Utilizing the random forest algorithm and interpretable machine learning to inform post-stratification of commercial fisheries data
Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific Groundfish and Pacific Halibut Observer Program, which deploys observers and Electronic Monitoring systems into the fisheries to sample catch, a...
Gespeichert in:
| Veröffentlicht in: | Fisheries research Jg. 281; S. 107253 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2025
|
| Schlagworte: | |
| ISSN: | 0165-7836 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific Groundfish and Pacific Halibut Observer Program, which deploys observers and Electronic Monitoring systems into the fisheries to sample catch, and industry-reported information. Catch is carefully monitored against limits that are based on biological constraints, quota allocations, or to control discard amounts. However, estimates of fish discarded at-sea (not retained for sale) can have large variance due to factors such as fishing behavior, species-specific vulnerability to fishing, and sample sizes. Post-stratification is a statistical approach widely used to improve the precision of catch estimates within a population because it controls for variance while also not relying on covariates known prior to sampling, which can be costly to collect or are unknown. Strategic use of post-stratification may increase the precision of estimates when compared to designs without post-stratification. However, choosing fishery characteristics to define post-strata may be elusive due to the high dimensionality of fishery data and complexity of creating post-strata that are optimized for multiple species. We propose a novel application of random forest classification and design-based estimation to explore multivariate post-stratification designs. These designs were evaluated by selecting the best performing trees from an ensemble using design-based estimation metrics. Results showed a large improvement in the precision of estimates by using the best-performing trees to label data and create post-strata. Moreover, through the use of subject matter expertise to evaluate the best performing trees, this method identified combinations of covariates that were not considered in previous estimation designs, and allows for exploration and testing of alternative post-strata designs that could be implemented in a management system. |
|---|---|
| AbstractList | Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific Groundfish and Pacific Halibut Observer Program, which deploys observers and Electronic Monitoring systems into the fisheries to sample catch, and industry-reported information. Catch is carefully monitored against limits that are based on biological constraints, quota allocations, or to control discard amounts. However, estimates of fish discarded at-sea (not retained for sale) can have large variance due to factors such as fishing behavior, species-specific vulnerability to fishing, and sample sizes. Post-stratification is a statistical approach widely used to improve the precision of catch estimates within a population because it controls for variance while also not relying on covariates known prior to sampling, which can be costly to collect or are unknown. Strategic use of post-stratification may increase the precision of estimates when compared to designs without post-stratification. However, choosing fishery characteristics to define post-strata may be elusive due to the high dimensionality of fishery data and complexity of creating post-strata that are optimized for multiple species. We propose a novel application of random forest classification and design-based estimation to explore multivariate post-stratification designs. These designs were evaluated by selecting the best performing trees from an ensemble using design-based estimation metrics. Results showed a large improvement in the precision of estimates by using the best-performing trees to label data and create post-strata. Moreover, through the use of subject matter expertise to evaluate the best performing trees, this method identified combinations of covariates that were not considered in previous estimation designs, and allows for exploration and testing of alternative post-strata designs that could be implemented in a management system. |
| ArticleNumber | 107253 |
| Author | Gasper, Jason Cahalan, Jennifer |
| Author_xml | – sequence: 1 givenname: Jason surname: Gasper fullname: Gasper, Jason email: jason.gasper@noaa.gov organization: NOAA Fisheries, Alaska Regional Office, 907 W. 9th Street, Juneau, AK 99802, USA – sequence: 2 givenname: Jennifer surname: Cahalan fullname: Cahalan, Jennifer organization: Pacific States Marine Fisheries Commission, 7600 Sand Point Way NE, Seattle, WA 98115, USA |
| BookMark | eNqFkD1v2zAQhjm4QD7an1CAYxe5lGSKEjoUhZG2AQx0aWbiRB3tMyjSJZkAydo_HtrOlMULCRzf58D3uWELHzwy9rkWy1rU3df90lLaRUzLRjSrMlONbBfsurzJSvVtd8VuUtoLIZTq6mv2_yGToxfyW553yCP4KczchrIhc3DbECnvZl7GnHzGeIiYYXTIZzA78sgdQvQnPJREAWd-CClXKUfIZMmUM3geLDdhnjEaAsePf8RImPgEGT6yDxZcwk9v9y17-Hn3d_272vz5db_-salMu2pyZTsxNqYXkzRyaGQjRyk7ARZWqhumwchuHFatAlNLgdDLXg3QKAOirfsR0La37Mt57yGGf4-loJ4pGXQOPIbHpNviqO9aJfoS_XaOmhhSimi1oXxqUmqR07XQR916r99066NufdZdaPmOPkSaIT5f5L6fOSwWngijTobQG5woosl6CnRhwys_P6Tg |
| CitedBy_id | crossref_primary_10_1080_00032719_2025_2558840 |
| Cites_doi | 10.1016/j.fishres.2023.106790 10.1139/cjfas-2012-0535 10.1139/cjfr-2020-0379 10.1139/cjfas-2017-0181 10.1080/01621459.1993.10476368 10.1093/icesjms/fsz025 10.1139/x11-031 10.2307/2344652 10.1007/s13253-024-00631-z 10.7717/peerj.16215 10.1613/jair.953 10.1145/3531146.3533232 10.18653/v1/N16-3020 10.1080/01621459.1962.10500550 10.1038/s42256-019-0048-x 10.1109/ICDAR.1995.598994 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.fishres.2024.107253 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| ExternalDocumentID | 10_1016_j_fishres_2024_107253 S0165783624003175 |
| GeographicLocations | Alaska |
| GeographicLocations_xml | – name: Alaska |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAJYS AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SES SEW SPCBC SSA SSH SSZ T5K TN5 UNMZH VH1 WUQ Y6R ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-f60b2c80d5c592525b5560afa4769d9c56b9437ac150ea85879a27ca0318baef3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397327400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-7836 |
| IngestDate | Fri Oct 03 00:07:31 EDT 2025 Sat Nov 29 07:46:43 EST 2025 Tue Nov 18 22:29:02 EST 2025 Sun Apr 06 06:54:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Post-Stratification Random Forests Catch Estimation Alaska Fisheries Machine Learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-f60b2c80d5c592525b5560afa4769d9c56b9437ac150ea85879a27ca0318baef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3165863708 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3165863708 crossref_citationtrail_10_1016_j_fishres_2024_107253 crossref_primary_10_1016_j_fishres_2024_107253 elsevier_sciencedirect_doi_10_1016_j_fishres_2024_107253 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Fisheries research |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Rudin (bib21) 2019; 1 Hansen, Hurwitz, Madow (bib8) 1953; I & II Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “Why Should I Trust You?”: Explaining the predictions of any classifier, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. Holt, Smith (bib10) 1979; 142 Little (bib13) 1991; 88 NPFMC (2020). Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands. North Pacific Fisheries Management Council. 1007 West Third, Suite 400 Anchorage, Alaska 99501. Available at Minami, Lennert-Cody (bib14) 2024 Salman, Siddiqui, Shafait, Mian, Shortis, Khurshid, Ulges, Schwanecke (bib22) 2020; 77 Gasper, Kruse (bib7) 2013; 70 Thompson (bib24) 2012 Casella, G., and Berger, R.L. (2002). Statistical inference (2nd ed.). Thomson Learning. ISBN-13: 978-0534243128. Chawla, Bowyer, Hall, Kegelmeyer (bib4) 2002; 16 Laman, Rooper, Turner, Rooney, Cooper, Zimmermann (bib11) 2018; 75 Zhang, Guo, Song, Yuan, Sui, Li (bib31) 2024 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (bib19) 2011; 12 Cahalan, J., Gasper, J., Mondragon, J.(2014) Catch sampling and estimation in the federal groundfish fisheries off Alaska, 2005 edition. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-286, 46 pages. Document available Xin, Zhong, Chen, Takagi, Seltzer, Rudin (bib29) 2022; 35 Alaska Department of Fish and Game (ADF&G). 2024. Information by Fishery: Shellfish and Groundfish Statistical Areas. Available at Westfall, Lister, Coulston, McRoberts (bib26) 2021; 51 Mini, Kumaran, Jayasankar (bib15) 2009; 38 Semenova, L., Rudin, C., Parr, R., 2022. On the existence of simpler machine learning models, in: ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), 2022. https://doi.org/10.1145/3531146.3533232. Cochran (bib5) 1977 Lemaitre, Nogueira, Aridas (bib12) 2017; 18 . Zuur, Ieno, Walker, Saveliev, Smith (bib32) 2009 National Marine Fisheries Service Office of Science and Technology (NMFSOST). 2023. Marine Recreational Information Program Survey Design and Statistical Methods for Estimation of Recreational Fisheries Catch and Effort. Silver Spring, MD. Fisher, Rudin, Dominici (bib6) 2019; 20 Westfall, Patterson, Coulston (bib27) 2011; 41 Ho, T.K., 1995. Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, 1(1), pp. 278–282. Yassir, Jai Andaloussi, Ouchetto, Mamza, Serghini (bib30) 2023; 266 Watson, Ames, Holycross, Suter, Somers, Kohler, Corrigan (bib25) 2023; 11 NMFS. (2023). 2024 Annual Deployment Plan for Observers and Electronic Monitoring in the Groundfish and Pacific halibut Fisheries off Alaska. National Oceanic and Atmospheric Administration, 709 West 9th Street, Juneau, Alaska 99802. Available at Williams (bib28) 1962; 57 Mini (10.1016/j.fishres.2024.107253_bib15) 2009; 38 10.1016/j.fishres.2024.107253_bib16 10.1016/j.fishres.2024.107253_bib18 Yassir (10.1016/j.fishres.2024.107253_bib30) 2023; 266 Holt (10.1016/j.fishres.2024.107253_bib10) 1979; 142 10.1016/j.fishres.2024.107253_bib17 Westfall (10.1016/j.fishres.2024.107253_bib27) 2011; 41 Laman (10.1016/j.fishres.2024.107253_bib11) 2018; 75 Zuur (10.1016/j.fishres.2024.107253_bib32) 2009 Watson (10.1016/j.fishres.2024.107253_bib25) 2023; 11 Zhang (10.1016/j.fishres.2024.107253_bib31) 2024 10.1016/j.fishres.2024.107253_bib2 10.1016/j.fishres.2024.107253_bib3 10.1016/j.fishres.2024.107253_bib1 Westfall (10.1016/j.fishres.2024.107253_bib26) 2021; 51 Rudin (10.1016/j.fishres.2024.107253_bib21) 2019; 1 Salman (10.1016/j.fishres.2024.107253_bib22) 2020; 77 Minami (10.1016/j.fishres.2024.107253_bib14) 2024 10.1016/j.fishres.2024.107253_bib9 10.1016/j.fishres.2024.107253_bib20 10.1016/j.fishres.2024.107253_bib23 Chawla (10.1016/j.fishres.2024.107253_bib4) 2002; 16 Thompson (10.1016/j.fishres.2024.107253_bib24) 2012 Xin (10.1016/j.fishres.2024.107253_bib29) 2022; 35 Gasper (10.1016/j.fishres.2024.107253_bib7) 2013; 70 Cochran (10.1016/j.fishres.2024.107253_bib5) 1977 Lemaitre (10.1016/j.fishres.2024.107253_bib12) 2017; 18 Fisher (10.1016/j.fishres.2024.107253_bib6) 2019; 20 Pedregosa (10.1016/j.fishres.2024.107253_bib19) 2011; 12 Williams (10.1016/j.fishres.2024.107253_bib28) 1962; 57 Little (10.1016/j.fishres.2024.107253_bib13) 1991; 88 Hansen (10.1016/j.fishres.2024.107253_bib8) 1953; I & II |
| References_xml | – volume: 11 year: 2023 ident: bib25 article-title: Fishery catch records support machine learning-based prediction of illegal fishing off US West Coast publication-title: PeerJ – volume: 70 start-page: 1372 year: 2013 end-page: 1385 ident: bib7 article-title: Modeling of the spatial distribution of Pacific spiny dogfish ( publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 18 start-page: 1 year: 2017 end-page: 5 ident: bib12 article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – reference: NPFMC (2020). Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands. North Pacific Fisheries Management Council. 1007 West Third, Suite 400 Anchorage, Alaska 99501. Available at: – reference: Semenova, L., Rudin, C., Parr, R., 2022. On the existence of simpler machine learning models, in: ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), 2022. https://doi.org/10.1145/3531146.3533232. – reference: Cahalan, J., Gasper, J., Mondragon, J.(2014) Catch sampling and estimation in the federal groundfish fisheries off Alaska, 2005 edition. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-286, 46 pages. Document available: – reference: Casella, G., and Berger, R.L. (2002). Statistical inference (2nd ed.). Thomson Learning. ISBN-13: 978-0534243128. – volume: 142 start-page: 33 year: 1979 end-page: 46 ident: bib10 article-title: Post stratification publication-title: J. R. Stat. Soc. Ser. A (Gen.) – volume: 266 year: 2023 ident: bib30 article-title: Acoustic fish species identification using deep learning and machine learning algorithms: a systematic review publication-title: Fish. Res. – volume: 77 start-page: 1295 year: 2020 end-page: 1307 ident: bib22 article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system publication-title: ICES J. Mar. Sci. – reference: National Marine Fisheries Service Office of Science and Technology (NMFSOST). 2023. Marine Recreational Information Program Survey Design and Statistical Methods for Estimation of Recreational Fisheries Catch and Effort. Silver Spring, MD. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib4 article-title: SMOTE: synthetic minority oversampling technique publication-title: J. Artif. Intell. Res. – volume: 41 start-page: 1130 year: 2011 end-page: 1139 ident: bib27 article-title: Post-stratified estimation: within-strata and total sample size recommendations publication-title: Can. J. For. Res. – volume: I & II year: 1953 ident: bib8 publication-title: Sample survey methods and theory – volume: 38 start-page: 464 year: 2009 end-page: 469 ident: bib15 article-title: On use of post-stratification for estimating the marine fish landings publication-title: Indian J. Mar. Sci. – volume: 88 start-page: 1001 year: 1991 end-page: 1012 ident: bib13 article-title: Post-stratification: a modeler's perspective publication-title: J. Am. Stat. Assoc. – volume: 75 start-page: 1230 year: 2018 end-page: 1255 ident: bib11 article-title: Using species distribution models to describe essential fish habitat in Alaska publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib19 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – reference: NMFS. (2023). 2024 Annual Deployment Plan for Observers and Electronic Monitoring in the Groundfish and Pacific halibut Fisheries off Alaska. National Oceanic and Atmospheric Administration, 709 West 9th Street, Juneau, Alaska 99802. Available at: – year: 2024 ident: bib14 article-title: Regression tree and clustering for distributions, and homogeneous structure of population characteristics publication-title: J. Agric. Biol. Environ. Stat. – volume: 51 start-page: 1450 year: 2021 end-page: 1457 ident: bib26 article-title: Realized and potential efficiency for post-stratified estimation in a national forest inventory publication-title: Can. J. For. Res. – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: bib21 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. – year: 1977 ident: bib5 article-title: Sampling techniques (third ed.) – year: 2024 ident: bib31 article-title: Evaluating the importance of vertical environmental variables for albacore fishing grounds in the tropical Atlantic Ocean using machine learning and Shapley additive explanations (SHAP) approach publication-title: Fish. Oceanogr. – reference: . – volume: 35 start-page: 14071 year: 2022 end-page: 14084 ident: bib29 article-title: Exploring the whole rashomon set of sparse decision trees publication-title: Adv. Neural Inf. Process. Syst. – reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “Why Should I Trust You?”: Explaining the predictions of any classifier, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. – reference: Alaska Department of Fish and Game (ADF&G). 2024. Information by Fishery: Shellfish and Groundfish Statistical Areas. Available at – volume: 57 start-page: 622 year: 1962 end-page: 627 ident: bib28 article-title: The variance of an estimator with post-stratified weighting publication-title: J. Am. Stat. Assoc. – volume: 20 start-page: 1 year: 2019 end-page: 81 ident: bib6 article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously publication-title: J. Mach. Learn. Res. – year: 2012 ident: bib24 article-title: Sampling (third ed.) – year: 2009 ident: bib32 article-title: Mixed Effects Models and Extensions in Ecology with R. 2009th ed. Statistics for Biology and Health – reference: Ho, T.K., 1995. Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, 1(1), pp. 278–282. – volume: 18 start-page: 1 issue: 17 year: 2017 ident: 10.1016/j.fishres.2024.107253_bib12 article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.fishres.2024.107253_bib19 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 266 year: 2023 ident: 10.1016/j.fishres.2024.107253_bib30 article-title: Acoustic fish species identification using deep learning and machine learning algorithms: a systematic review publication-title: Fish. Res. doi: 10.1016/j.fishres.2023.106790 – volume: I & II year: 1953 ident: 10.1016/j.fishres.2024.107253_bib8 – volume: 70 start-page: 1372 issue: 9 year: 2013 ident: 10.1016/j.fishres.2024.107253_bib7 article-title: Modeling of the spatial distribution of Pacific spiny dogfish (Squalus suckleyi) in the Gulf of Alaska using generalized additive and generalized linear models publication-title: Canadian Journal of Fisheries and Aquatic Sciences doi: 10.1139/cjfas-2012-0535 – volume: 51 start-page: 1450 year: 2021 ident: 10.1016/j.fishres.2024.107253_bib26 article-title: Realized and potential efficiency for post-stratified estimation in a national forest inventory publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2020-0379 – ident: 10.1016/j.fishres.2024.107253_bib18 – year: 2024 ident: 10.1016/j.fishres.2024.107253_bib31 article-title: Evaluating the importance of vertical environmental variables for albacore fishing grounds in the tropical Atlantic Ocean using machine learning and Shapley additive explanations (SHAP) approach publication-title: Fish. Oceanogr. – volume: 75 start-page: 1230 issue: 8 year: 2018 ident: 10.1016/j.fishres.2024.107253_bib11 article-title: Using species distribution models to describe essential fish habitat in Alaska publication-title: Canadian Journal of Fisheries and Aquatic Sciences doi: 10.1139/cjfas-2017-0181 – volume: 88 start-page: 1001 issue: 423 year: 1991 ident: 10.1016/j.fishres.2024.107253_bib13 article-title: Post-stratification: a modeler's perspective publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476368 – ident: 10.1016/j.fishres.2024.107253_bib16 – ident: 10.1016/j.fishres.2024.107253_bib3 – volume: 38 start-page: 464 issue: 4 year: 2009 ident: 10.1016/j.fishres.2024.107253_bib15 article-title: On use of post-stratification for estimating the marine fish landings publication-title: Indian J. Mar. Sci. – volume: 77 start-page: 1295 issue: 4 year: 2020 ident: 10.1016/j.fishres.2024.107253_bib22 article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz025 – ident: 10.1016/j.fishres.2024.107253_bib1 – volume: 20 start-page: 1 issue: 177 year: 2019 ident: 10.1016/j.fishres.2024.107253_bib6 article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously publication-title: J. Mach. Learn. Res. – volume: 41 start-page: 1130 year: 2011 ident: 10.1016/j.fishres.2024.107253_bib27 article-title: Post-stratified estimation: within-strata and total sample size recommendations publication-title: Can. J. For. Res. doi: 10.1139/x11-031 – volume: 142 start-page: 33 issue: 1 year: 1979 ident: 10.1016/j.fishres.2024.107253_bib10 article-title: Post stratification publication-title: J. R. Stat. Soc. Ser. A (Gen.) doi: 10.2307/2344652 – year: 1977 ident: 10.1016/j.fishres.2024.107253_bib5 – year: 2024 ident: 10.1016/j.fishres.2024.107253_bib14 article-title: Regression tree and clustering for distributions, and homogeneous structure of population characteristics publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-024-00631-z – volume: 11 year: 2023 ident: 10.1016/j.fishres.2024.107253_bib25 article-title: Fishery catch records support machine learning-based prediction of illegal fishing off US West Coast publication-title: PeerJ doi: 10.7717/peerj.16215 – year: 2012 ident: 10.1016/j.fishres.2024.107253_bib24 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.fishres.2024.107253_bib4 article-title: SMOTE: synthetic minority oversampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: 10.1016/j.fishres.2024.107253_bib23 doi: 10.1145/3531146.3533232 – year: 2009 ident: 10.1016/j.fishres.2024.107253_bib32 – ident: 10.1016/j.fishres.2024.107253_bib17 – ident: 10.1016/j.fishres.2024.107253_bib2 – ident: 10.1016/j.fishres.2024.107253_bib20 doi: 10.18653/v1/N16-3020 – volume: 57 start-page: 622 year: 1962 ident: 10.1016/j.fishres.2024.107253_bib28 article-title: The variance of an estimator with post-stratified weighting publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1962.10500550 – volume: 35 start-page: 14071 year: 2022 ident: 10.1016/j.fishres.2024.107253_bib29 article-title: Exploring the whole rashomon set of sparse decision trees publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 206 year: 2019 ident: 10.1016/j.fishres.2024.107253_bib21 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – ident: 10.1016/j.fishres.2024.107253_bib9 doi: 10.1109/ICDAR.1995.598994 |
| SSID | ssj0007761 |
| Score | 2.4184635 |
| Snippet | Federal groundfish fisheries off Alaska are managed based on near-real time estimates of catch generated using a combination of data from the North Pacific... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107253 |
| SubjectTerms | Alaska Alaska Fisheries algorithms Catch Estimation demersal fish fisheries Hippoglossus stenolepis Machine Learning management systems Post-Stratification Random Forests species variance |
| Title | Utilizing the random forest algorithm and interpretable machine learning to inform post-stratification of commercial fisheries data |
| URI | https://dx.doi.org/10.1016/j.fishres.2024.107253 https://www.proquest.com/docview/3165863708 |
| Volume | 281 |
| WOSCitedRecordID | wos001397327400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0165-7836 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007761 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZusN2GPtk7bqhwW7BmSdZX8dQ2n0wyg4t5GZkWU5TEjskTim97h_fUyTbadet62EETFBioeT98vT08nu_h9AHVeSOnGgiSj7RKDFcRaqIaZQJAw9WgAvc6Mx-F8fHcjxWP3q9dVMLczETZSkvL9Xiv5oaxsDYrnT2HuZuJ4UBeA5GhyuYHa7_ZPjTejqbXjVVULAV5dXckQnB_Q_0bFItp_XZPIguNYRDVz4139AqbdNHYuKiUi-rOlhUqzryArtFyPEFOvrcNWxyNZAbaj2cugeh2K3r_dm-EnSF2vzzZ-1Uyj1Vd9WxAQ70maNbblNvtlMThG2lJkK2krPIlYlsu1viW7QEhwmnT-LVgn_z5T6tcD50nwBWCGd5kgy791_Xzr6xp7VMw4bEdp6GaVI3TeqneYB2iGBK9tHO6Ovh-Fu7hQvBfSPLsP6u9Ovjrev5U1BzY3vfxCwnT9GTcNjAIw-SZ6hny-fo8WiyDIIr9gX62cIFA1ywhwv2cMEtXDAM42twwQEuuIELrivs4YJvgQuuCtzBBbdwwQ4uL9Hp0eHJwZcoNOaIDE1IHRU8zoiRcc4MU4QRljEInHWhE8FVrgzjmUqo0AZOG1ZLJoXSRBjtNpBM24K-Qv2yKu1rhLXMXbt7SyXNIZY00uQ641mec25ZrPUuSppvNjVBtd41T5mlf7XsLhq2ty28bMtdN8jGbGmIPX1MmQIc77r1fWPmFHyz-8NNl7Zar1IK-JGcilju3Xc9b9Cj7he1j_r1cm3foofmop6ulu8CXn8Bl0m7xQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+the+random+forest+algorithm+and+interpretable+machine+learning+to+inform+post-stratification+of+commercial+fisheries+data&rft.jtitle=Fisheries+research&rft.au=Gasper%2C+Jason&rft.au=Cahalan%2C+Jennifer&rft.date=2025-01-01&rft.issn=0165-7836&rft.volume=281&rft.spage=107253&rft_id=info:doi/10.1016%2Fj.fishres.2024.107253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fishres_2024_107253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-7836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-7836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-7836&client=summon |