Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

•Development of a hybrid soft computing model to predict the Runoff.•Preprocessing the signal of the time series of input variables using the Wavelet technique.•Design an MLPNN model and train it using the PSO technique. A high-accuracy estimation of the runoff has always been an extremely relevant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 634; S. 131041
Hauptverfasser: Parsaie, Abbas, Ghasemlounia, Redvan, Gharehbaghi, Amin, Haghiabi, AmirHamzeh, Chadee, Aaron Anil, Nou, Mohammad Rashki Ghale
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2024
Schlagworte:
ISSN:0022-1694, 1879-2707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Development of a hybrid soft computing model to predict the Runoff.•Preprocessing the signal of the time series of input variables using the Wavelet technique.•Design an MLPNN model and train it using the PSO technique. A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science.Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF(partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.
AbstractList •Development of a hybrid soft computing model to predict the Runoff.•Preprocessing the signal of the time series of input variables using the Wavelet technique.•Design an MLPNN model and train it using the PSO technique. A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science.Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF(partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.
A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science.Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRₘ), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRₘ time series is achieved at 100. Then, the PACF(partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R² of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m³/s. Comparatively, the standalone MLP as the benchmark model results in an R² of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m³/s.
ArticleNumber 131041
Author Gharehbaghi, Amin
Parsaie, Abbas
Chadee, Aaron Anil
Nou, Mohammad Rashki Ghale
Ghasemlounia, Redvan
Haghiabi, AmirHamzeh
Author_xml – sequence: 1
  givenname: Abbas
  surname: Parsaie
  fullname: Parsaie, Abbas
  email: Parsaie@scu.ac.ir
  organization: College of Water And Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
– sequence: 2
  givenname: Redvan
  orcidid: 0000-0003-1796-4562
  surname: Ghasemlounia
  fullname: Ghasemlounia, Redvan
  email: redvan.ghasemlounia@gedik.edu.tr
  organization: Dept. of Civil Engineering, Istanbul Gedik Univ., Postal Code: 34876, Istanbul, Turkey
– sequence: 3
  givenname: Amin
  orcidid: 0000-0002-2898-3681
  surname: Gharehbaghi
  fullname: Gharehbaghi, Amin
  email: amin.gharehbaghi@hku.edu.tr
  organization: Dept. of Civil Engineering, Hasan Kalyoncu University, Postal Code: 27110, Şahinbey, Gaziantep, Turkey
– sequence: 4
  givenname: AmirHamzeh
  orcidid: 0000-0001-9512-0360
  surname: Haghiabi
  fullname: Haghiabi, AmirHamzeh
  email: haghiabi.a@lu.ac.ir
  organization: Water Engineering Department, Lorestan University, Khorramabad, Iran
– sequence: 5
  givenname: Aaron Anil
  surname: Chadee
  fullname: Chadee, Aaron Anil
  email: aaron.chadee@sta.uwi.edu
  organization: Department of Civil and Environmental Engineering, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad, Trinidad and Tobago
– sequence: 6
  givenname: Mohammad Rashki Ghale
  surname: Nou
  fullname: Nou, Mohammad Rashki Ghale
  organization: Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
BookMark eNqFkc1qGzEURkVJoU6aRwho2c04-psZD12UEtqmENJNuxYa6Sq-RiO5kmzwMm_emTirbqKNQPd8F76jS3IRUwRCbjhbc8a72916tz25nMJaMKHWXHKm-Duy4pt-aETP-guyYkyIhneD-kAuS9mx-UipVuT5MR0h0O1pzOgoxgoh4BNEC3SfwaGteAQ6JTdDoyngaIq0HKyFUpbJ0WQ0FVM04YWiDmya9qng8khNeEoZ63aiPuUZiHUbTjQfYvKeFsgI5SN5700ocP16X5E_37_9vrtvHn79-Hn39aGxUonaeGWHoWN2GFvTMS88s6q1Alw_AgPVSRBiMFLKXtjRzvX86Daml8JIaIdOySvy6bx3n9PfA5SqJyx2rmsipEPRkrey37SqlzP6-YzanErJ4LXF-tKyZoNBc6YX8XqnX8XrRbw-i5_T7X_pfcbJ5NObuS_nHMwWjghZF4vLTzjMYKt2Cd_Y8A9tdKaB
CitedBy_id crossref_primary_10_1007_s12145_024_01650_7
crossref_primary_10_1016_j_pce_2024_103691
crossref_primary_10_2166_wcc_2024_616
crossref_primary_10_1007_s40808_024_02067_3
crossref_primary_10_1080_01430750_2025_2516063
crossref_primary_10_1007_s00704_025_05363_9
crossref_primary_10_1007_s11269_024_03930_9
crossref_primary_10_1007_s41748_025_00714_y
crossref_primary_10_1007_s00477_025_02907_3
crossref_primary_10_1109_ACCESS_2024_3412948
crossref_primary_10_3390_hydrology12080197
crossref_primary_10_1080_02705060_2025_2488017
crossref_primary_10_1016_j_ejrh_2025_102482
crossref_primary_10_1007_s12206_025_0505_x
crossref_primary_10_1016_j_jhydrol_2025_134054
crossref_primary_10_1038_s41598_025_03185_3
crossref_primary_10_1016_j_measurement_2025_118401
crossref_primary_10_3390_w16243687
crossref_primary_10_1016_j_jhydrol_2025_133190
crossref_primary_10_1109_ACCESS_2024_3453970
crossref_primary_10_1186_s44147_025_00706_9
crossref_primary_10_3389_fmars_2025_1540912
crossref_primary_10_1080_19475705_2025_2469775
Cites_doi 10.1016/j.jhydrol.2021.127124
10.1109/TSP.2013.2288675
10.1016/j.jhydrol.2022.128708
10.1007/s11269-018-1970-0
10.1038/s41598-022-16215-1
10.1016/j.jhydrol.2019.123915
10.1016/j.jhydrol.2020.125423
10.1109/ICNN.1995.488968
10.1142/S1793536909000047
10.2166/hydro.2017.078
10.1007/s00477-021-02159-x
10.1029/2021WR030185
10.1007/s11269-018-2151-x
10.1016/j.pce.2018.07.003
10.1111/wej.12233
10.18400/tekderg.975457
10.1029/2019WR026933
10.1061/(ASCE)IR.1943-4774.0001646
10.1098/rspa.1998.0193
10.1016/j.jhydrol.2019.124296
10.1109/72.329697
10.1016/j.compag.2021.106568
10.1016/j.jhydrol.2022.128495
10.1109/72.641472
10.1016/j.jhydrol.2020.125014
10.1016/j.jhydrol.2019.06.065
10.2166/wst.2022.400
10.1007/s12517-018-4079-0
10.1016/j.jhydrol.2020.125133
10.1007/s00477-018-1560-y
10.1016/j.jhydrol.2017.04.018
10.1016/j.jhydrol.2016.01.085
10.1016/j.neucom.2013.05.023
10.1016/j.jhydrol.2015.09.047
10.1016/j.jhydrol.2015.08.022
10.1016/j.jhydrol.2020.125910
10.1016/j.jhydrol.2019.06.025
10.1016/j.ymssp.2016.09.032
10.1016/j.jhydrol.2022.127553
10.1016/j.jhydrol.2016.08.002
10.1016/j.asoc.2019.03.046
10.1016/j.jhydrol.2019.124225
10.1016/j.sigpro.2020.107610
10.4491/eer.2019.166
10.1007/s13201-023-01943-0
10.1007/s11269-019-2183-x
10.1016/j.jhydrol.2011.03.002
10.2166/hydro.2023.172
10.1016/j.jhydrol.2022.128262
10.1016/j.jhydrol.2012.11.017
10.5194/hess-25-4373-2021
10.1017/S0269888998214044
10.28991/cej-2019-03091398
10.1007/s00704-022-03939-3
10.1016/j.jhydrol.2021.126636
10.1007/s11269-020-02619-z
10.3390/w12051500
10.1016/j.aej.2013.01.001
10.1061/(ASCE)1084-0699(2007)12:5(532)
10.1016/j.jhydrol.2020.125488
10.1016/j.grj.2016.12.002
10.1016/j.cie.2008.10.010
10.1016/j.asoc.2009.08.016
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2024.131041
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2024_131041
S0022169424004360
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-f4c9960c9b5a60f2f0c45c2ed7be0e463e229a33372cbc000fbd8a732a3e59643
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001215266800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 06:42:31 EDT 2025
Tue Nov 18 22:35:36 EST 2025
Sat Nov 29 03:08:17 EST 2025
Sat May 11 15:33:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords SVMD algorithm
Dez River
Monthly runoff forecasting
Hybrid predictive models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-f4c9960c9b5a60f2f0c45c2ed7be0e463e229a33372cbc000fbd8a732a3e59643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1796-4562
0000-0002-2898-3681
0000-0001-9512-0360
PQID 3153785473
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153785473
crossref_citationtrail_10_1016_j_jhydrol_2024_131041
crossref_primary_10_1016_j_jhydrol_2024_131041
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131041
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dehghani, Seifi, Riahi-Madvar (b0080) 2019; 576
Herath, Chadalawada, Babovic (b0185) 2021; 25
Kubat, M. (1999). Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), 409-412.DOI: https://doi.org/10.1017/S0269888998214044.
Cai, Liu, Shi, Zhou, Jiang, Babovic (b0040) 2022; 613
Hakimi-Asiabar, Ghodsypour, Kerachian (b0165) 2010; 10
Mehdizadeh, Kozekalani Sales (b0245) 2018; 32
Zhihua, Zuo, Rodriguez (b0380) 2020; 29
Samadi, Sadrolashrafi, Kholghi (b0315) 2019; 109
Lin, Gharehbaghi, Zhang, Band, Pai, Chau, Mosavi (b0230) 2022; 16
Lawrence, Back, Tsoi, Giles (b0220) 1997; 8
Lee (b0225) 2022; 615
Lin, Wang, Wang, Qiu, Long, Du, Dai (b0235) 2021; 601
Nath, Mthethwa, Saha (b0275) 2020; 25
Ghose, Panda, Swain (b0145) 2013; 52
Proceedings of the IEEE international conference on neural networks
(Vol. 4, pp. 1942-1948).
Apaydin, Feizi, Sattari, Colak, Shamshirband, Chau (b0020) 2020; 12
Chadalawada, Herath, Babovic (b0050) 2020; 56
Mohammadi, Ahmadi, Mehdizadeh, Guan, Pham, Linh, Tri (b0260) 2020; 34
Mohammadi, Safari, Vazifehkhah (b0265) 2022; 12
Xu, Wang, Wang, Chau, Zang (b0365) 2023; 25
Salmani, Jajaei (b0310) 2016; 535
Kumar, Roshni, Himayoun (b0210) 2019; 5
Xu, Hu, Wu, Jian, Li, Chen, Wang (b0360) 2022; 608
Mehdizadeh, Fathian, Safari, Adamowski (b0255) 2019; 579
Shoaib, Shamseldin, Khan, Sultan, Ahmad, Sultan, Ali (b0320) 2019; 33
Mehdizadeh, Fathian, Adamowski (b0250) 2019; 80
He, Luo, Zuo, Xie (b0170) 2019; 33
Nazari, Sakhaei (b0280) 2020; 174
Chadalawada, Babovic (b0045) 2019; 21
Azad, Farzin, Kashi, Sanikhani, Karami, Kisi (b0030) 2018; 11
Qin, Ding, Han, Chang, Shi, You (b0295) 2023
Dabuechies (b0065) 1990; 36
Zhang, Peng, Zhang, Wang (b0375) 2015; 530
Dodangeh, Panahi, Rezaie, Lee, Bui, Lee, Pradhan (b0085) 2020; 590
Ni, Wang, Singh, Wu, Wang, Tao, Zhang (b0285) 2020; 583
Asadi, Shahrabi, Abbaszadeh, Tabanmehr (b0025) 2013; 121
Hakimi-Asiabar, Ghodsypour, Kerachian (b0160) 2009; 56
Gharehbaghi, Ghasemlounia, Ahmadi, Albaji (b0130) 2022
Liu (b0240) 2020; 590
Dragomiretskiy, Zosso (b0090) 2013; 62
Eberhart, R., & Kennedy, J. (1995, November). Particle swarm optimization. In
Gharehbaghi, Ghasemlounia, Latif, Haghiabi, Parsaie (b0135) 2023
Jiang, Zheng, Wang, Babovic (b0195) 2022; 58
Morales, Querales, Rosas, Allende-Cid, Salas (b0270) 2021; 594
Hagan, Menhaj (b0150) 1994; 5
Ahmadi, Tohidi, Sadrianzade (b0015) 2023; 13
Valipour, Banihabib, Behbahani (b0340) 2013; 476
Wu, Huang (b0350) 2009; 1
Ahmadi, Mehdizadeh, Nourani (b0010) 2022; 36
Vaheddoost, Safari, Yilmaz (b0335) 2023
Cinkus, Mazzilli, Jourde, Wunsch, Liesch, Ravbar, Goldscheider (b0055) 2022; 2022
Lakshmi, Apaza, Alkhayyat, Marhoon, Alameri (b0215) 2022; 86
Dasallas, An, Lee (b0075) 2022; 39
Ghasemlounia, Gharehbaghi, Ahmadi, Saadatnejadgharahassanlou (b0140) 2021; 191
Banihabib, Ahmadian, Jamali (b0035) 2017; 13
Gharehbaghi (b0120) 2021; 33
He, Luo, Zuo, Xie (b0175) 2019; 33
Hai, Li, Band, Shadkani, Samadianfard, Hashemi, Mousavi (b0155) 2022; 16
Zurada (b0390) 1992
Danandeh Mehr, Ghadimi, Marttila, Torabi Haghighi (b0070) 2022; 148
Nourani, Kisi, Komasi (b0290) 2011; 402
Xie, Zhang, Hou, Xie, Lv, Liu (b0355) 2019; 577
Cui, Qing, Chai, Yang, Zhu, Wang (b0060) 2021; 603
Engelbrecht (b0100) 2006
Gharehbaghi (b0115) 2017; 31
Ravansalar, Rajaee, Kisi (b0300) 2017; 549
Fathian, Mehdizadeh, Sales, Safari (b0105) 2019; 575
Gharehbaghi, Ghasemlounia (b0125) 2022; 148
Wang, Liu, Jiang, He, Mo (b0345) 2017; 86
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0190) 1998; 454
Yuan, Chen, Lei, Yuan, Muhammad Adnan (b0370) 2018; 32
Kişi (b0200) 2007; 12
Taormina, Chau (b0325) 2015; 529
Safari, Arashloo, Mehr (b0305) 2020; 587
Adaryani, Mousavi, Jafari (b0005) 2022; 614
Gharehbaghi (b0110) 2016; 541
Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (b0330) 2020; 589
Zhu, Liu, Zhang, Zheng (b0385) 2017; 37
Apaydin (10.1016/j.jhydrol.2024.131041_b0020) 2020; 12
Valipour (10.1016/j.jhydrol.2024.131041_b0340) 2013; 476
Adaryani (10.1016/j.jhydrol.2024.131041_b0005) 2022; 614
Lawrence (10.1016/j.jhydrol.2024.131041_b0220) 1997; 8
10.1016/j.jhydrol.2024.131041_b0095
Hagan (10.1016/j.jhydrol.2024.131041_b0150) 1994; 5
Lin (10.1016/j.jhydrol.2024.131041_b0230) 2022; 16
Zhihua (10.1016/j.jhydrol.2024.131041_b0380) 2020; 29
Danandeh Mehr (10.1016/j.jhydrol.2024.131041_b0070) 2022; 148
Nath (10.1016/j.jhydrol.2024.131041_b0275) 2020; 25
Engelbrecht (10.1016/j.jhydrol.2024.131041_b0100) 2006
Ravansalar (10.1016/j.jhydrol.2024.131041_b0300) 2017; 549
Gharehbaghi (10.1016/j.jhydrol.2024.131041_b0135) 2023
Yuan (10.1016/j.jhydrol.2024.131041_b0370) 2018; 32
Gharehbaghi (10.1016/j.jhydrol.2024.131041_b0130) 2022
Dehghani (10.1016/j.jhydrol.2024.131041_b0080) 2019; 576
Gharehbaghi (10.1016/j.jhydrol.2024.131041_b0120) 2021; 33
Mohammadi (10.1016/j.jhydrol.2024.131041_b0260) 2020; 34
Taormina (10.1016/j.jhydrol.2024.131041_b0325) 2015; 529
Chadalawada (10.1016/j.jhydrol.2024.131041_b0050) 2020; 56
Wang (10.1016/j.jhydrol.2024.131041_b0345) 2017; 86
Qin (10.1016/j.jhydrol.2024.131041_b0295) 2023
Mohammadi (10.1016/j.jhydrol.2024.131041_b0265) 2022; 12
He (10.1016/j.jhydrol.2024.131041_b0175) 2019; 33
Azad (10.1016/j.jhydrol.2024.131041_b0030) 2018; 11
Mehdizadeh (10.1016/j.jhydrol.2024.131041_b0255) 2019; 579
Asadi (10.1016/j.jhydrol.2024.131041_b0025) 2013; 121
Kumar (10.1016/j.jhydrol.2024.131041_b0210) 2019; 5
Ghasemlounia (10.1016/j.jhydrol.2024.131041_b0140) 2021; 191
Zhang (10.1016/j.jhydrol.2024.131041_b0375) 2015; 530
Cui (10.1016/j.jhydrol.2024.131041_b0060) 2021; 603
Jiang (10.1016/j.jhydrol.2024.131041_b0195) 2022; 58
Huang (10.1016/j.jhydrol.2024.131041_b0190) 1998; 454
Chadalawada (10.1016/j.jhydrol.2024.131041_b0045) 2019; 21
Mehdizadeh (10.1016/j.jhydrol.2024.131041_b0250) 2019; 80
Shoaib (10.1016/j.jhydrol.2024.131041_b0320) 2019; 33
Xie (10.1016/j.jhydrol.2024.131041_b0355) 2019; 577
Zurada (10.1016/j.jhydrol.2024.131041_b0390) 1992
He (10.1016/j.jhydrol.2024.131041_b0170) 2019; 33
Wu (10.1016/j.jhydrol.2024.131041_b0350) 2009; 1
Safari (10.1016/j.jhydrol.2024.131041_b0305) 2020; 587
Ahmadi (10.1016/j.jhydrol.2024.131041_b0015) 2023; 13
Morales (10.1016/j.jhydrol.2024.131041_b0270) 2021; 594
Gharehbaghi (10.1016/j.jhydrol.2024.131041_b0115) 2017; 31
Xu (10.1016/j.jhydrol.2024.131041_b0365) 2023; 25
Zhu (10.1016/j.jhydrol.2024.131041_b0385) 2017; 37
Gharehbaghi (10.1016/j.jhydrol.2024.131041_b0110) 2016; 541
Dabuechies (10.1016/j.jhydrol.2024.131041_b0065) 1990; 36
Vaheddoost (10.1016/j.jhydrol.2024.131041_b0335) 2023
Banihabib (10.1016/j.jhydrol.2024.131041_b0035) 2017; 13
Kişi (10.1016/j.jhydrol.2024.131041_b0200) 2007; 12
Mehdizadeh (10.1016/j.jhydrol.2024.131041_b0245) 2018; 32
Dragomiretskiy (10.1016/j.jhydrol.2024.131041_b0090) 2013; 62
Hai (10.1016/j.jhydrol.2024.131041_b0155) 2022; 16
Salmani (10.1016/j.jhydrol.2024.131041_b0310) 2016; 535
Xu (10.1016/j.jhydrol.2024.131041_b0360) 2022; 608
Lin (10.1016/j.jhydrol.2024.131041_b0235) 2021; 601
Hakimi-Asiabar (10.1016/j.jhydrol.2024.131041_b0160) 2009; 56
Liu (10.1016/j.jhydrol.2024.131041_b0240) 2020; 590
Samadi (10.1016/j.jhydrol.2024.131041_b0315) 2019; 109
Lee (10.1016/j.jhydrol.2024.131041_b0225) 2022; 615
Dasallas (10.1016/j.jhydrol.2024.131041_b0075) 2022; 39
10.1016/j.jhydrol.2024.131041_b0205
Hakimi-Asiabar (10.1016/j.jhydrol.2024.131041_b0165) 2010; 10
Ni (10.1016/j.jhydrol.2024.131041_b0285) 2020; 583
Lakshmi (10.1016/j.jhydrol.2024.131041_b0215) 2022; 86
Nourani (10.1016/j.jhydrol.2024.131041_b0290) 2011; 402
Cinkus (10.1016/j.jhydrol.2024.131041_b0055) 2022; 2022
Ghose (10.1016/j.jhydrol.2024.131041_b0145) 2013; 52
Dodangeh (10.1016/j.jhydrol.2024.131041_b0085) 2020; 590
Herath (10.1016/j.jhydrol.2024.131041_b0185) 2021; 25
Ahmadi (10.1016/j.jhydrol.2024.131041_b0010) 2022; 36
Gharehbaghi (10.1016/j.jhydrol.2024.131041_b0125) 2022; 148
Nazari (10.1016/j.jhydrol.2024.131041_b0280) 2020; 174
Fathian (10.1016/j.jhydrol.2024.131041_b0105) 2019; 575
Tikhamarine (10.1016/j.jhydrol.2024.131041_b0330) 2020; 589
Cai (10.1016/j.jhydrol.2024.131041_b0040) 2022; 613
References_xml – volume: 21
  start-page: 13
  year: 2019
  end-page: 31
  ident: b0045
  article-title: Review and comparison of performance indices for automatic model induction
  publication-title: J. Hydroinf.
– volume: 541
  start-page: 935
  year: 2016
  end-page: 940
  ident: b0110
  article-title: Explicit and implicit forms of differential quadrature method for advection–diffusion equation with variable coefficients in semi-infinite domain
  publication-title: J. Hydrol.
– volume: 12
  start-page: 12096
  year: 2022
  ident: b0265
  article-title: IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling
  publication-title: Sci. Rep.
– volume: 535
  start-page: 148
  year: 2016
  end-page: 159
  ident: b0310
  article-title: Forecasting models for flow and total dissolved solids in Karoun river-Iran
  publication-title: J. Hydrol.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0030
  article-title: Prediction of river flow using hybrid neuro-fuzzy models
  publication-title: Arab. J. Geosci.
– volume: 33
  start-page: 1571
  year: 2019
  end-page: 1590
  ident: b0175
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour. Manag.
– volume: 39
  year: 2022
  ident: b0075
  article-title: Developing an integrated multiscale rainfall-runoff and inundation model: application to an extreme rainfall event in Marikina-Pasig River Basin, Philippines
  publication-title: J. Hydrol.: Region. Stud.
– volume: 33
  start-page: 1571
  year: 2019
  end-page: 1590
  ident: b0170
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour Manage
– reference: Kubat, M. (1999). Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), 409-412.DOI: https://doi.org/10.1017/S0269888998214044.
– volume: 577
  year: 2019
  ident: b0355
  article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the Han River Basin, China
  publication-title: J. Hydrol.
– volume: 58
  year: 2022
  ident: b0195
  article-title: Uncovering flooding mechanisms across the contiguous United States through interpretive deep learning on representative catchments
  publication-title: Water Resour. Res.
– year: 2022
  ident: b0130
  article-title: Groundwater level prediction with meteorologically sensitive gated recurrent unit (GRU) neural networks
  publication-title: J. Hydrol.
– reference: Proceedings of the IEEE international conference on neural networks
– volume: 16
  start-page: 2206
  year: 2022
  end-page: 2220
  ident: b0155
  article-title: Comparison of the efficacy of particle swarm optimization and stochastic gradient descent algorithms on multi-layer perceptron model to estimate longitudinal dispersion coefficients in natural streams
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 16
  start-page: 1655
  year: 2022
  end-page: 1672
  ident: b0230
  article-title: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 56
  year: 2020
  ident: b0050
  article-title: Hydrologically informed machine learning for rainfall-runoff modeling: a genetic programming-based toolkit for automatic model induction
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 2199
  year: 2018
  end-page: 2212
  ident: b0370
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Env. Res. Risk A.
– year: 2023
  ident: b0295
  article-title: The hydrothermal changes of permafrost active layer and their impact on summer rainfall-runoff processes in an alpine meadow watershed, Northwest China
  publication-title: Res. Cold Arid Regions.
– volume: 549
  start-page: 461
  year: 2017
  end-page: 475
  ident: b0300
  article-title: Wavelet-linear genetic programming: a new approach for modeling monthly streamflow
  publication-title: J. Hydrol.
– volume: 13
  start-page: 135
  year: 2023
  ident: b0015
  article-title: Streamflow prediction using a hybrid methodology based on variational mode decomposition (VMD) and machine learning approaches
  publication-title: Appl Water Sci
– volume: 32
  start-page: 3001
  year: 2018
  end-page: 3022
  ident: b0245
  article-title: A comparative study of autoregressive, autoregressive moving average, gene expression programming and Bayesian networks for estimating monthly streamflow
  publication-title: Water Resour. Manag.
– volume: 80
  start-page: 873
  year: 2019
  end-page: 887
  ident: b0250
  article-title: Hybrid artificial intelligence-time series models for monthly streamflow modeling
  publication-title: Appl. Soft Comput.
– volume: 29
  year: 2020
  ident: b0380
  article-title: Predicting of runoff using an optimized SWAT-ANN: a case study
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 36
  start-page: 2753
  year: 2022
  end-page: 2768
  ident: b0010
  article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis
  publication-title: Stoch. Env. Res. Risk a.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0350
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 402
  start-page: 41
  year: 2011
  end-page: 59
  ident: b0290
  article-title: Two hybrid artificial intelligence approaches for modeling rainfall–runoff process
  publication-title: J. Hydrol.
– volume: 10
  start-page: 1151
  year: 2010
  end-page: 1163
  ident: b0165
  article-title: Deriving operating policies for multi-objective reservoir systems: application of self-learning genetic algorithm
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 9
  year: 2017
  end-page: 16
  ident: b0035
  article-title: Hybrid DARIMA-NARX model for forecasting long-term daily inflow to Dez reservoir using the North Atlantic oscillation (NAO) and rainfall data
  publication-title: GeoResJ
– volume: 25
  start-page: 545
  year: 2020
  end-page: 553
  ident: b0275
  article-title: Runoff estimation using modified adaptive neuro-fuzzy inference system
  publication-title: Environ. Eng. Res.
– volume: 174
  year: 2020
  ident: b0280
  article-title: Successive variational mode decomposition
  publication-title: Signal Process.
– volume: 148
  year: 2022
  ident: b0125
  article-title: Application of AI approaches to estimate discharge coefficient of novel kind of sharp-crested V-notch weirs
  publication-title: J. Irrig. Drain. Eng.
– start-page: 1
  year: 2023
  end-page: 18
  ident: b0335
  article-title: Rainfall-runoff simulation in ungauged tributary streams using drainage area ratio-based multivariate adaptive regression spline and random Forest hybrid models
  publication-title: Pure Appl. Geophys.
– volume: 603
  year: 2021
  ident: b0060
  article-title: Real-time rainfall-runoff prediction using light gradient boosting machine coupled with singular spectrum analysis
  publication-title: J. Hydrol.
– volume: 601
  year: 2021
  ident: b0235
  article-title: A hybrid deep learning algorithm and its application to streamflow prediction
  publication-title: J. Hydrol.
– year: 2006
  ident: b0100
  article-title: Fundamentals of computational swarm intelligence
– volume: 86
  start-page: 75
  year: 2017
  end-page: 85
  ident: b0345
  article-title: Complex variational mode decomposition for signal processing applications
  publication-title: Mech. Syst. Sig. Process.
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 25
  ident: b0055
  article-title: When best is the enemy of good–critical evaluation of performance criteria in hydrological models
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– start-page: 1
  year: 2023
  end-page: 15
  ident: b0135
  article-title: Application of data-driven models to predict the dimensions of flow separation zone
  publication-title: Environ. Sci. Pollut. Res.
– volume: 52
  start-page: 209
  year: 2013
  end-page: 220
  ident: b0145
  article-title: Prediction and optimization of runoff via ANFIS and GA
  publication-title: Alex. Eng. J.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0190
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R Soc. Lond. A
– volume: 109
  start-page: 9
  year: 2019
  end-page: 25
  ident: b0315
  article-title: Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: a case study for the Dez River Basin
  publication-title: Phys. Chem. Earth, Parts A/B/C
– reference: (Vol. 4, pp. 1942-1948).
– volume: 191
  year: 2021
  ident: b0140
  article-title: Developing a novel framework for forecasting groundwater level fluctuations using bi-directional long short-term memory (BiLSTM) deep neural network
  publication-title: Comput. Electron. Agric.
– volume: 608
  year: 2022
  ident: b0360
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
– volume: 12
  start-page: 532
  year: 2007
  end-page: 539
  ident: b0200
  article-title: Streamflow forecasting using different artificial neural network algorithms
  publication-title: J. Hydrol. Eng.
– volume: 37
  start-page: 3002
  year: 2017
  end-page: 3010
  ident: b0385
  article-title: Review on the research of surface water and groundwater interactions
  publication-title: China Environ. Sci.
– year: 1992
  ident: b0390
  article-title: Introduction to Artificial Neural Systems
– volume: 31
  start-page: 184
  year: 2017
  end-page: 193
  ident: b0115
  article-title: Third-and fifth-order finite volume schemes for advection–diffusion equation with variable coefficients in semi-infinite domain
  publication-title: Water Environ. J.
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: b0150
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
– volume: 62
  start-page: 531
  year: 2013
  end-page: 544
  ident: b0090
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 86
  start-page: 3205
  year: 2022
  end-page: 3222
  ident: b0215
  article-title: Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling
  publication-title: Water Sci. Technol.
– volume: 5
  start-page: 2120
  year: 2019
  end-page: 2130
  ident: b0210
  article-title: A comparison of emotional neural network (ENN) and artificial neural network (ANN) approach for rainfall-runoff modelling
  publication-title: Civil Eng. J.
– volume: 25
  start-page: 943
  year: 2023
  end-page: 970
  ident: b0365
  article-title: Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition
  publication-title: J. Hydroinf.
– volume: 8
  start-page: 1507
  year: 1997
  end-page: 1517
  ident: b0220
  article-title: On the distribution of performance from multiple neural-network trials
  publication-title: IEEE Trans. Neural Netw.
– volume: 576
  start-page: 698
  year: 2019
  end-page: 725
  ident: b0080
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: J. Hydrol.
– reference: Eberhart, R., & Kennedy, J. (1995, November). Particle swarm optimization. In
– volume: 34
  start-page: 3387
  year: 2020
  end-page: 3409
  ident: b0260
  article-title: Developing novel robust models to improve the accuracy of daily streamflow modeling
  publication-title: Water Resour. Manag.
– volume: 590
  year: 2020
  ident: b0240
  article-title: A rational performance criterion for hydrological model
  publication-title: J. Hydrol.
– volume: 33
  start-page: 955
  year: 2019
  end-page: 973
  ident: b0320
  article-title: Input selection of wavelet-coupled neural network models for rainfall-runoff modelling
  publication-title: Water Resour. Manag.
– volume: 615
  year: 2022
  ident: b0225
  article-title: Runoff prediction of urban stream based on the discharge of pump stations using improved multi-layer perceptron applying new optimizers combined with a harmony search
  publication-title: J. Hydrol.
– volume: 589
  year: 2020
  ident: b0330
  article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization
  publication-title: J. Hydrol.
– volume: 590
  year: 2020
  ident: b0085
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
– volume: 12
  start-page: 1500
  year: 2020
  ident: b0020
  article-title: Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting
  publication-title: Water
– volume: 583
  year: 2020
  ident: b0285
  article-title: Streamflow and rainfall forecasting by two long short-term memory-based models
  publication-title: J. Hydrol.
– volume: 614
  year: 2022
  ident: b0005
  article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN
  publication-title: J. Hydrol.
– volume: 56
  start-page: 1566
  year: 2009
  end-page: 1576
  ident: b0160
  article-title: Multi-objective genetic local search algorithm using Kohonen’s neural map
  publication-title: Comput. Ind. Eng.
– volume: 579
  year: 2019
  ident: b0255
  article-title: Comparative assessment of time series and artificial intelligence models to estimate monthly streamflow: a local and external data analysis approach
  publication-title: J. Hydrol.
– volume: 613
  year: 2022
  ident: b0040
  article-title: Toward improved lumped groundwater level predictions at catchment scale: mutual integration of water balance mechanism and deep learning method
  publication-title: J. Hydrol.
– volume: 36
  start-page: 6
  year: 1990
  end-page: 7
  ident: b0065
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Trans. Inf. Theory
– volume: 529
  start-page: 1617
  year: 2015
  end-page: 1632
  ident: b0325
  article-title: Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines
  publication-title: J. Hydrol.
– volume: 148
  start-page: 255
  year: 2022
  end-page: 268
  ident: b0070
  article-title: A new evolutionary time series model for streamflow forecasting in boreal lake-river systems
  publication-title: Theor. Appl. Climatol.
– volume: 587
  year: 2020
  ident: b0305
  article-title: Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm
  publication-title: J. Hydrol.
– volume: 476
  start-page: 433
  year: 2013
  end-page: 441
  ident: b0340
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: J. Hydrol.
– volume: 33
  year: 2021
  ident: b0120
  article-title: Fully implicit form of differential quadrature method for multi-species solute transport in porous media
  publication-title: Teknik Dergi
– volume: 25
  start-page: 4373
  year: 2021
  end-page: 4401
  ident: b0185
  article-title: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 594
  year: 2021
  ident: b0270
  article-title: A self-identification Neuro-Fuzzy inference framework for modeling rainfall-runoff in a Chilean watershed
  publication-title: J. Hydrol.
– volume: 121
  start-page: 470
  year: 2013
  end-page: 480
  ident: b0025
  article-title: A new hybrid artificial neural networks for rainfall–runoff process modeling
  publication-title: Neurocomputing
– volume: 530
  start-page: 137
  year: 2015
  end-page: 152
  ident: b0375
  article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences
  publication-title: J. Hydrol.
– volume: 575
  start-page: 1200
  year: 2019
  end-page: 1213
  ident: b0105
  article-title: Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and non-linear time series models
  publication-title: J. Hydrol.
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0055
  article-title: When best is the enemy of good–critical evaluation of performance criteria in hydrological models
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 603
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131041_b0060
  article-title: Real-time rainfall-runoff prediction using light gradient boosting machine coupled with singular spectrum analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127124
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131041_b0090
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 615
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0225
  article-title: Runoff prediction of urban stream based on the discharge of pump stations using improved multi-layer perceptron applying new optimizers combined with a harmony search
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128708
– volume: 32
  start-page: 3001
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131041_b0245
  article-title: A comparative study of autoregressive, autoregressive moving average, gene expression programming and Bayesian networks for estimating monthly streamflow
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1970-0
– volume: 12
  start-page: 12096
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0265
  article-title: IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-16215-1
– volume: 577
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0355
  article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the Han River Basin, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123915
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0085
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125423
– ident: 10.1016/j.jhydrol.2024.131041_b0095
  doi: 10.1109/ICNN.1995.488968
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131041_b0350
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 21
  start-page: 13
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0045
  article-title: Review and comparison of performance indices for automatic model induction
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2017.078
– volume: 36
  start-page: 2753
  issue: 9
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0010
  article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis
  publication-title: Stoch. Env. Res. Risk a.
  doi: 10.1007/s00477-021-02159-x
– volume: 58
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0195
  article-title: Uncovering flooding mechanisms across the contiguous United States through interpretive deep learning on representative catchments
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR030185
– volume: 33
  start-page: 955
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0320
  article-title: Input selection of wavelet-coupled neural network models for rainfall-runoff modelling
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2151-x
– volume: 16
  start-page: 1655
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0230
  article-title: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 109
  start-page: 9
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0315
  article-title: Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: a case study for the Dez River Basin
  publication-title: Phys. Chem. Earth, Parts A/B/C
  doi: 10.1016/j.pce.2018.07.003
– volume: 31
  start-page: 184
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131041_b0115
  article-title: Third-and fifth-order finite volume schemes for advection–diffusion equation with variable coefficients in semi-infinite domain
  publication-title: Water Environ. J.
  doi: 10.1111/wej.12233
– volume: 33
  issue: 4
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131041_b0120
  article-title: Fully implicit form of differential quadrature method for multi-species solute transport in porous media
  publication-title: Teknik Dergi
  doi: 10.18400/tekderg.975457
– volume: 56
  issue: 4
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0050
  article-title: Hydrologically informed machine learning for rainfall-runoff modeling: a genetic programming-based toolkit for automatic model induction
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026933
– volume: 148
  issue: 3
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0125
  article-title: Application of AI approaches to estimate discharge coefficient of novel kind of sharp-crested V-notch weirs
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0001646
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.jhydrol.2024.131041_b0190
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R Soc. Lond. A
  doi: 10.1098/rspa.1998.0193
– volume: 583
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0285
  article-title: Streamflow and rainfall forecasting by two long short-term memory-based models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124296
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.jhydrol.2024.131041_b0150
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 191
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131041_b0140
  article-title: Developing a novel framework for forecasting groundwater level fluctuations using bi-directional long short-term memory (BiLSTM) deep neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106568
– volume: 613
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0040
  article-title: Toward improved lumped groundwater level predictions at catchment scale: mutual integration of water balance mechanism and deep learning method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128495
– volume: 36
  start-page: 6
  year: 1990
  ident: 10.1016/j.jhydrol.2024.131041_b0065
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Trans. Inf. Theory
– volume: 8
  start-page: 1507
  issue: 6
  year: 1997
  ident: 10.1016/j.jhydrol.2024.131041_b0220
  article-title: On the distribution of performance from multiple neural-network trials
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.641472
– volume: 587
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0305
  article-title: Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125014
– volume: 576
  start-page: 698
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0080
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.065
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131041_b0295
  article-title: The hydrothermal changes of permafrost active layer and their impact on summer rainfall-runoff processes in an alpine meadow watershed, Northwest China
  publication-title: Res. Cold Arid Regions.
– volume: 86
  start-page: 3205
  issue: 12
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0215
  article-title: Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2022.400
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131041_b0030
  article-title: Prediction of river flow using hybrid neuro-fuzzy models
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-4079-0
– volume: 589
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0330
  article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125133
– start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131041_b0335
  article-title: Rainfall-runoff simulation in ungauged tributary streams using drainage area ratio-based multivariate adaptive regression spline and random Forest hybrid models
  publication-title: Pure Appl. Geophys.
– volume: 32
  start-page: 2199
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131041_b0370
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-018-1560-y
– volume: 549
  start-page: 461
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131041_b0300
  article-title: Wavelet-linear genetic programming: a new approach for modeling monthly streamflow
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.04.018
– volume: 535
  start-page: 148
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131041_b0310
  article-title: Forecasting models for flow and total dissolved solids in Karoun river-Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.085
– volume: 121
  start-page: 470
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131041_b0025
  article-title: A new hybrid artificial neural networks for rainfall–runoff process modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.023
– start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131041_b0135
  article-title: Application of data-driven models to predict the dimensions of flow separation zone
  publication-title: Environ. Sci. Pollut. Res.
– volume: 530
  start-page: 137
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131041_b0375
  article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.047
– volume: 529
  start-page: 1617
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131041_b0325
  article-title: Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.022
– volume: 614
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0005
  article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN
  publication-title: J. Hydrol.
– volume: 594
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131041_b0270
  article-title: A self-identification Neuro-Fuzzy inference framework for modeling rainfall-runoff in a Chilean watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125910
– volume: 575
  start-page: 1200
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0105
  article-title: Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and non-linear time series models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.025
– volume: 86
  start-page: 75
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131041_b0345
  article-title: Complex variational mode decomposition for signal processing applications
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2016.09.032
– volume: 608
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0360
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127553
– volume: 541
  start-page: 935
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131041_b0110
  article-title: Explicit and implicit forms of differential quadrature method for advection–diffusion equation with variable coefficients in semi-infinite domain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.002
– volume: 80
  start-page: 873
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0250
  article-title: Hybrid artificial intelligence-time series models for monthly streamflow modeling
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.046
– volume: 579
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0255
  article-title: Comparative assessment of time series and artificial intelligence models to estimate monthly streamflow: a local and external data analysis approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124225
– volume: 174
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0280
  article-title: Successive variational mode decomposition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107610
– volume: 25
  start-page: 545
  issue: 4
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0275
  article-title: Runoff estimation using modified adaptive neuro-fuzzy inference system
  publication-title: Environ. Eng. Res.
  doi: 10.4491/eer.2019.166
– volume: 39
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0075
  article-title: Developing an integrated multiscale rainfall-runoff and inundation model: application to an extreme rainfall event in Marikina-Pasig River Basin, Philippines
  publication-title: J. Hydrol.: Region. Stud.
– volume: 13
  start-page: 135
  issue: 6
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131041_b0015
  article-title: Streamflow prediction using a hybrid methodology based on variational mode decomposition (VMD) and machine learning approaches
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-023-01943-0
– volume: 33
  start-page: 1571
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0175
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-2183-x
– volume: 402
  start-page: 41
  issue: 1–2
  year: 2011
  ident: 10.1016/j.jhydrol.2024.131041_b0290
  article-title: Two hybrid artificial intelligence approaches for modeling rainfall–runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.03.002
– volume: 25
  start-page: 943
  issue: 3
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131041_b0365
  article-title: Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2023.172
– year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0130
  article-title: Groundwater level prediction with meteorologically sensitive gated recurrent unit (GRU) neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128262
– volume: 476
  start-page: 433
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131041_b0340
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.017
– volume: 25
  start-page: 4373
  issue: 8
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131041_b0185
  article-title: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-4373-2021
– ident: 10.1016/j.jhydrol.2024.131041_b0205
  doi: 10.1017/S0269888998214044
– volume: 5
  start-page: 2120
  issue: 10
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0210
  article-title: A comparison of emotional neural network (ENN) and artificial neural network (ANN) approach for rainfall-runoff modelling
  publication-title: Civil Eng. J.
  doi: 10.28991/cej-2019-03091398
– volume: 33
  start-page: 1571
  issue: 4
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131041_b0170
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-2183-x
– volume: 148
  start-page: 255
  issue: 1–2
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0070
  article-title: A new evolutionary time series model for streamflow forecasting in boreal lake-river systems
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-022-03939-3
– volume: 601
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131041_b0235
  article-title: A hybrid deep learning algorithm and its application to streamflow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126636
– volume: 34
  start-page: 3387
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0260
  article-title: Developing novel robust models to improve the accuracy of daily streamflow modeling
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02619-z
– year: 1992
  ident: 10.1016/j.jhydrol.2024.131041_b0390
– volume: 12
  start-page: 1500
  issue: 5
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0020
  article-title: Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting
  publication-title: Water
  doi: 10.3390/w12051500
– volume: 52
  start-page: 209
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131041_b0145
  article-title: Prediction and optimization of runoff via ANFIS and GA
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2013.01.001
– volume: 12
  start-page: 532
  issue: 5
  year: 2007
  ident: 10.1016/j.jhydrol.2024.131041_b0200
  article-title: Streamflow forecasting using different artificial neural network algorithms
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2007)12:5(532)
– volume: 29
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0380
  article-title: Predicting of runoff using an optimized SWAT-ANN: a case study
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131041_b0240
  article-title: A rational performance criterion for hydrological model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125488
– year: 2006
  ident: 10.1016/j.jhydrol.2024.131041_b0100
– volume: 37
  start-page: 3002
  issue: 8
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131041_b0385
  article-title: Review on the research of surface water and groundwater interactions
  publication-title: China Environ. Sci.
– volume: 13
  start-page: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131041_b0035
  article-title: Hybrid DARIMA-NARX model for forecasting long-term daily inflow to Dez reservoir using the North Atlantic oscillation (NAO) and rainfall data
  publication-title: GeoResJ
  doi: 10.1016/j.grj.2016.12.002
– volume: 16
  start-page: 2206
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131041_b0155
  article-title: Comparison of the efficacy of particle swarm optimization and stochastic gradient descent algorithms on multi-layer perceptron model to estimate longitudinal dispersion coefficients in natural streams
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 56
  start-page: 1566
  issue: 4
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131041_b0160
  article-title: Multi-objective genetic local search algorithm using Kohonen’s neural map
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2008.10.010
– volume: 10
  start-page: 1151
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2024.131041_b0165
  article-title: Deriving operating policies for multi-objective reservoir systems: application of self-learning genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.016
SSID ssj0000334
Score 2.552901
Snippet •Development of a hybrid soft computing model to predict the Runoff.•Preprocessing the signal of the time series of input variables using the Wavelet...
A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science.Therefore, in the current research,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131041
SubjectTerms algorithms
autocorrelation
Dez River
Hybrid predictive models
hybrids
Iran
Monthly runoff forecasting
runoff
SVMD algorithm
time series analysis
watersheds
Title Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series
URI https://dx.doi.org/10.1016/j.jhydrol.2024.131041
https://www.proquest.com/docview/3153785473
Volume 634
WOSCitedRecordID wos001215266800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQviKs2bjISb1FKazu3xwqNDYSqPQzUt8hOHNIqTar0opU3_hq_jONLkm4Dxh54iSrHdu2cL_YX-_g7CL0VbMhlKNSLFEYuywLhRqn0XD8Ebj5iJAm0fPHXz8FkEk6n0Vmv97M5C7MtgrIMLy6i5X81NaSBsdXR2VuYu60UEuA3GB2uYHa4_pPhJ9VWFk6-U0extBpEq7i5rNWujPYV0gFwHDWFpWq7YLXRcRPVnS18PDcLhCqXk0rldm59uxxefKvq2TpfaP9E6NQ6L3ZOvSmrLHNU_6xP4nW-m-_S2gg-AakdL5RAQ6rQ2K5EnME3NjfbJWMheEv2T3Jo5qKAYWlmma7yW9i7W8tccBOd2BkvZmU3qkIiF016fcoX32W-v85BWOdVuHfuYOSbkMjN2O3blVAz-o6AqxoZrWsTg1mjmA_mprMD9Q-DLv9lIe4rE2Trtth4xM1jW02sqolNNXfQAQm8KOyjg_HH4-mnjg9QyhrNetX-7hzZu9-2508M6QpX0ATo_CF6YC2JxwZxj1BPlo_RvRNpNc-foB8aedggD-8jD3fIwxp5WCMPVyXukIf3kKdz4UvIwy3yMCAPW-RhgzxskPcUfflwfP7-1LURPtyEMrJ2M5YodaAkEh73hxnJhgnzEiLTQMihZD6VhEScUhqQRCTwKDORhjyghFPpKSW5Z6hfVqU8RDjNBA29RHhyJBgZcR4MM-ZnNE0pSYGEHiHWPNU4sfL3KgpLEf_Vqkdo0BZbGv2XmwqEjcliS2INOY0BijcVfdOYOIZBXu3c8VJWm1VMgZcEoQoT_vy27XmB7ndv00vUX9cb-QrdTbbr2ap-bbH6C1531TU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+hybrid+intelligence+predictive+model+based+on+successive+variational+mode+decomposition+algorithm+for+monthly+runoff+series&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Parsaie%2C+Abbas&rft.au=Ghasemlounia%2C+Redvan&rft.au=Gharehbaghi%2C+Amin&rft.au=Haghiabi%2C+AmirHamzeh&rft.date=2024-05-01&rft.issn=0022-1694&rft.volume=634&rft.spage=131041&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2024_131041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon