib32
– ident: 10.1016/j.fishres.2024.107253_bib17
– ident: 10.1016/j.fishres.2024.107253_bib2
– ident: 10.1016/j.fishres.2024.107253_bib20
  doi: 10.18653/v1/N16-3020
– volume: 57
  start-page: 622
  year: 1962
  ident: 10.1016/j.fishres.2024.107253_bib28
  article-title: The variance of an estimator with post-stratified weighting
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1962.10500550
– volume: 35
  start-page: 14071
  year: 2022
  ident: 10.1016/j.fishres.2024.107253_bib29
  article-title: Exploring the whole rashomon set of sparse decision trees
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 206
  year: 2019
  ident: 10.1016/j.fishres.2024.107253_bib21
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– ident: 10.1016/j.fishres.2024.107253_bib9
  doi: 10.1109/ICDAR.1995.598994
SSID ssj0007761
Score 2.4184635
Snippet Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107253
SubjectTerms Alaska
Alaska Fisheries
algorithms
Catch Estimation
demersal fish
fisheries
Hippoglossus stenolepis
Machine Learning
management systems
Post-Stratification
Random Forests
species
variance
Title Utilizing the random forest algorithm and interpretable machine learning to inform post-stratification of commercial fisheries data
URI https://dx.doi.org/10.1016/j.fishres.2024.107253
https://www.proquest.com/docview/3165863708
Volume 281
WOSCitedRecordID wos001397327400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0165-7836
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007761
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdbusN2GPuk7T7QYLfgzpMlSzqG0n0dymAt5GZkWUpTEjvE7ii97h_fkyXbWdrRbbCLCQpSnPx-lt57-b33EHqraZLS3LyPwAFSEdVKwjMnbBQXRWLBPRAp1W2zCX58LKZT-TVkXNdtOwFeluLyUq7-K9QwBmC71Nm_gLtfFAbgNYAOV4Adrn8E_GkzX8yvuiwoOIqKaunEhLD9j9ViVq3nzdkyFF3qBIcufWrZyipN10di5qxSX1Z1vKrqJvIFdm2I8QU5-tI1bHI5kK20HrzucUh2G3p_9u-EukJ9_PmjclXKvVS3HtQAh-rMyS03pTeboQnCtkIT13NmfAgzZZHLHdncg4nv23JtP_ehhfMD9y3gLsGfJxRGOfEVhrdKZX9za7ulnTDWGUZ30Q7hTIoR2pl8Ppp-6c9ozlPfqTLcy5Db9e7GD_ud1bJ1frdGyckj9DB4E3jiWfAY3THlE_RgMluHiirmKfrR8wEDH7DnA_Z8wD0fMAzjX_iAAx9wxwfcVNjzAd_AB1xZPPAB93zAjg_P0OmHo5PDT1HovBHphJImsmmcEy3igmkmCSMsZ2AZK6soT2UhNUtzSROuNLgTRgkmuFSEa-VOiFwZmzxHo7IqzS7CWmqby7jgvBDUgnkaUyUpeLE2B1eZ6j1Eu18206EsveuOssg6_eF5FgDJHCCZB2QPHfTTVr4uy20TRAdbFoxLbzRmwLXbpr7pYM5g83X_qKnSVBd1lgB_RJrwWOz_-_Iv0P3h4XmJRs36wrxC9_T3Zl6vXwfm_gTnWrTs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+the+random+forest+algorithm+and+interpretable+machine+learning+to+inform+post-stratification+of+commercial+fisheries+data&rft.jtitle=Fisheries+research&rft.au=Gasper%2C+Jason&rft.au=Cahalan%2C+Jennifer&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-7836&rft.volume=281&rft_id=info:doi/10.1016%2Fj.fishres.2024.107253&rft.externalDocID=S0165783624003175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-7836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-7836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-7836&client=summon