A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments
In this paper, the authors briefly review some closed-form formulas of the Gauss hypergeometric function at specific arguments, alternatively prove four of these formulas, newly extend a closed-form formula of the Gauss hypergeometric function at some specific arguments, successfully apply a special...
Uloženo v:
| Vydáno v: | Axioms Ročník 13; číslo 5; s. 317 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2024
|
| Témata: | |
| ISSN: | 2075-1680, 2075-1680 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, the authors briefly review some closed-form formulas of the Gauss hypergeometric function at specific arguments, alternatively prove four of these formulas, newly extend a closed-form formula of the Gauss hypergeometric function at some specific arguments, successfully apply a special case of the newly extended closed-form formula to derive an alternative form for the Maclaurin power series expansion of the Wilf function, and discover two novel increasing rational approximations to a quarter of the circular constant. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2075-1680 2075-1680 |
| DOI: | 10.3390/axioms13050317 |