Concrete chloride diffusion modelling using marine creatures-based metaheuristic artificial intelligence

Chloride-induced steel reinforcement corrosion endangers the durability of concrete structures and may cause substantial economic loss and environmental impact. An accurate estimation of chloride diffusion of steel-reinforced concrete assists in the reliable prediction of its service life. Artificia...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cleaner production Vol. 374; p. 134021
Main Authors: Mohammadi Golafshani, Emadaldin, Kashani, Alireza, Kim, Taehwan, Arashpour, Mehrdad
Format: Journal Article
Language:English
Published: Elsevier Ltd 10.11.2022
Subjects:
ISSN:0959-6526, 1879-1786
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chloride-induced steel reinforcement corrosion endangers the durability of concrete structures and may cause substantial economic loss and environmental impact. An accurate estimation of chloride diffusion of steel-reinforced concrete assists in the reliable prediction of its service life. Artificial neural network (ANN) trained by classical optimization algorithms suffer from the overfitting issue. However, metaheuristic algorithms keep the balance between exploration and exploitation to overcome this issue. Four marine creatures-based metaheuristic optimization algorithms, i.e., Jellyfish search optimizer (JSO), marine predators algorithm (MPA), salp swarm algorithm (SSA), and whale optimization algorithm (WOA) are synthesized by ANN in this study. The proposed algorithms are served to model the apparent chloride diffusion (Dap) of concrete exposed to atmosphere, tidal, splash, and submerged environments. A total of 216 data from relevant field experiments was extracted from the literature. The results indicate that the synthesized algorithms with simpler architectures perform better than the traditional algorithm. The Wilcoxon rank-sum test shows that the ANN-JSO algorithm performs better than other ANN algorithms, and there is no preference among the average performances of the ANN-MPA, ANN-SSA, and ANN-WOA in the testing phase. The global sensitivity analysis denotes that the exposure time, curing conditions, and exposure are the most critical parameters in predicting the Dap of concrete.
AbstractList Chloride-induced steel reinforcement corrosion endangers the durability of concrete structures and may cause substantial economic loss and environmental impact. An accurate estimation of chloride diffusion of steel-reinforced concrete assists in the reliable prediction of its service life. Artificial neural network (ANN) trained by classical optimization algorithms suffer from the overfitting issue. However, metaheuristic algorithms keep the balance between exploration and exploitation to overcome this issue. Four marine creatures-based metaheuristic optimization algorithms, i.e., Jellyfish search optimizer (JSO), marine predators algorithm (MPA), salp swarm algorithm (SSA), and whale optimization algorithm (WOA) are synthesized by ANN in this study. The proposed algorithms are served to model the apparent chloride diffusion (Dₐₚ) of concrete exposed to atmosphere, tidal, splash, and submerged environments. A total of 216 data from relevant field experiments was extracted from the literature. The results indicate that the synthesized algorithms with simpler architectures perform better than the traditional algorithm. The Wilcoxon rank-sum test shows that the ANN-JSO algorithm performs better than other ANN algorithms, and there is no preference among the average performances of the ANN-MPA, ANN-SSA, and ANN-WOA in the testing phase. The global sensitivity analysis denotes that the exposure time, curing conditions, and exposure are the most critical parameters in predicting the Dₐₚ of concrete.
Chloride-induced steel reinforcement corrosion endangers the durability of concrete structures and may cause substantial economic loss and environmental impact. An accurate estimation of chloride diffusion of steel-reinforced concrete assists in the reliable prediction of its service life. Artificial neural network (ANN) trained by classical optimization algorithms suffer from the overfitting issue. However, metaheuristic algorithms keep the balance between exploration and exploitation to overcome this issue. Four marine creatures-based metaheuristic optimization algorithms, i.e., Jellyfish search optimizer (JSO), marine predators algorithm (MPA), salp swarm algorithm (SSA), and whale optimization algorithm (WOA) are synthesized by ANN in this study. The proposed algorithms are served to model the apparent chloride diffusion (Dap) of concrete exposed to atmosphere, tidal, splash, and submerged environments. A total of 216 data from relevant field experiments was extracted from the literature. The results indicate that the synthesized algorithms with simpler architectures perform better than the traditional algorithm. The Wilcoxon rank-sum test shows that the ANN-JSO algorithm performs better than other ANN algorithms, and there is no preference among the average performances of the ANN-MPA, ANN-SSA, and ANN-WOA in the testing phase. The global sensitivity analysis denotes that the exposure time, curing conditions, and exposure are the most critical parameters in predicting the Dap of concrete.
ArticleNumber 134021
Author Mohammadi Golafshani, Emadaldin
Kim, Taehwan
Arashpour, Mehrdad
Kashani, Alireza
Author_xml – sequence: 1
  givenname: Emadaldin
  orcidid: 0000-0001-8499-3975
  surname: Mohammadi Golafshani
  fullname: Mohammadi Golafshani, Emadaldin
  email: e.mohammadi_golafshani@unsw.edu.au
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
– sequence: 2
  givenname: Alireza
  surname: Kashani
  fullname: Kashani, Alireza
  email: ali.kashani@unsw.edu.au
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
– sequence: 3
  givenname: Taehwan
  orcidid: 0000-0003-4371-7178
  surname: Kim
  fullname: Kim, Taehwan
  email: taehwan.kim@unsw.edu.au
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
– sequence: 4
  givenname: Mehrdad
  orcidid: 0000-0003-4148-3160
  surname: Arashpour
  fullname: Arashpour, Mehrdad
  email: mehrdad.arashpour@monash.edu
  organization: Department of Civil Engineering, Monash University, Melbourne, Australia
BookMark eNqFkE1LAzEQhoMoWD9-grBHL1uT7FcXDyLFLyh40XPITibtlG2iSVbw35tST168zDDwPsPMc8aOnXfI2JXgc8FFe7Odb2HEj-Dnkks5F1XNpThiM7Ho-lJ0i_aYzXjf9GXbyPaUncW45Vx0vKtnbLP0DgImLGAz-kAGC0PWTpG8K3be4DiSWxd5znWnA7mcDKjTFDCWg45oih0mvcEpUEwEhQ6JLAHpsSCX9vwaHeAFO7F6jHj528_Z--PD2_K5XL0-vSzvVyVUtUylbbmwXEPVih4b0-ja1maQFngtTddz26A1A4A2Qy-l7RqUNXAthqqRg5G8OmfXh73Zx-eEMakdRchnaId-ikp2ssrW-rbK0dtDFIKPMaBVQEmn_HkKmkYluNr7VVv161ft_aqD30w3f-iPQNnQ97_c3YHDbOGLMKgItDdkKCAkZTz9s-EHFDSdvQ
CitedBy_id crossref_primary_10_1016_j_cscm_2024_e03573
crossref_primary_10_3390_buildings14030562
crossref_primary_10_1016_j_jobe_2024_109844
crossref_primary_10_1002_suco_202300313
crossref_primary_10_1007_s40996_025_01827_0
crossref_primary_10_1007_s12559_025_10443_z
crossref_primary_10_1016_j_measurement_2023_113106
crossref_primary_10_1038_s41598_023_42270_3
crossref_primary_10_1016_j_conbuildmat_2024_138657
crossref_primary_10_1186_s44147_025_00653_5
crossref_primary_10_1007_s41939_024_00580_7
crossref_primary_10_1080_24705314_2025_2558425
crossref_primary_10_3390_ma16031277
crossref_primary_10_1007_s10967_024_09637_w
crossref_primary_10_1080_10298436_2025_2468366
crossref_primary_10_1016_j_advengsoft_2024_103611
crossref_primary_10_3390_buildings14061879
Cites_doi 10.1016/j.conbuildmat.2020.120339
10.1016/j.jclepro.2019.01.335
10.14359/51702185
10.1016/j.cemconcomp.2021.104171
10.1016/j.jclepro.2022.130580
10.1016/j.cemconcomp.2019.03.011
10.1016/j.conbuildmat.2021.123603
10.1016/j.conbuildmat.2016.03.156
10.1016/j.conbuildmat.2021.123314
10.1016/j.mtla.2021.101123
10.1016/S0008-8846(00)00217-9
10.1016/j.conbuildmat.2020.118676
10.1061/(ASCE)0899-1561(2008)20:1(2)
10.1080/15732479.2015.1134588
10.1016/j.cemconcomp.2009.08.005
10.1016/j.conbuildmat.2019.117266
10.1016/0893-6080(89)90020-8
10.1016/j.cemconcomp.2021.104114
10.1617/s11527-012-0009-x
10.1016/j.jobe.2018.12.013
10.1016/j.conbuildmat.2013.03.026
10.1016/j.solener.2019.01.037
10.1061/(ASCE)CF.1943-5509.0000931
10.1016/j.conbuildmat.2016.07.074
10.1016/j.jobe.2020.101445
10.1016/j.conbuildmat.2022.127613
10.1016/j.jclepro.2020.123383
10.1016/j.conbuildmat.2018.05.284
10.1016/j.conbuildmat.2022.127103
10.1016/j.cemconres.2009.05.013
10.1016/j.compositesb.2012.05.054
10.1016/j.conbuildmat.2008.04.015
10.1016/j.advengsoft.2016.01.008
10.1007/s11831-021-09589-4
10.1016/j.eswa.2020.113377
10.1016/j.jclepro.2016.10.015
10.1016/j.jclepro.2018.08.065
10.1016/j.cemconcomp.2015.03.006
10.1016/j.advengsoft.2017.07.002
10.1016/j.jclepro.2022.130847
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2022.134021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2022_134021
S0959652622035934
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-f601f0ac3619e5d5a4f4db2fc042d790f5efdbccadb922f75e24c0a1b352bd203
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863193800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Thu Oct 02 09:34:39 EDT 2025
Sat Nov 29 07:11:20 EST 2025
Tue Nov 18 21:41:35 EST 2025
Fri Feb 23 02:39:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Concrete
Marine creatures-based metaheuristic optimization algorithms
Artificial neural network
Artificial intelligence
Chloride diffusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-f601f0ac3619e5d5a4f4db2fc042d790f5efdbccadb922f75e24c0a1b352bd203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4371-7178
0000-0001-8499-3975
0000-0003-4148-3160
PQID 2723101963
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723101963
crossref_citationtrail_10_1016_j_jclepro_2022_134021
crossref_primary_10_1016_j_jclepro_2022_134021
elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_134021
PublicationCentury 2000
PublicationDate 2022-11-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiang, Liu, Alyami, Alharbi, Jameel, Khadimallah (bib25) 2022; 340
Zhang, Zhang, Gu, Jin, Jin (bib49) 2016
Golafshani, Arashpour, Behnood (bib22) 2022; 318
Build 443 (bib8) 1995
Abd Elaziz, Elsheikh, Oliva, Abualigah, Lu, Ewees (bib1) 2022; 29
Khaghanpour, Dousti, Shekarchi (bib27) 2017
Zhang, Aslani, Lehane (bib51) 2021
Mhaya, Fahim Huseien, Faridmehr, Razin Zainal Abidin, Alyousef, Ismail (bib31) 2021
Faramarzi, Heidarinejad, Mirjalili, Gandomi (bib18) 2020
Farahani, Taghaddos, Shekarchi (bib17) 2018
Zhang, Zhou, Wang, Gao, Zhang (bib52) 2021
Fan, Yu, Fu, Yue, Wu, Shui, Liu, Song, Sun, Jiang (bib15) 2021; 122
Tadayon, Shekarchi, Tadayon (bib44) 2016
Alizadeh, Ghods, Chini, Hoseini, Ghalibafian, Shekarchi (bib2) 2008
Elsheikh, Sharshir, Abd Elaziz, Kabeel, Guilan, Haiou (bib14) 2019; 180
Chou, Truong (bib10) 2021
Zhao, Hu, Song, Wang (bib53) 2022
Quan Tran (bib39) 2022; 328
Valipour, Shekarchi, Arezoumandi (bib47) 2017
Inthata, Kowtanapanich, Cheerarot (bib24) 2013
Pang, Li (bib36) 2016
Ting, Wong, Rahman, Meheron (bib45) 2021; 278
Valipour, Pargar, Shekarchi, Khani, Moradian (bib46) 2013
Kandiri, Mohammadi Golafshani, Behnood (bib26) 2020; 248
Asen, Dehestani (bib3) 2021
Hornik, Stinchcombe, White (bib23) 1989
Behnood, Golafshani (bib4) 2018; 202
Mirjalili, Lewis (bib32) 2016; 95
Shekarchi, Rafiee, Layssi (bib42) 2009
Bonavetti, Donza, Rahhal, Irassar (bib7) 2000
Khanzadeh Moradllo, Sadati, Shekarchi (bib28) 2018
Parichatprecha, Nimityongskul (bib37) 2009
Golafshani, Behnood, Arashpour (bib21) 2020; 232
Ribeiro, Pinto, Amorim Júnior, Andrade Neto, Santos, Marques, França (bib40) 2021
Costa, Appleton (bib11) 1999
Zhu, Macdonald, Qiu, Urquidi-Macdonald (bib54) 2021
Ghods, Chini, Alizadeh, Hoseini (bib19) 2005
Delgado, Silva, Azevedo, Silva, Campello, Santos (bib12) 2020
Liu, Iqbal, Yang, Lu, Zhang, Rauf (bib29) 2021
Zhang, Zhang, Luo, Wang, Shi, Zhuang, Wang (bib50) 2019; 218
Najimi, Ghafoori, Nikoo (bib35) 2019
Mohamed, Kewalramani, Ati, Hawat (bib34) 2021
Bermúdez, Alaejos (bib5) 2010; 107
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib33) 2017
Build 492 (bib9) 1999
Golafshani, Behnood (bib20) 2021
Dingqiang, Rui, Zhonghe, Chunfeng, Jinnan, Qiqi (bib13) 2020
Farahani, Taghaddos, Shekarchi (bib16) 2015
Pradhan, Chang Boon Poh, Qian (bib38) 2022; 342
Song, Kwon (bib43) 2009
Shafikhani, Chidiac (bib41) 2019
Zhang, Aslani (bib48) 2021
Liu, Zheng, Pacheco-Torgal, Zhao (bib30) 2022; 337
Boǧa, Öztürk, Topçu (bib6) 2013
Parichatprecha (10.1016/j.jclepro.2022.134021_bib37) 2009
Tadayon (10.1016/j.jclepro.2022.134021_bib44) 2016
Bonavetti (10.1016/j.jclepro.2022.134021_bib7) 2000
Costa (10.1016/j.jclepro.2022.134021_bib11) 1999
Zhang (10.1016/j.jclepro.2022.134021_bib50) 2019; 218
Faramarzi (10.1016/j.jclepro.2022.134021_bib18) 2020
Zhang (10.1016/j.jclepro.2022.134021_bib49) 2016
Valipour (10.1016/j.jclepro.2022.134021_bib46) 2013
Build 443 (10.1016/j.jclepro.2022.134021_bib8) 1995
Zhang (10.1016/j.jclepro.2022.134021_bib52) 2021
Jiang (10.1016/j.jclepro.2022.134021_bib25) 2022; 340
Ribeiro (10.1016/j.jclepro.2022.134021_bib40) 2021
Khanzadeh Moradllo (10.1016/j.jclepro.2022.134021_bib28) 2018
Liu (10.1016/j.jclepro.2022.134021_bib30) 2022; 337
Khaghanpour (10.1016/j.jclepro.2022.134021_bib27) 2017
Ghods (10.1016/j.jclepro.2022.134021_bib19) 2005
Behnood (10.1016/j.jclepro.2022.134021_bib4) 2018; 202
Delgado (10.1016/j.jclepro.2022.134021_bib12) 2020
Kandiri (10.1016/j.jclepro.2022.134021_bib26) 2020; 248
Bermúdez (10.1016/j.jclepro.2022.134021_bib5) 2010; 107
Golafshani (10.1016/j.jclepro.2022.134021_bib20) 2021
Valipour (10.1016/j.jclepro.2022.134021_bib47) 2017
Abd Elaziz (10.1016/j.jclepro.2022.134021_bib1) 2022; 29
Zhang (10.1016/j.jclepro.2022.134021_bib48) 2021
Build 492 (10.1016/j.jclepro.2022.134021_bib9) 1999
Elsheikh (10.1016/j.jclepro.2022.134021_bib14) 2019; 180
Alizadeh (10.1016/j.jclepro.2022.134021_bib2) 2008
Asen (10.1016/j.jclepro.2022.134021_bib3) 2021
Golafshani (10.1016/j.jclepro.2022.134021_bib22) 2022; 318
Zhu (10.1016/j.jclepro.2022.134021_bib54) 2021
Najimi (10.1016/j.jclepro.2022.134021_bib35) 2019
Zhang (10.1016/j.jclepro.2022.134021_bib51) 2021
Dingqiang (10.1016/j.jclepro.2022.134021_bib13) 2020
Golafshani (10.1016/j.jclepro.2022.134021_bib21) 2020; 232
Shekarchi (10.1016/j.jclepro.2022.134021_bib42) 2009
Liu (10.1016/j.jclepro.2022.134021_bib29) 2021
Quan Tran (10.1016/j.jclepro.2022.134021_bib39) 2022; 328
Farahani (10.1016/j.jclepro.2022.134021_bib16) 2015
Zhao (10.1016/j.jclepro.2022.134021_bib53) 2022
Boǧa (10.1016/j.jclepro.2022.134021_bib6) 2013
Mirjalili (10.1016/j.jclepro.2022.134021_bib32) 2016; 95
Ting (10.1016/j.jclepro.2022.134021_bib45) 2021; 278
Fan (10.1016/j.jclepro.2022.134021_bib15) 2021; 122
Inthata (10.1016/j.jclepro.2022.134021_bib24) 2013
Pang (10.1016/j.jclepro.2022.134021_bib36) 2016
Farahani (10.1016/j.jclepro.2022.134021_bib17) 2018
Mirjalili (10.1016/j.jclepro.2022.134021_bib33) 2017
Pradhan (10.1016/j.jclepro.2022.134021_bib38) 2022; 342
Shafikhani (10.1016/j.jclepro.2022.134021_bib41) 2019
Chou (10.1016/j.jclepro.2022.134021_bib10) 2021
Hornik (10.1016/j.jclepro.2022.134021_bib23) 1989
Song (10.1016/j.jclepro.2022.134021_bib43) 2009
Mohamed (10.1016/j.jclepro.2022.134021_bib34) 2021
Mhaya (10.1016/j.jclepro.2022.134021_bib31) 2021
References_xml – volume: 107
  start-page: 3
  year: 2010
  end-page: 11
  ident: bib5
  article-title: Models for chloride diffusion coefficients of concretes in tidal zone
  publication-title: ACI Mater. J.
– volume: 202
  start-page: 54
  year: 2018
  end-page: 64
  ident: bib4
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
– year: 2005
  ident: bib19
  article-title: The effect of different exposure conditions on the chloride diffusion into concrete in the Persian Gulf region
  publication-title: ConMAT Conf. Univ. Br. Columbia.
– volume: 180
  start-page: 622
  year: 2019
  end-page: 639
  ident: bib14
  article-title: Modeling of solar energy systems using artificial neural network: a comprehensive review
  publication-title: Sol. Energy
– year: 2013
  ident: bib46
  article-title: In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment
  publication-title: Construct. Build. Mater.
– year: 2021
  ident: bib34
  article-title: Application of ANN for prediction of chloride penetration resistance and concrete compressive strength
  publication-title: Materialia
– year: 2009
  ident: bib42
  article-title: Long-term chloride diffusion in silica fume concrete in harsh marine climates
  publication-title: Cem. Concr. Compos.
– volume: 248
  year: 2020
  ident: bib26
  article-title: Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm
  publication-title: Construct. Build. Mater.
– year: 2022
  ident: bib53
  article-title: Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural
  publication-title: Measurement
– year: 1999
  ident: bib9
  article-title: Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments
  publication-title: Measurement
– year: 2021
  ident: bib3
  article-title: Influence of Concrete Mix Proportions on Lifetime Flexural Load-Bearing Capacity of RC Beams under Chloride Corrosion of Rebars. Structures
– year: 2017
  ident: bib47
  article-title: Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments
  publication-title: J. Clean. Prod.
– volume: 218
  start-page: 450
  year: 2019
  end-page: 458
  ident: bib50
  article-title: Effect of compressive strength and chloride diffusion on life cycle CO 2 assessment of concrete containing supplementary cementitious materials
  publication-title: J. Clean. Prod.
– year: 1995
  ident: bib8
  article-title: NT Build 443 Concrete , Hardened : Accelerated Chloride Penetration
– year: 2016
  ident: bib44
  article-title: Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone
  publication-title: Construct. Build. Mater.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib32
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
– year: 2009
  ident: bib37
  article-title: Analysis of durability of high performance concrete using artificial neural networks
  publication-title: Construct. Build. Mater.
– volume: 337
  year: 2022
  ident: bib30
  article-title: Innovative modeling framework of chloride resistance of recycled aggregate concrete using ensemble-machine-learning methods
  publication-title: Construct. Build. Mater.
– volume: 122
  year: 2021
  ident: bib15
  article-title: Precise design and characteristics prediction of Ultra-High Performance Concrete (UHPC) based on artificial intelligence techniques
  publication-title: Cem. Concr. Compos.
– year: 2021
  ident: bib54
  article-title: Corrosion of rebar in concrete. Part III: artificial Neural Network analysis of chloride threshold data
  publication-title: Corrosion Sci.
– year: 1989
  ident: bib23
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network.
– year: 2008
  ident: bib2
  article-title: Effect of curing conditions on the service life design of RC structures in the Persian Gulf region
  publication-title: J. Mater. Civ. Eng.
– volume: 232
  year: 2020
  ident: bib21
  article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer
  publication-title: Construct. Build. Mater.
– volume: 278
  year: 2021
  ident: bib45
  article-title: Deterioration of marine concrete exposed to wetting-drying action
  publication-title: J. Clean. Prod.
– year: 2020
  ident: bib13
  article-title: A novel approach for developing a green Ultra-High Performance Concrete (UHPC) with advanced particles packing meso-structure
  publication-title: Construct. Build. Mater.
– year: 2019
  ident: bib35
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J. Build. Eng.
– year: 2019
  ident: bib41
  article-title: Quantification of concrete chloride diffusion coefficient – a critical review
  publication-title: Cem. Concr. Compos.
– year: 2021
  ident: bib10
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math. Comput.
– year: 2016
  ident: bib36
  article-title: Service life prediction of RC structures in marine environment using long term chloride ingress data: comparison between exposure trials and real structure surveys
  publication-title: Construct. Build. Mater.
– year: 2000
  ident: bib7
  article-title: Influence of initial curing on the properties of concrete containing limestone blended cement
  publication-title: Cement Concr. Res.
– year: 2015
  ident: bib16
  article-title: Prediction of long-term chloride diffusion in silica fume concrete in a marine environment
  publication-title: Cem. Concr. Compos.
– year: 2018
  ident: bib17
  article-title: Chloride diffusion modeling in pozzolanic concrete in marine site
  publication-title: ACI Mater. J.
– year: 2021
  ident: bib52
  article-title: Differences between time-dependent instantaneous and apparent chloride diffusion coefficients of concrete in tidal environment
  publication-title: J. Mater. Civ. Eng.
– year: 1999
  ident: bib11
  article-title: Chloride penetration into concrete in marine environment - Part I: main parameters affecting chloride penetration
  publication-title: Mater. Struct. Constr.
– year: 2020
  ident: bib12
  article-title: Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests
  publication-title: J. Build. Eng.
– year: 2016
  ident: bib49
  article-title: Chloride penetration in concrete under marine atmospheric environment – analysis of the influencing factors
  publication-title: Struct. Infrastruct. Eng.
– year: 2020
  ident: bib18
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– year: 2013
  ident: bib24
  article-title: Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks
  publication-title: Mater. Struct. Constr.
– year: 2021
  ident: bib48
  article-title: Compressive strength prediction models of lightweight aggregate concretes using ultrasonic pulse velocity
  publication-title: Construct. Build. Mater.
– volume: 318
  year: 2022
  ident: bib22
  article-title: Predicting the compressive strength of green concretes using Harris hawks optimization-based data-driven methods
  publication-title: Construct. Build. Mater.
– volume: 342
  year: 2022
  ident: bib38
  article-title: Impact of service life and system boundaries on life cycle assessment of sustainable concrete mixes
  publication-title: J. Clean. Prod.
– volume: 328
  year: 2022
  ident: bib39
  article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials
  publication-title: Construct. Build. Mater.
– volume: 29
  start-page: 695
  year: 2022
  end-page: 716
  ident: bib1
  article-title: Advanced metaheuristic techniques for mechanical design problems: review
  publication-title: Arch. Comput. Methods Eng.
– year: 2017
  ident: bib33
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
– volume: 340
  year: 2022
  ident: bib25
  article-title: Intelligence decision mechanism for prediction of compressive strength of self-compaction green concrete via neural network
  publication-title: J. Clean. Prod.
– year: 2021
  ident: bib29
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: modelling and performance evaluation
  publication-title: Construct. Build. Mater.
– year: 2013
  ident: bib6
  article-title: Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI
  publication-title: Compos. B Eng.
– year: 2021
  ident: bib20
  article-title: Predicting the mechanical properties of sustainable concrete containing waste foundry sand using multi-objective ANN approach
  publication-title: Construct. Build. Mater.
– year: 2021
  ident: bib40
  article-title: Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient
  publication-title: Cem. Concr. Compos.
– year: 2009
  ident: bib43
  article-title: Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure
  publication-title: Cement Concr. Res.
– year: 2021
  ident: bib51
  article-title: Compressive strength of rubberized concrete: regression and GA-BPNN approaches using ultrasonic pulse velocity
  publication-title: Construct. Build. Mater.
– year: 2021
  ident: bib31
  article-title: Evaluating mechanical properties and impact resistance of modified concrete containing ground Blast Furnace slag and discarded rubber tire crumbs
  publication-title: Construct. Build. Mater.
– year: 2018
  ident: bib28
  article-title: Quantifying maximum phenomenon in chloride ion profiles and its influence on service-life prediction of concrete structures exposed to seawater tidal zone – a field oriented study
  publication-title: Construct. Build. Mater.
– year: 2017
  ident: bib27
  article-title: Prediction of cover thickness based on long-term chloride penetration in a marine environment
  publication-title: J. Perform. Constr. Facil.
– year: 2020
  ident: 10.1016/j.jclepro.2022.134021_bib13
  article-title: A novel approach for developing a green Ultra-High Performance Concrete (UHPC) with advanced particles packing meso-structure
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120339
– volume: 318
  year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib22
  article-title: Predicting the compressive strength of green concretes using Harris hawks optimization-based data-driven methods
  publication-title: Construct. Build. Mater.
– volume: 107
  start-page: 3
  year: 2010
  ident: 10.1016/j.jclepro.2022.134021_bib5
  article-title: Models for chloride diffusion coefficients of concretes in tidal zone
  publication-title: ACI Mater. J.
– volume: 218
  start-page: 450
  year: 2019
  ident: 10.1016/j.jclepro.2022.134021_bib50
  article-title: Effect of compressive strength and chloride diffusion on life cycle CO 2 assessment of concrete containing supplementary cementitious materials
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.335
– year: 2018
  ident: 10.1016/j.jclepro.2022.134021_bib17
  article-title: Chloride diffusion modeling in pozzolanic concrete in marine site
  publication-title: ACI Mater. J.
  doi: 10.14359/51702185
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib29
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: modelling and performance evaluation
  publication-title: Construct. Build. Mater.
– volume: 122
  year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib15
  article-title: Precise design and characteristics prediction of Ultra-High Performance Concrete (UHPC) based on artificial intelligence techniques
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104171
– volume: 340
  year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib25
  article-title: Intelligence decision mechanism for prediction of compressive strength of self-compaction green concrete via neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130580
– year: 2019
  ident: 10.1016/j.jclepro.2022.134021_bib41
  article-title: Quantification of concrete chloride diffusion coefficient – a critical review
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.03.011
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib31
  article-title: Evaluating mechanical properties and impact resistance of modified concrete containing ground Blast Furnace slag and discarded rubber tire crumbs
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123603
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib48
  article-title: Compressive strength prediction models of lightweight aggregate concretes using ultrasonic pulse velocity
  publication-title: Construct. Build. Mater.
– year: 2016
  ident: 10.1016/j.jclepro.2022.134021_bib36
  article-title: Service life prediction of RC structures in marine environment using long term chloride ingress data: comparison between exposure trials and real structure surveys
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.156
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib20
  article-title: Predicting the mechanical properties of sustainable concrete containing waste foundry sand using multi-objective ANN approach
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123314
– year: 1999
  ident: 10.1016/j.jclepro.2022.134021_bib9
  article-title: Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments
  publication-title: Measurement
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib34
  article-title: Application of ANN for prediction of chloride penetration resistance and concrete compressive strength
  publication-title: Materialia
  doi: 10.1016/j.mtla.2021.101123
– year: 2000
  ident: 10.1016/j.jclepro.2022.134021_bib7
  article-title: Influence of initial curing on the properties of concrete containing limestone blended cement
  publication-title: Cement Concr. Res.
  doi: 10.1016/S0008-8846(00)00217-9
– year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib53
  article-title: Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural
  publication-title: Measurement
– year: 1999
  ident: 10.1016/j.jclepro.2022.134021_bib11
  article-title: Chloride penetration into concrete in marine environment - Part I: main parameters affecting chloride penetration
  publication-title: Mater. Struct. Constr.
– volume: 248
  year: 2020
  ident: 10.1016/j.jclepro.2022.134021_bib26
  article-title: Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118676
– year: 2008
  ident: 10.1016/j.jclepro.2022.134021_bib2
  article-title: Effect of curing conditions on the service life design of RC structures in the Persian Gulf region
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2008)20:1(2)
– year: 2016
  ident: 10.1016/j.jclepro.2022.134021_bib49
  article-title: Chloride penetration in concrete under marine atmospheric environment – analysis of the influencing factors
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2015.1134588
– year: 2009
  ident: 10.1016/j.jclepro.2022.134021_bib42
  article-title: Long-term chloride diffusion in silica fume concrete in harsh marine climates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.08.005
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib10
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math. Comput.
– volume: 232
  year: 2020
  ident: 10.1016/j.jclepro.2022.134021_bib21
  article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– year: 1989
  ident: 10.1016/j.jclepro.2022.134021_bib23
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(89)90020-8
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib40
  article-title: Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104114
– year: 2013
  ident: 10.1016/j.jclepro.2022.134021_bib24
  article-title: Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks
  publication-title: Mater. Struct. Constr.
  doi: 10.1617/s11527-012-0009-x
– year: 1995
  ident: 10.1016/j.jclepro.2022.134021_bib8
– year: 2019
  ident: 10.1016/j.jclepro.2022.134021_bib35
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.12.013
– year: 2013
  ident: 10.1016/j.jclepro.2022.134021_bib46
  article-title: In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.026
– volume: 180
  start-page: 622
  year: 2019
  ident: 10.1016/j.jclepro.2022.134021_bib14
  article-title: Modeling of solar energy systems using artificial neural network: a comprehensive review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.01.037
– year: 2017
  ident: 10.1016/j.jclepro.2022.134021_bib27
  article-title: Prediction of cover thickness based on long-term chloride penetration in a marine environment
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000931
– year: 2016
  ident: 10.1016/j.jclepro.2022.134021_bib44
  article-title: Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.07.074
– year: 2020
  ident: 10.1016/j.jclepro.2022.134021_bib12
  article-title: Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101445
– volume: 337
  year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib30
  article-title: Innovative modeling framework of chloride resistance of recycled aggregate concrete using ensemble-machine-learning methods
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127613
– year: 2005
  ident: 10.1016/j.jclepro.2022.134021_bib19
  article-title: The effect of different exposure conditions on the chloride diffusion into concrete in the Persian Gulf region
  publication-title: ConMAT Conf. Univ. Br. Columbia.
– volume: 278
  year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib45
  article-title: Deterioration of marine concrete exposed to wetting-drying action
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123383
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib52
  article-title: Differences between time-dependent instantaneous and apparent chloride diffusion coefficients of concrete in tidal environment
  publication-title: J. Mater. Civ. Eng.
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib54
  article-title: Corrosion of rebar in concrete. Part III: artificial Neural Network analysis of chloride threshold data
  publication-title: Corrosion Sci.
– year: 2018
  ident: 10.1016/j.jclepro.2022.134021_bib28
  article-title: Quantifying maximum phenomenon in chloride ion profiles and its influence on service-life prediction of concrete structures exposed to seawater tidal zone – a field oriented study
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.284
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib3
– volume: 328
  year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib39
  article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127103
– year: 2009
  ident: 10.1016/j.jclepro.2022.134021_bib43
  article-title: Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure
  publication-title: Cement Concr. Res.
  doi: 10.1016/j.cemconres.2009.05.013
– year: 2013
  ident: 10.1016/j.jclepro.2022.134021_bib6
  article-title: Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2012.05.054
– year: 2009
  ident: 10.1016/j.jclepro.2022.134021_bib37
  article-title: Analysis of durability of high performance concrete using artificial neural networks
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.04.015
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.jclepro.2022.134021_bib32
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 29
  start-page: 695
  year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib1
  article-title: Advanced metaheuristic techniques for mechanical design problems: review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09589-4
– year: 2020
  ident: 10.1016/j.jclepro.2022.134021_bib18
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– year: 2017
  ident: 10.1016/j.jclepro.2022.134021_bib47
  article-title: Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.10.015
– volume: 202
  start-page: 54
  year: 2018
  ident: 10.1016/j.jclepro.2022.134021_bib4
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– year: 2015
  ident: 10.1016/j.jclepro.2022.134021_bib16
  article-title: Prediction of long-term chloride diffusion in silica fume concrete in a marine environment
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.03.006
– year: 2021
  ident: 10.1016/j.jclepro.2022.134021_bib51
  article-title: Compressive strength of rubberized concrete: regression and GA-BPNN approaches using ultrasonic pulse velocity
  publication-title: Construct. Build. Mater.
– year: 2017
  ident: 10.1016/j.jclepro.2022.134021_bib33
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 342
  year: 2022
  ident: 10.1016/j.jclepro.2022.134021_bib38
  article-title: Impact of service life and system boundaries on life cycle assessment of sustainable concrete mixes
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130847
SSID ssj0017074
Score 2.5110245
Snippet Chloride-induced steel reinforcement corrosion endangers the durability of concrete structures and may cause substantial economic loss and environmental...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134021
SubjectTerms algorithms
Artificial intelligence
Artificial neural network
Chloride diffusion
chlorides
Concrete
corrosion
durability
environmental impact
exposure duration
financial economics
Marine creatures-based metaheuristic optimization algorithms
neural networks
prediction
Scyphozoa
steel
swarms
Title Concrete chloride diffusion modelling using marine creatures-based metaheuristic artificial intelligence
URI https://dx.doi.org/10.1016/j.jclepro.2022.134021
https://www.proquest.com/docview/2723101963
Volume 374
WOSCitedRecordID wos000863193800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZptof2UPpkty9U6C04tWV7ZR_Dkr4OS6Ep5GZkPXBC4gQn3i79L_2vHVkPp9su2xZ6McFBljzzeTQzmgdCr8Ocq5BKFcTA0yBJaRiAHscDSkJ5SngShTzrmk3Q8_NsPs8_DQbfXS7MxYrWdXZ5mW__K6vhHjBbp87-Bbv9Q-EG_AamwxXYDtc_YvzZpgZNcC9HvNLRdUJ2TVBa7RUzfW-6BPS28xGsmU7-G3WaYwuGd6A3NaHbSrNKtqaIsy6DtLB1JhYHBTyvUWthNayWjQ78EqYyrefppmLrNROL0Tuwp9WuMu2kRlO4x_QZmBf-zP83WYFI_ua3Dtv7ecZk9bWH9aSBAVtYQufdlVUjmDj0ZoAh3EXU9S42l2bTxzQ5X-VpSmzNbCOpM5oHEbV1tK0oj03Hn1-2BeOhWI6XQAN4_bGeeRzFYDtH_T7ooxM_6_n0dIToAodxcgsdEZrm2RAdTT5M5x_9MRUNTZlvt74-RezNbye7Tvm5ogZ0us3sPrpnuYcnBkwP0EDWD9Hdg1KVj1DlYIUdrLCHFfawwh2ssIEVvgIr_BOscA8rfAirx-jL2-ns7H1gu3QEPE7IPlBg0quQ8RhMcZmKlCUqESVRHLYDQfNQpVKJEgSFKHNCFE0lSXjIohJU_1IAhZ-gYb2p5THCKVU0jiSPVZQlqaClyEpKS8UyJRlYMicoceQruC1hrzuprAoXq7gsLNULTfXCUP0Ejf2wranhctOAzPGmsIqoUTALANRNQ185XhYgqPXpG3x0m3ZXEKpNKb3hPf33xz9Dd_qv5jka7ptWvkC3-cV-sWteWnj-AJN0xDs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+chloride+diffusion+modelling+using+marine+creatures-based+metaheuristic+artificial+intelligence&rft.jtitle=Journal+of+cleaner+production&rft.au=Mohammadi+Golafshani%2C+Emadaldin&rft.au=Kashani%2C+Alireza&rft.au=Kim%2C+Taehwan&rft.au=Arashpour%2C+Mehrdad&rft.date=2022-11-10&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=374&rft_id=info:doi/10.1016%2Fj.jclepro.2022.134021&rft.externalDocID=S0959652622035934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon