Integration of hydrological models with entropy and multi-objective optimization based methods for designing specific needs streamflow monitoring networks

•Hydrological Models Can Effectively Guide the Design of Hydrometric Networks.•Using Model Performance Criteria as Design Objectives enables User-Directed Designs.•A novel model-based strategy is proposed that outperforms the traditional approach. Water resource managers depend on the collection of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 593; s. 125876
Hlavní autoři: Ursulak, Jacob, Coulibaly, Paulin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2021
Témata:
ISSN:0022-1694, 1879-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Hydrological Models Can Effectively Guide the Design of Hydrometric Networks.•Using Model Performance Criteria as Design Objectives enables User-Directed Designs.•A novel model-based strategy is proposed that outperforms the traditional approach. Water resource managers depend on the collection of accurate hydrometric data for various modeling and planning projects. An essential use of hydrometric data includes hydrologic modelling and forecasting to support decision making in water resources planning and management. It is, therefore, essential to design hydrometric monitoring networks while considering the relationship between data collection and model application. A new model-based network design strategy is proposed that embeds hydrological models into a multi-objective evolutionary algorithm, facilitating direct optimization according to the model-based design objectives. This method is compared to the traditional model-based approach used to design hydrometric monitoring networks. The traditional approach is to first conduct optimization using secondary design objectives, that are not model based, to identify a set of optimal networks. Hydrological models are then applied as a post-processing mechanism to identify which of the optimal networks best satisfy the model orientated design objectives or users’ needs. In this investigation, the well-established dual-entropy multi-objective optimization (DEMO) approach was employed to conduct the initial network design based on the principles of information theory, followed by post-processing with rainfall-runoff models. Two case studies are evaluated, a monitoring network reduction in the Fraser River basin and a network augmentation in an upstream subsection of the Churchill River basin. Results show that embedding models in the optimization algorithm consistently yields better network configurations compared to those identified using the traditional method. It is shown that a smaller size optimal network that outperforms larger size networks can be identified directly by the proposed method. The models and model performance criteria used in the design process can be readily adapted, allowing for a user-directed design capable of addressing problem-specific objectives on a case by case basis.
AbstractList •Hydrological Models Can Effectively Guide the Design of Hydrometric Networks.•Using Model Performance Criteria as Design Objectives enables User-Directed Designs.•A novel model-based strategy is proposed that outperforms the traditional approach. Water resource managers depend on the collection of accurate hydrometric data for various modeling and planning projects. An essential use of hydrometric data includes hydrologic modelling and forecasting to support decision making in water resources planning and management. It is, therefore, essential to design hydrometric monitoring networks while considering the relationship between data collection and model application. A new model-based network design strategy is proposed that embeds hydrological models into a multi-objective evolutionary algorithm, facilitating direct optimization according to the model-based design objectives. This method is compared to the traditional model-based approach used to design hydrometric monitoring networks. The traditional approach is to first conduct optimization using secondary design objectives, that are not model based, to identify a set of optimal networks. Hydrological models are then applied as a post-processing mechanism to identify which of the optimal networks best satisfy the model orientated design objectives or users’ needs. In this investigation, the well-established dual-entropy multi-objective optimization (DEMO) approach was employed to conduct the initial network design based on the principles of information theory, followed by post-processing with rainfall-runoff models. Two case studies are evaluated, a monitoring network reduction in the Fraser River basin and a network augmentation in an upstream subsection of the Churchill River basin. Results show that embedding models in the optimization algorithm consistently yields better network configurations compared to those identified using the traditional method. It is shown that a smaller size optimal network that outperforms larger size networks can be identified directly by the proposed method. The models and model performance criteria used in the design process can be readily adapted, allowing for a user-directed design capable of addressing problem-specific objectives on a case by case basis.
Water resource managers depend on the collection of accurate hydrometric data for various modeling and planning projects. An essential use of hydrometric data includes hydrologic modelling and forecasting to support decision making in water resources planning and management. It is, therefore, essential to design hydrometric monitoring networks while considering the relationship between data collection and model application. A new model-based network design strategy is proposed that embeds hydrological models into a multi-objective evolutionary algorithm, facilitating direct optimization according to the model-based design objectives. This method is compared to the traditional model-based approach used to design hydrometric monitoring networks. The traditional approach is to first conduct optimization using secondary design objectives, that are not model based, to identify a set of optimal networks. Hydrological models are then applied as a post-processing mechanism to identify which of the optimal networks best satisfy the model orientated design objectives or users’ needs. In this investigation, the well-established dual-entropy multi-objective optimization (DEMO) approach was employed to conduct the initial network design based on the principles of information theory, followed by post-processing with rainfall-runoff models. Two case studies are evaluated, a monitoring network reduction in the Fraser River basin and a network augmentation in an upstream subsection of the Churchill River basin. Results show that embedding models in the optimization algorithm consistently yields better network configurations compared to those identified using the traditional method. It is shown that a smaller size optimal network that outperforms larger size networks can be identified directly by the proposed method. The models and model performance criteria used in the design process can be readily adapted, allowing for a user-directed design capable of addressing problem-specific objectives on a case by case basis.
ArticleNumber 125876
Author Ursulak, Jacob
Coulibaly, Paulin
Author_xml – sequence: 1
  givenname: Jacob
  surname: Ursulak
  fullname: Ursulak, Jacob
  email: ursulajp@mcmaster.ca
  organization: Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
– sequence: 2
  givenname: Paulin
  surname: Coulibaly
  fullname: Coulibaly, Paulin
  organization: Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
BookMark eNqFkcFu1DAQhi1UJLaFR0DykUsW23GSjTggVFGoVIkLnC3HHu9OcOxge7taHoWnJUt64tK5jDTz__9I812TqxADEPKWsy1nvH0_bsfD2abot4KJZSaaXde-IBu-6_pKdKy7IhvGhKh428tX5DrnkS1V13JD_tyHAvukC8ZAo6NrUNyj0Z5O0YLP9ITlQCGUFOcz1cHS6egLVnEYwRR8BBrnghP-XkMGnWGRQDlEm6mLiVrIuA8Y9jTPYNChoQFgWeaSQE_Ox9NyKmCJ6SIKUE4x_cyvyUunfYY3T_2G_Lj7_P32a_Xw7cv97aeHytRSlMrVErgBGJgwEvq6ZrIbbN8C17w1trPgGmd7aAcrWw1NJ9pec2NBG2dh19c35N2aO6f46wi5qAmzAe91gHjMSjRCip5J1i3SZpWaFHNO4NSccNLprDhTFxZqVE8s1IWFWlksvg__-QyWf-8qSaN_1v1xdS8w4BEhqWwQggGLaSGgbMRnEv4C7fqySw
CitedBy_id crossref_primary_10_1080_07011784_2023_2242815
crossref_primary_10_3390_w17142160
crossref_primary_10_1007_s13201_023_01992_5
crossref_primary_10_1016_j_jhydrol_2024_130817
crossref_primary_10_5194_hess_28_3099_2024
crossref_primary_10_1016_j_probengmech_2024_103582
crossref_primary_10_1016_j_jhydrol_2023_129806
crossref_primary_10_3389_fevo_2025_1587167
crossref_primary_10_2166_hydro_2024_256
crossref_primary_10_3390_atmos13010143
crossref_primary_10_1177_14727978241299638
crossref_primary_10_1029_2022WR032429
Cites_doi 10.1175/2011JHM1369.1
10.1016/S0022-1694(98)00188-7
10.1038/s41893-018-0047-7
10.1002/2013WR014058
10.1016/j.jhydrol.2015.03.034
10.1016/j.jhydrol.2019.04.068
10.3390/e21100991
10.1016/j.jhydrol.2018.04.037
10.1029/2011WR011251
10.1147/rd.41.0066
10.1007/BF00872282
10.1029/WR015i006p01791
10.1061/(ASCE)HE.1943-5584.0001508
10.5194/hess-22-989-2018
10.1029/WR010i004p00713
10.1016/S0022-1694(03)00244-0
10.1016/j.jhydrol.2016.01.009
10.3390/rs70100686
10.1016/j.jhydrol.2010.09.018
10.1016/j.jhydrol.2017.07.003
10.1007/BF00174760
10.1111/1752-1688.12611
10.3390/e19110613
10.1016/0022-1694(70)90255-6
10.1016/j.advwatres.2015.01.013
10.1016/j.advwatres.2016.07.006
10.1029/2007RG000243
10.1139/f84-068
10.1016/j.jhydrol.2015.08.048
10.5194/hess-21-3071-2017
10.1623/hysj.50.2.279.61801
10.1016/j.jhydrol.2018.05.058
10.1016/j.advwatres.2011.10.011
10.5194/hess-19-3301-2015
10.1016/j.advwatres.2008.01.017
10.1029/2005WR004723
10.1080/02626660209492977
10.1111/j.1752-1688.1989.tb03088.x
10.1175/JHM-D-14-0191.1
10.1016/j.jhydrol.2013.09.004
10.2166/nh.2010.007
10.2166/nh.2016.344
10.5194/hess-8-1103-2004
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.envres.2019.108686
10.1016/j.jhydrol.2009.11.015
10.1029/2006GL026962
10.2166/wst.2006.303
10.1029/97WR03495
10.1016/0022-1694(91)90173-F
10.1007/BF02289159
10.1023/A:1015511811686
10.1002/2015WR017137
10.1002/2016WR019981
10.1029/2010WR009194
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2020.125876
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2020_125876
S0022169420313378
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-f34e1ceeb02c4e933047bd96e1a16cd7def5fd9e6bd46ae57269a1cdeacfde893
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639853400061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 12:05:56 EST 2025
Tue Nov 18 22:18:57 EST 2025
Sat Nov 29 07:27:53 EST 2025
Fri Feb 23 02:45:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrometric Monitoring Networks
Entropy
Hydrological Modelling
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-f34e1ceeb02c4e933047bd96e1a16cd7def5fd9e6bd46ae57269a1cdeacfde893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524290407
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524290407
crossref_primary_10_1016_j_jhydrol_2020_125876
crossref_citationtrail_10_1016_j_jhydrol_2020_125876
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125876
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leach, Kornelsen, Samuel, Coulibaly (b0170) 2015; 529
Pardo-Igúzquiza (b0255) 1998; 210
Weisse, Bois (b0375) 2002; 47
Nour, M.H., Smit, D.W., Gamal El-Din, M., 2006. Geostatistical mapping of precipitation: Implications for rain gauge network design. Water Sci. Technol. 53, 101–110. https://doi.org/10.2166/wst.2006.303.
McGill (b0210) 1954; 19
Alfonso, Lobbrecht, Price (b0005) 2010; 46
Keum, Coulibaly (b0115) 2017; 53
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B., 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 41, 295–319. https://doi.org/10.2166/nh.2010.007.
Northcote, T. G., and P. A. Larkin. 1989. The Fraser River: A major salmonine production system. In D. P. Dodge (ed.). Proceedings of the international large river symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106:172–204.
Lane, Sykes (b0155) 1982
Tolson, Shoemaker (b0340) 2007; 43
Werstuck, C., Coulibaly, P., 2017. Hydrometric network design using dual entropy multi-objective optimization in the Ottawa River Basin. Hydrol. Res. 48, 1639–1651. https://doi.org/10.2166/nh.2016.344.
Keum, Coulibaly (b0120) 2017; 22
Government of Canada, 2010. Land Use 2010. URL https://open.canada.ca/data/en/dataset/9e1efe92-e5a3-4f70-b313-68fb1283eadf (accessed 2.5.19).
Wang, Wang, Singh, Wang, Wu, Zhang, Liu, Zou, He, Meng (b0365) 2019; 178
Mishra, Coulibaly (b0220) 2010; 380
Reed, Kollat (b0265) 2012; 35
Werstuck, Coulibaly (b0385) 2018; 54
Krstanovic, Singh (b0145) 1992; 6
Kollat, Reed, Maxwell (b0140) 2011; 47
Chacon-hurtado, Alfonso, Solomatine (b0050) 2017; 21
Markus, Vernon Knapp, Tasker (b0205) 2003; 283
Newbury, McCullough, Hecky (b0240) 1984; 41
Xiao, R., He, X., Zhang, Y., Ferreira, V.G., Chang, L., 2015. Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the mid-atlantic region of the United States. Remote Sens. 7, 686–703. https://doi.org/10.3390/rs70100686.
Gupta, Sorooshian, Yapo (b0085) 1998; 34
Swenson, Yeh, Wahr, Famiglietti (b0330) 2006; 33
Xu, H., Xu, C.Y., Sælthun, N.R., Xu, Y., Zhou, B., Chen, H., 2015. Entropy theory based multi-criteria resampling of rain gauge networks for hydrological modelling - A case study of humid area in southern China. J. Hydrol. 525, 138–151. https://doi.org/10.1016/j.jhydrol.2015.03.034.
Watanabe (b0360) 1960; 4
Dong, Dohmen-Janssen, Booji (b0065) 2005; 50
Keum, Kornelsen, Leach, Coulibaly (b0130) 2017; 19
Tasker, Moss (b0335) 1979; 15
Luo, Wu, Yang, Qian, Wu (b0190) 2016; 534
Fahle, Hohenbrink, Dietrich, Lischeid (b0070) 2015; 51
Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., ÖSterle, H., Adam, J.C., Bellouin, N., Boucher, O., Best, M., 2011. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12, 823–848. https://doi.org/10.1175/2011JHM1369.1.
Husain (b0100) 1989; 25
Mishra, Coulibaly (b0215) 2009; 47
Ragettli, Pellicciotti, Immerzeel, Miles, Petersen, Heynen, Shea, Stumm, Joshi, Shrestha (b0260) 2015; 78
Stosic, Stosic, Singh (b0325) 2017; 552
François, Schlef, Wi, Brown (b0075) 2019; 574
Nash, Sutcliffe (b0235) 1970; 10
Halverson, M.J., Fleming, S.W., 2015. Complex network theory, streamflow, and hydrometric monitoring system design. Hydrol. Earth Syst. Sci. 19, 3301–3318. https://doi.org/10.5194/hess-19-3301-2015.
Laize, C.L.R., 2004. Integration of spatial datasets to support the review of hydrometric networks and the identification of representative catchments. Hydrol. Earth Syst. Sci. 8, 1103–1117. https://doi.org/10.5194/hess-8-1103-2004.
World Meteorological Organization, 2008. Guide to Hydrological Practices, Volume I Hydrology – From Measurement to Hydrological Information, WMO-No. 168, Sixth. ed.
Keum, Coulibaly, Razavi, Tapsoba, Gobena, Weber, Pietroniro (b0125) 2018; 561
Kollat, Reed, Kasprzyk (b0135) 2008; 31
Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.
Leach, Coulibaly, Guo (b0165) 2016; 96
Samuel, Coulibaly, Kollat (b0280) 2013; 49
Berg, P., Donnelly, C., Gustafsson, D., 2018. Near-real-time adjusted reanalysis forcing data for hydrology. Hydrol. Earth Syst. Sci. 22, 989–1000. https://doi.org/10.5194/hess-22-989-2018.
Ruhi, Messager, Olden (b0275) 2018; 1
Joo, Lee, Jun, Kim, Hong, Kim, Kim (b0110) 2019; 21
Benke, Cushing (b0015) 2005
Xu, Xu, Chen, Zhang, Li (b0405) 2013; 505
Burn, Goulter (b0045) 1991; 122
Karnieli (b0105) 1990; 22
Mogheir, Singh (b0230) 2002; 16
Stadnyk, T.; Bajracharya, A.R., 2019. HYPE Model Output for NCRB using Hydro-GFD Reanalysis Dataset. Unpublished work.
Lespinas, F., Fortin, V., Roy, G., Rasmussen, P., Stadnyk, T., 2015. Performance evaluation of the canadian precipitation analysis (CaPA). J. Hydrometeorol. 16, 2045–2064. https://doi.org/10.1175/JHM-D-14-0191.1.
Li, Singh, Mishra (b0180) 2012; 48
Vaze, Post, Chiew, Perraud, Viney, Teng (b0350) 2010; 394
Zubrycki, Roy, Osman, Lewtas, Gunn, Grosshans (b0425) 2016
Rodríguez-Iturbe, Mejía (b0270) 1974; 10
Zeng, Chen, Xu, Jie, Chen, Guo, Liu (b0420) 2018; 563
10.1016/j.jhydrol.2020.125876_b0320
10.1016/j.jhydrol.2020.125876_b0245
Lane (10.1016/j.jhydrol.2020.125876_b0155) 1982
10.1016/j.jhydrol.2020.125876_b0400
Benke (10.1016/j.jhydrol.2020.125876_b0015) 2005
Zeng (10.1016/j.jhydrol.2020.125876_b0420) 2018; 563
Fahle (10.1016/j.jhydrol.2020.125876_b0070) 2015; 51
Karnieli (10.1016/j.jhydrol.2020.125876_b0105) 1990; 22
Weisse (10.1016/j.jhydrol.2020.125876_b0375) 2002; 47
Vaze (10.1016/j.jhydrol.2020.125876_b0350) 2010; 394
10.1016/j.jhydrol.2020.125876_b0080
Rodríguez-Iturbe (10.1016/j.jhydrol.2020.125876_b0270) 1974; 10
Stosic (10.1016/j.jhydrol.2020.125876_b0325) 2017; 552
Samuel (10.1016/j.jhydrol.2020.125876_b0280) 2013; 49
Ragettli (10.1016/j.jhydrol.2020.125876_b0260) 2015; 78
Joo (10.1016/j.jhydrol.2020.125876_b0110) 2019; 21
Tolson (10.1016/j.jhydrol.2020.125876_b0340) 2007; 43
François (10.1016/j.jhydrol.2020.125876_b0075) 2019; 574
Pardo-Igúzquiza (10.1016/j.jhydrol.2020.125876_b0255) 1998; 210
10.1016/j.jhydrol.2020.125876_b0410
Mogheir (10.1016/j.jhydrol.2020.125876_b0230) 2002; 16
Newbury (10.1016/j.jhydrol.2020.125876_b0240) 1984; 41
Xu (10.1016/j.jhydrol.2020.125876_b0405) 2013; 505
Chacon-hurtado (10.1016/j.jhydrol.2020.125876_b0050) 2017; 21
Gupta (10.1016/j.jhydrol.2020.125876_b0085) 1998; 34
Markus (10.1016/j.jhydrol.2020.125876_b0205) 2003; 283
10.1016/j.jhydrol.2020.125876_b0090
Watanabe (10.1016/j.jhydrol.2020.125876_b0360) 1960; 4
10.1016/j.jhydrol.2020.125876_b0250
Keum (10.1016/j.jhydrol.2020.125876_b0115) 2017; 53
Li (10.1016/j.jhydrol.2020.125876_b0180) 2012; 48
10.1016/j.jhydrol.2020.125876_b0370
10.1016/j.jhydrol.2020.125876_b0175
Husain (10.1016/j.jhydrol.2020.125876_b0100) 1989; 25
Tasker (10.1016/j.jhydrol.2020.125876_b0335) 1979; 15
10.1016/j.jhydrol.2020.125876_b0025
10.1016/j.jhydrol.2020.125876_b0300
Leach (10.1016/j.jhydrol.2020.125876_b0170) 2015; 529
Wang (10.1016/j.jhydrol.2020.125876_b0365) 2019; 178
Zubrycki (10.1016/j.jhydrol.2020.125876_b0425) 2016
Keum (10.1016/j.jhydrol.2020.125876_b0125) 2018; 561
McGill (10.1016/j.jhydrol.2020.125876_b0210) 1954; 19
Keum (10.1016/j.jhydrol.2020.125876_b0120) 2017; 22
Keum (10.1016/j.jhydrol.2020.125876_b0130) 2017; 19
Alfonso (10.1016/j.jhydrol.2020.125876_b0005) 2010; 46
Werstuck (10.1016/j.jhydrol.2020.125876_b0385) 2018; 54
Burn (10.1016/j.jhydrol.2020.125876_b0045) 1991; 122
10.1016/j.jhydrol.2020.125876_b0380
10.1016/j.jhydrol.2020.125876_b0185
Mishra (10.1016/j.jhydrol.2020.125876_b0215) 2009; 47
Leach (10.1016/j.jhydrol.2020.125876_b0165) 2016; 96
Dong (10.1016/j.jhydrol.2020.125876_b0065) 2005; 50
Kollat (10.1016/j.jhydrol.2020.125876_b0140) 2011; 47
Kollat (10.1016/j.jhydrol.2020.125876_b0135) 2008; 31
Nash (10.1016/j.jhydrol.2020.125876_b0235) 1970; 10
Luo (10.1016/j.jhydrol.2020.125876_b0190) 2016; 534
Krstanovic (10.1016/j.jhydrol.2020.125876_b0145) 1992; 6
Ruhi (10.1016/j.jhydrol.2020.125876_b0275) 2018; 1
Mishra (10.1016/j.jhydrol.2020.125876_b0220) 2010; 380
Reed (10.1016/j.jhydrol.2020.125876_b0265) 2012; 35
Swenson (10.1016/j.jhydrol.2020.125876_b0330) 2006; 33
10.1016/j.jhydrol.2020.125876_b0150
10.1016/j.jhydrol.2020.125876_b0395
References_xml – year: 2016
  ident: b0425
  article-title: Large Area Planning in the Nelson-Churchill River Basin (NCRB): Laying a foundation in northern Manitoba; International Institute for Sustainable Development (IISD):Winnipeg
– volume: 561
  start-page: 688
  year: 2018
  end-page: 701
  ident: b0125
  article-title: Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design
  publication-title: J. Hydrol.
– volume: 31
  start-page: 828
  year: 2008
  end-page: 845
  ident: b0135
  article-title: A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems
  publication-title: Adv. Water Resourc.
– volume: 22
  start-page: 391
  year: 1990
  end-page: 398
  ident: b0105
  article-title: Application of kriging technique to areal precipitation mapping in Arizona
  publication-title: GeoJournal
– start-page: 1
  year: 2005
  end-page: 18
  ident: b0015
  article-title: Background and approach
  publication-title: Rivers of North America
– volume: 19
  start-page: 97
  year: 1954
  end-page: 116
  ident: b0210
  article-title: Multivariate information transmission
  publication-title: Psychometrika
– reference: Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.
– reference: Lespinas, F., Fortin, V., Roy, G., Rasmussen, P., Stadnyk, T., 2015. Performance evaluation of the canadian precipitation analysis (CaPA). J. Hydrometeorol. 16, 2045–2064. https://doi.org/10.1175/JHM-D-14-0191.1.
– volume: 394
  start-page: 447
  year: 2010
  end-page: 457
  ident: b0350
  article-title: Climate non-stationarity – Validity of calibrated rainfall–runoff models for use in climate change studies
  publication-title: J. Hydrol.
– volume: 15
  start-page: 1791
  year: 1979
  end-page: 1796
  ident: b0335
  article-title: Analysis of arizona flood data network for regional information
  publication-title: Water Resour. Res.
– volume: 46
  start-page: 1
  year: 2010
  end-page: 13
  ident: b0005
  article-title: Optimization of water level monitoring network in polder systems using information theory
  publication-title: Water Resour. Res.
– volume: 34
  start-page: 751
  year: 1998
  end-page: 763
  ident: b0085
  article-title: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
  publication-title: Water Resour. Res.
– volume: 534
  start-page: 352
  year: 2016
  end-page: 363
  ident: b0190
  article-title: Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty
  publication-title: J. Hydrol.
– volume: 283
  start-page: 107
  year: 2003
  end-page: 121
  ident: b0205
  article-title: Entropy and generalized least square methods in assessment of the regional value of streamgages
  publication-title: J. Hydrol.
– reference: Xu, H., Xu, C.Y., Sælthun, N.R., Xu, Y., Zhou, B., Chen, H., 2015. Entropy theory based multi-criteria resampling of rain gauge networks for hydrological modelling - A case study of humid area in southern China. J. Hydrol. 525, 138–151. https://doi.org/10.1016/j.jhydrol.2015.03.034.
– volume: 1
  start-page: 198
  year: 2018
  end-page: 203
  ident: b0275
  article-title: Tracking the pulse of the Earth’s fresh waters
  publication-title: Nat Sustain
– volume: 41
  start-page: 548
  year: 1984
  end-page: 557
  ident: b0240
  article-title: The southern indian lake impoundment and churchill river diversion
  publication-title: Can. J. Fish. Aquat. Sci.
– reference: Northcote, T. G., and P. A. Larkin. 1989. The Fraser River: A major salmonine production system. In D. P. Dodge (ed.). Proceedings of the international large river symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106:172–204.
– volume: 50
  start-page: 279
  year: 2005
  end-page: 298
  ident: b0065
  article-title: Appropriate spatial sampling of rainfall for flow simulation
  publication-title: Hydrologic. Sci. J.
– volume: 51
  start-page: 7723
  year: 2015
  end-page: 7743
  ident: b0070
  article-title: Temporal variability of the optimal monitoring setup assessed using information theory
  publication-title: Water Resour. Res.
– reference: Werstuck, C., Coulibaly, P., 2017. Hydrometric network design using dual entropy multi-objective optimization in the Ottawa River Basin. Hydrol. Res. 48, 1639–1651. https://doi.org/10.2166/nh.2016.344.
– volume: 47
  start-page: 739
  year: 2002
  end-page: 752
  ident: b0375
  article-title: A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: the use of daily information / Comparaison de méthodes de cartographie de paramètres statistiques des précipitations extrêmes dans les Alpes françaises: apport de l'information journalière
  publication-title: Hydrol. Sci. J.
– volume: 19
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0130
  article-title: Entropy applications to water monitoring network design: A review
  publication-title: Entropy
– volume: 10
  start-page: 713
  year: 1974
  end-page: 728
  ident: b0270
  article-title: The design of rainfall networks in time and space
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 3071
  year: 2017
  end-page: 3091
  ident: b0050
  article-title: Rainfall and streamflow sensor network design: A review of applications, classification, and a proposed framework
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 47
  start-page: 1
  year: 2011
  end-page: 18
  ident: b0140
  article-title: Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics
  publication-title: Water Resour. Res.
– reference: Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., ÖSterle, H., Adam, J.C., Bellouin, N., Boucher, O., Best, M., 2011. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12, 823–848. https://doi.org/10.1175/2011JHM1369.1.
– volume: 35
  start-page: 55
  year: 2012
  end-page: 68
  ident: b0265
  article-title: Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty
  publication-title: Adv. Water Resour.
– reference: Government of Canada, 2010. Land Use 2010. URL https://open.canada.ca/data/en/dataset/9e1efe92-e5a3-4f70-b313-68fb1283eadf (accessed 2.5.19).
– reference: Stadnyk, T.; Bajracharya, A.R., 2019. HYPE Model Output for NCRB using Hydro-GFD Reanalysis Dataset. Unpublished work.
– year: 1982
  ident: b0155
  article-title: Nature’s lifeline: Prairie and northern waters
– reference: World Meteorological Organization, 2008. Guide to Hydrological Practices, Volume I Hydrology – From Measurement to Hydrological Information, WMO-No. 168, Sixth. ed.
– reference: Laize, C.L.R., 2004. Integration of spatial datasets to support the review of hydrometric networks and the identification of representative catchments. Hydrol. Earth Syst. Sci. 8, 1103–1117. https://doi.org/10.5194/hess-8-1103-2004.
– volume: 6
  start-page: 295
  year: 1992
  end-page: 314
  ident: b0145
  article-title: Evaluation of rainfall networks using entropy: II. Application
  publication-title: Water Resour Manage
– reference: Berg, P., Donnelly, C., Gustafsson, D., 2018. Near-real-time adjusted reanalysis forcing data for hydrology. Hydrol. Earth Syst. Sci. 22, 989–1000. https://doi.org/10.5194/hess-22-989-2018.
– volume: 78
  start-page: 94
  year: 2015
  end-page: 111
  ident: b0260
  article-title: Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model
  publication-title: Adv. Water Resour.
– volume: 96
  start-page: 108
  year: 2016
  end-page: 119
  ident: b0165
  article-title: Entropy based groundwater monitoring network design considering spatial distribution of annual recharge
  publication-title: Adv. Water Resour.
– volume: 47
  year: 2009
  ident: b0215
  article-title: Developments in hydrometric network design: A review
  publication-title: Rev. Geophys.
– volume: 4
  start-page: 66
  year: 1960
  end-page: 82
  ident: b0360
  article-title: Information theoretical analysis of multivariate correlation
  publication-title: IBM J. Res. Dev.
– volume: 122
  start-page: 71
  year: 1991
  end-page: 91
  ident: b0045
  article-title: An approach to the rationalization of streamflow data collection networks
  publication-title: J. Hydrol.
– volume: 16
  start-page: 37
  year: 2002
  end-page: 49
  ident: b0230
  article-title: Application of information theory to groundwater quality monitoring networks
  publication-title: Water Resour. Manag.
– volume: 505
  start-page: 1
  year: 2013
  end-page: 12
  ident: b0405
  article-title: Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China
  publication-title: J. Hydrol.
– volume: 54
  start-page: 275
  year: 2018
  end-page: 286
  ident: b0385
  article-title: Assessing spatial scale effects on hydrometric network design using entropy and multi-objective methods
  publication-title: J. Am. Water Resour. Assoc.
– volume: 210
  start-page: 206
  year: 1998
  end-page: 220
  ident: b0255
  article-title: Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing
  publication-title: J. Hydrol.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0235
  article-title: River flow forecasting through conceptual models part I — A discussion of principles
  publication-title: J. Hydrol.
– reference: Halverson, M.J., Fleming, S.W., 2015. Complex network theory, streamflow, and hydrometric monitoring system design. Hydrol. Earth Syst. Sci. 19, 3301–3318. https://doi.org/10.5194/hess-19-3301-2015.
– volume: 49
  start-page: 8070
  year: 2013
  end-page: 8089
  ident: b0280
  article-title: CRDEMO: Combined regionalization and dual entropy-multiobjective optimization for hydrometric network design: Crdemo for Hydrometric Network Design
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 527
  year: 1989
  end-page: 534
  ident: b0100
  article-title: Hydrologic uncertainty measure and network design
  publication-title: J. Am. Water Resour. Assoc.
– volume: 21
  start-page: 991
  year: 2019
  ident: b0110
  article-title: Optimal stream gauge network design using entropy theory and importance of stream gauge stations
  publication-title: Entropy
– volume: 552
  start-page: 306
  year: 2017
  end-page: 312
  ident: b0325
  article-title: Optimizing streamflow monitoring networks using joint permutation entropy
  publication-title: J. Hydrol.
– volume: 178
  start-page: 108686
  year: 2019
  ident: b0365
  article-title: Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy
  publication-title: Environ. Res.
– volume: 53
  start-page: 6239
  year: 2017
  end-page: 6259
  ident: b0115
  article-title: Information theory-based decision support system for integrated design of multivariable hydrometric networks
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 04017009
  year: 2017
  ident: b0120
  article-title: Sensitivity of entropy method to time series length in hydrometric network design
  publication-title: J. Hydrol. Eng.
– volume: 563
  start-page: 106
  year: 2018
  end-page: 122
  ident: b0420
  article-title: The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach
  publication-title: J. Hydrol.
– reference: Nour, M.H., Smit, D.W., Gamal El-Din, M., 2006. Geostatistical mapping of precipitation: Implications for rain gauge network design. Water Sci. Technol. 53, 101–110. https://doi.org/10.2166/wst.2006.303.
– volume: 574
  start-page: 557
  year: 2019
  end-page: 573
  ident: b0075
  article-title: Design considerations for riverine floods in a changing climate – A review
  publication-title: J. Hydrol.
– reference: Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B., 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 41, 295–319. https://doi.org/10.2166/nh.2010.007.
– volume: 33
  start-page: 1
  year: 2006
  end-page: 5
  ident: b0330
  article-title: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois
  publication-title: Geophys. Res. Lett.
– volume: 48
  start-page: 1
  year: 2012
  end-page: 15
  ident: b0180
  article-title: Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy
  publication-title: Water Resour. Res.
– volume: 529
  start-page: 1350
  year: 2015
  end-page: 1359
  ident: b0170
  article-title: Hydrometric network design using streamflow signatures and indicators of hydrologic alteration
  publication-title: J. Hydrol.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 16
  ident: b0340
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resour. Res.
– volume: 380
  start-page: 420
  year: 2010
  end-page: 437
  ident: b0220
  article-title: Hydrometric network evaluation for Canadian watersheds
  publication-title: J. Hydrol.
– reference: Xiao, R., He, X., Zhang, Y., Ferreira, V.G., Chang, L., 2015. Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the mid-atlantic region of the United States. Remote Sens. 7, 686–703. https://doi.org/10.3390/rs70100686.
– ident: 10.1016/j.jhydrol.2020.125876_b0370
  doi: 10.1175/2011JHM1369.1
– volume: 210
  start-page: 206
  issue: 1-4
  year: 1998
  ident: 10.1016/j.jhydrol.2020.125876_b0255
  article-title: Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00188-7
– volume: 1
  start-page: 198
  issue: 4
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125876_b0275
  article-title: Tracking the pulse of the Earth’s fresh waters
  publication-title: Nat Sustain
  doi: 10.1038/s41893-018-0047-7
– volume: 49
  start-page: 8070
  issue: 12
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125876_b0280
  article-title: CRDEMO: Combined regionalization and dual entropy-multiobjective optimization for hydrometric network design: Crdemo for Hydrometric Network Design
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014058
– ident: 10.1016/j.jhydrol.2020.125876_b0410
  doi: 10.1016/j.jhydrol.2015.03.034
– volume: 574
  start-page: 557
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125876_b0075
  article-title: Design considerations for riverine floods in a changing climate – A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.068
– volume: 46
  start-page: 1
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125876_b0005
  article-title: Optimization of water level monitoring network in polder systems using information theory
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 991
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125876_b0110
  article-title: Optimal stream gauge network design using entropy theory and importance of stream gauge stations
  publication-title: Entropy
  doi: 10.3390/e21100991
– volume: 561
  start-page: 688
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125876_b0125
  article-title: Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.037
– volume: 48
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125876_b0180
  article-title: Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011251
– volume: 4
  start-page: 66
  issue: 1
  year: 1960
  ident: 10.1016/j.jhydrol.2020.125876_b0360
  article-title: Information theoretical analysis of multivariate correlation
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.41.0066
– year: 1982
  ident: 10.1016/j.jhydrol.2020.125876_b0155
– volume: 6
  start-page: 295
  issue: 4
  year: 1992
  ident: 10.1016/j.jhydrol.2020.125876_b0145
  article-title: Evaluation of rainfall networks using entropy: II. Application
  publication-title: Water Resour Manage
  doi: 10.1007/BF00872282
– volume: 15
  start-page: 1791
  issue: 6
  year: 1979
  ident: 10.1016/j.jhydrol.2020.125876_b0335
  article-title: Analysis of arizona flood data network for regional information
  publication-title: Water Resour. Res.
  doi: 10.1029/WR015i006p01791
– volume: 22
  start-page: 04017009
  issue: 7
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125876_b0120
  article-title: Sensitivity of entropy method to time series length in hydrometric network design
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001508
– ident: 10.1016/j.jhydrol.2020.125876_b0320
– ident: 10.1016/j.jhydrol.2020.125876_b0025
  doi: 10.5194/hess-22-989-2018
– volume: 10
  start-page: 713
  issue: 4
  year: 1974
  ident: 10.1016/j.jhydrol.2020.125876_b0270
  article-title: The design of rainfall networks in time and space
  publication-title: Water Resour. Res.
  doi: 10.1029/WR010i004p00713
– volume: 283
  start-page: 107
  issue: 1-4
  year: 2003
  ident: 10.1016/j.jhydrol.2020.125876_b0205
  article-title: Entropy and generalized least square methods in assessment of the regional value of streamgages
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(03)00244-0
– volume: 534
  start-page: 352
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125876_b0190
  article-title: Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.009
– ident: 10.1016/j.jhydrol.2020.125876_b0400
  doi: 10.3390/rs70100686
– volume: 394
  start-page: 447
  issue: 3-4
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125876_b0350
  article-title: Climate non-stationarity – Validity of calibrated rainfall–runoff models for use in climate change studies
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.09.018
– volume: 552
  start-page: 306
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125876_b0325
  article-title: Optimizing streamflow monitoring networks using joint permutation entropy
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.07.003
– volume: 22
  start-page: 391
  year: 1990
  ident: 10.1016/j.jhydrol.2020.125876_b0105
  article-title: Application of kriging technique to areal precipitation mapping in Arizona
  publication-title: GeoJournal
  doi: 10.1007/BF00174760
– volume: 54
  start-page: 275
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125876_b0385
  article-title: Assessing spatial scale effects on hydrometric network design using entropy and multi-objective methods
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12611
– volume: 19
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125876_b0130
  article-title: Entropy applications to water monitoring network design: A review
  publication-title: Entropy
  doi: 10.3390/e19110613
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  ident: 10.1016/j.jhydrol.2020.125876_b0235
  article-title: River flow forecasting through conceptual models part I — A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 78
  start-page: 94
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125876_b0260
  article-title: Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.01.013
– volume: 96
  start-page: 108
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125876_b0165
  article-title: Entropy based groundwater monitoring network design considering spatial distribution of annual recharge
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.07.006
– volume: 47
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2020.125876_b0215
  article-title: Developments in hydrometric network design: A review
  publication-title: Rev. Geophys.
  doi: 10.1029/2007RG000243
– volume: 41
  start-page: 548
  issue: 4
  year: 1984
  ident: 10.1016/j.jhydrol.2020.125876_b0240
  article-title: The southern indian lake impoundment and churchill river diversion
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f84-068
– volume: 529
  start-page: 1350
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125876_b0170
  article-title: Hydrometric network design using streamflow signatures and indicators of hydrologic alteration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.048
– volume: 21
  start-page: 3071
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125876_b0050
  article-title: Rainfall and streamflow sensor network design: A review of applications, classification, and a proposed framework
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-3071-2017
– volume: 50
  start-page: 279
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125876_b0065
  article-title: Appropriate spatial sampling of rainfall for flow simulation
  publication-title: Hydrologic. Sci. J.
  doi: 10.1623/hysj.50.2.279.61801
– volume: 563
  start-page: 106
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125876_b0420
  article-title: The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.05.058
– volume: 35
  start-page: 55
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125876_b0265
  article-title: Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.10.011
– ident: 10.1016/j.jhydrol.2020.125876_b0090
  doi: 10.5194/hess-19-3301-2015
– volume: 31
  start-page: 828
  issue: 5
  year: 2008
  ident: 10.1016/j.jhydrol.2020.125876_b0135
  article-title: A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems
  publication-title: Adv. Water Resourc.
  doi: 10.1016/j.advwatres.2008.01.017
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2020.125876_b0340
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004723
– volume: 47
  start-page: 739
  issue: 5
  year: 2002
  ident: 10.1016/j.jhydrol.2020.125876_b0375
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626660209492977
– volume: 25
  start-page: 527
  year: 1989
  ident: 10.1016/j.jhydrol.2020.125876_b0100
  article-title: Hydrologic uncertainty measure and network design
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1989.tb03088.x
– ident: 10.1016/j.jhydrol.2020.125876_b0175
  doi: 10.1175/JHM-D-14-0191.1
– volume: 505
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125876_b0405
  article-title: Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.09.004
– ident: 10.1016/j.jhydrol.2020.125876_b0245
– ident: 10.1016/j.jhydrol.2020.125876_b0185
  doi: 10.2166/nh.2010.007
– ident: 10.1016/j.jhydrol.2020.125876_b0380
  doi: 10.2166/nh.2016.344
– ident: 10.1016/j.jhydrol.2020.125876_b0150
  doi: 10.5194/hess-8-1103-2004
– ident: 10.1016/j.jhydrol.2020.125876_b0300
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– year: 2016
  ident: 10.1016/j.jhydrol.2020.125876_b0425
– volume: 178
  start-page: 108686
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125876_b0365
  article-title: Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.108686
– volume: 380
  start-page: 420
  issue: 3-4
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125876_b0220
  article-title: Hydrometric network evaluation for Canadian watersheds
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.11.015
– start-page: 1
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125876_b0015
  article-title: Background and approach
– volume: 33
  start-page: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2020.125876_b0330
  article-title: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026962
– ident: 10.1016/j.jhydrol.2020.125876_b0250
  doi: 10.2166/wst.2006.303
– volume: 34
  start-page: 751
  issue: 4
  year: 1998
  ident: 10.1016/j.jhydrol.2020.125876_b0085
  article-title: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR03495
– volume: 122
  start-page: 71
  issue: 1-4
  year: 1991
  ident: 10.1016/j.jhydrol.2020.125876_b0045
  article-title: An approach to the rationalization of streamflow data collection networks
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(91)90173-F
– ident: 10.1016/j.jhydrol.2020.125876_b0395
– volume: 19
  start-page: 97
  issue: 2
  year: 1954
  ident: 10.1016/j.jhydrol.2020.125876_b0210
  article-title: Multivariate information transmission
  publication-title: Psychometrika
  doi: 10.1007/BF02289159
– volume: 16
  start-page: 37
  year: 2002
  ident: 10.1016/j.jhydrol.2020.125876_b0230
  article-title: Application of information theory to groundwater quality monitoring networks
  publication-title: Water Resour. Manag.
  doi: 10.1023/A:1015511811686
– ident: 10.1016/j.jhydrol.2020.125876_b0080
– volume: 51
  start-page: 7723
  issue: 9
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125876_b0070
  article-title: Temporal variability of the optimal monitoring setup assessed using information theory
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017137
– volume: 53
  start-page: 6239
  issue: 7
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125876_b0115
  article-title: Information theory-based decision support system for integrated design of multivariable hydrometric networks
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019981
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2020.125876_b0140
  article-title: Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009194
SSID ssj0000334
Score 2.4241438
Snippet •Hydrological Models Can Effectively Guide the Design of Hydrometric Networks.•Using Model Performance Criteria as Design Objectives enables User-Directed...
Water resource managers depend on the collection of accurate hydrometric data for various modeling and planning projects. An essential use of hydrometric data...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125876
SubjectTerms algorithms
data collection
Entropy
Hydrological Modelling
Hydrometric Monitoring Networks
mathematical theory
model validation
Optimization
runoff
stream flow
watersheds
Title Integration of hydrological models with entropy and multi-objective optimization based methods for designing specific needs streamflow monitoring networks
URI https://dx.doi.org/10.1016/j.jhydrol.2020.125876
https://www.proquest.com/docview/2524290407
Volume 593
WOSCitedRecordID wos000639853400061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFAkuiKcoLy0St8gBe9fe9TFCBcqh4tBKuVn7stSQ2FEepfwPTvxaZl92lFIVkLhYlqX1Jvm-zIzHM98g9IaZmjJNSEJFYRLwUHkCJyRRinCh4BmDMe2GTbCTEz6dll8Ggx-xF-ZizpqGX16Wy_8KNVwDsG3r7F_A3d0ULsA5gA5HgB2OfwT8cRCAiJHgd73qDJybexMa2mxat116-SVXVpi0cubN36gFQ7IIHZoj6-h0GDXt1BtG2pV9uEyEHV9fn6tRA15w7TpPxKKet99gK2ssXHVf40vN19cEwvETurqDycIqN2hL0y5FcbZab-fiqy_qVa3s3pvYae5S-FnZtsQxqIiHJEaWxrrnmFm70l3TdRqkhR-CPDbeQHNW2h46tmvBcz9k8Yo38ImJ2Xjmv8gYdrZyGjlne-rbzp_b99aZ3S6zepaE8VvoIGN5yYfoYHJ8NP3ce3hCaFShtwv6zrC3v93suphnz_u7kOb0ProXIMATz6EHaGCah-jORxNUzB-hnztcwm2Nd7mEPZew5RIOXMLAJbzHJbzLJey4hAOXMHAJd1zCkUvYcQn3XMI9l3Dk0mN09uHo9P2nJAzzSBSh2SapCTUpRGTyXaaocWk0JnVZmFSkhdJMmzqvdWkKqWkhTM6yohSp0hAY1NpAVP0EDZu2MU8R1lTwQmeScMWpklpCCJwaXReKSCtYd4ho_LkrFZTu7cCVeRVLGmdVQKmyKFUepUM07pYtvdTLTQt4xLIK8aqPQysg4E1LX0fsK7Dn9iWdaEy7XVdZDkFzCa6VPfv32z9Hd_t_2Qs03Ky25iW6rS425-vVq0DnX1KN1hU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+hydrological+models+with+entropy+and+multi-objective+optimization+based+methods+for+designing+specific+needs+streamflow+monitoring+networks&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ursulak%2C+Jacob&rft.au=Coulibaly%2C+Paulin&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=593&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125876&rft.externalDocID=S0022169420313378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon