New paradigm for watershed model development by coupling machine learning algorithm and mechanistic model

•New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best management practices evaluation were established.•The paradigm shows higher interpretability based on mechanistic model. The development of watershe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 636; p. 131264
Main Authors: Liu, Guowangchen, Chen, Lei, Wang, Wenzhuo, Wang, Shuai, Zhu, Kaihang, Shen, Zhenyao
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2024
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best management practices evaluation were established.•The paradigm shows higher interpretability based on mechanistic model. The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution is an important application of watershed model, and the best management practices (BMPs) have attracted wide attention as the main control approach of NPS pollution. In this study, a new paradigm was proposed based on the integration of data-driven and mechanistic methods, taking BMP evaluation as an example. Specifically, comprehensive databases were constructed for filter and retention BMPs by collecting, classifying and analyzing published data. Twelve machine learning algorithms were employed for regression analysis between BMPs efficiency and their influencing factors, while the constructed equations were coupled with physical-based models. A case study was performed in a typical catchment of Chaohu Lake Watershed, China. The results demonstrated total interception area, soil type, and vegetation biomass had significant impacts on BMPs performances, while the multilayer perceptron regression (MLPR), K nearest neighbor regression (KNRD), and extremely randomized tree (ETR) methods had the best performances of nutrients removal. The study generated over ten thousand datasets using mechanistic processes, resulting in more efficient and interpretable BMPs evaluator. Compare to traditional methods, this new paradigm has shown advantages in the model application at the watershed scale, enhancing the BMPs evaluator with a higher level of interpretability by coupling the approach with mechanistic models.
AbstractList •New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best management practices evaluation were established.•The paradigm shows higher interpretability based on mechanistic model. The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution is an important application of watershed model, and the best management practices (BMPs) have attracted wide attention as the main control approach of NPS pollution. In this study, a new paradigm was proposed based on the integration of data-driven and mechanistic methods, taking BMP evaluation as an example. Specifically, comprehensive databases were constructed for filter and retention BMPs by collecting, classifying and analyzing published data. Twelve machine learning algorithms were employed for regression analysis between BMPs efficiency and their influencing factors, while the constructed equations were coupled with physical-based models. A case study was performed in a typical catchment of Chaohu Lake Watershed, China. The results demonstrated total interception area, soil type, and vegetation biomass had significant impacts on BMPs performances, while the multilayer perceptron regression (MLPR), K nearest neighbor regression (KNRD), and extremely randomized tree (ETR) methods had the best performances of nutrients removal. The study generated over ten thousand datasets using mechanistic processes, resulting in more efficient and interpretable BMPs evaluator. Compare to traditional methods, this new paradigm has shown advantages in the model application at the watershed scale, enhancing the BMPs evaluator with a higher level of interpretability by coupling the approach with mechanistic models.
The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution is an important application of watershed model, and the best management practices (BMPs) have attracted wide attention as the main control approach of NPS pollution. In this study, a new paradigm was proposed based on the integration of data-driven and mechanistic methods, taking BMP evaluation as an example. Specifically, comprehensive databases were constructed for filter and retention BMPs by collecting, classifying and analyzing published data. Twelve machine learning algorithms were employed for regression analysis between BMPs efficiency and their influencing factors, while the constructed equations were coupled with physical-based models. A case study was performed in a typical catchment of Chaohu Lake Watershed, China. The results demonstrated total interception area, soil type, and vegetation biomass had significant impacts on BMPs performances, while the multilayer perceptron regression (MLPR), K nearest neighbor regression (KNRD), and extremely randomized tree (ETR) methods had the best performances of nutrients removal. The study generated over ten thousand datasets using mechanistic processes, resulting in more efficient and interpretable BMPs evaluator. Compare to traditional methods, this new paradigm has shown advantages in the model application at the watershed scale, enhancing the BMPs evaluator with a higher level of interpretability by coupling the approach with mechanistic models.
ArticleNumber 131264
Author Shen, Zhenyao
Liu, Guowangchen
Wang, Shuai
Zhu, Kaihang
Wang, Wenzhuo
Chen, Lei
Author_xml – sequence: 1
  givenname: Guowangchen
  surname: Liu
  fullname: Liu, Guowangchen
– sequence: 2
  givenname: Lei
  orcidid: 0000-0001-8415-3896
  surname: Chen
  fullname: Chen, Lei
  email: chenlei1982bnu@bnu.edu.cn
– sequence: 3
  givenname: Wenzhuo
  surname: Wang
  fullname: Wang, Wenzhuo
– sequence: 4
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
– sequence: 5
  givenname: Kaihang
  surname: Zhu
  fullname: Zhu, Kaihang
– sequence: 6
  givenname: Zhenyao
  orcidid: 0000-0002-6620-1943
  surname: Shen
  fullname: Shen, Zhenyao
BookMark eNqFkE1r3DAQhkVJoZu0P6GgYy_e6sPyBz2UEpo2ENJLexbyaLzWIkuupE3Yf18vzqmXzGVgeJ8X5rkmVyEGJOQjZ3vOePP5uD9OZ5ui3wsm6j2XXDT1G7LjXdtXomXtFdkxJkTFm75-R65zPrJ1pKx3xD3iM11MMtYdZjrGRJ9NwZQntHSOFj21-IQ-LjOGQoczhXhavAsHOhuYXEDq0aRwORh_iMmVaaYmrDDCZILLxcFW9J68HY3P-OFl35A_d99_3_6sHn79uL_99lCBrEWpULWNFe2oUFgzNjBCzQYY64GDVJ1VslvfMkyoQY214Ko3XCLC0FmwQ9M38oZ82nqXFP-eMBc9uwzovQkYT1lLwRred0qKNfpli0KKOSccNbhiiouhJOO85kxfBOujfhGsL4L1Jnil1X_0ktxs0vlV7uvG4WrhyWHSGRwGQOsSQtE2ulca_gFTOZ1D
CitedBy_id crossref_primary_10_1016_j_watres_2025_124042
crossref_primary_10_1007_s11269_024_04067_5
crossref_primary_10_1080_19942060_2024_2387051
crossref_primary_10_1016_j_optcom_2025_131654
crossref_primary_10_1016_j_jhydrol_2025_133505
Cites_doi 10.1016/j.watres.2023.119991
10.1016/j.watres.2022.118721
10.1016/j.jenvman.2011.10.006
10.1016/j.jhydrol.2004.09.005
10.1029/2007WR006749
10.1016/j.jhydrol.2011.01.004
10.1016/j.scitotenv.2020.138091
10.3390/rs12030475
10.1016/j.envsoft.2019.104602
10.1016/j.scitotenv.2020.138600
10.1126/science.aaa8415
10.1016/j.jocs.2013.07.004
10.1016/j.scitotenv.2022.156643
10.2166/wst.2022.115
10.1016/j.jenvman.2021.114411
10.1016/j.jhydrol.2019.124133
10.1021/acs.est.9b07511
10.3390/su10020432
10.1016/j.chemosphere.2022.133875
10.1016/j.jenvman.2022.116491
10.1016/j.jhydrol.2020.124875
10.1016/j.advwatres.2012.09.001
10.1016/j.envsoft.2019.104529
10.1016/j.jhydrol.2010.06.033
10.1016/j.jhydrol.2019.06.073
10.1016/j.watres.2022.119028
10.3390/su11195426
10.1016/j.catena.2021.105178
10.1038/s41561-021-00889-9
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2024.131264
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2024_131264
S0022169424006590
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-e576d27f5e2daf6cfc40bcf4b1c358d538187a025b5f42159a13eecb8dcdb6963
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001237221700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Thu Oct 02 22:52:32 EDT 2025
Tue Nov 18 21:55:26 EST 2025
Sat Nov 29 03:08:18 EST 2025
Sat Jun 29 15:30:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Best management practices (BMPs)
Machine learning (ML)
Multilayer perceptron regression (MLPR)
Watershed model
Nonpoint source (NPS) pollution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-e576d27f5e2daf6cfc40bcf4b1c358d538187a025b5f42159a13eecb8dcdb6963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8415-3896
0000-0002-6620-1943
PQID 3206198532
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206198532
crossref_citationtrail_10_1016_j_jhydrol_2024_131264
crossref_primary_10_1016_j_jhydrol_2024_131264
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131264
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Huang, Liu, Men, Guo, Miao, Jiao, Wang, Shoaib, Xia (b0150) 2020; 586
Janizadeh, Avand, Jaafari, Phong, Bayat, Ahmadisharaf, Prakash, Pham, Lee (b0070) 2019; 11
Rohmat, Labadie, Gates (b0135) 2019; 122
Liu, Chen, Wang, Sun, Shen (b0105) 2020; 725
Hawks, Aust, Bolding, Barrett, Schilling, Fielding (b0055) 2022; 305
Liu, Ting, Zhou (b0110) 2008
Lintern, McPhillips, Winfrey, Duncan, Grady (b0085) 2020; 54
Baumgart-Getz, Prokopy, Floress (b0025) 2012; 96
Badrzadeh, Samani, Mazaheri, Kuriqi (b0015) 2022; 838
Adamowski, Sun (b0005) 2010; 390
Chen, Xu, Li, Wang, Liu, Wang, Shen (b0035) 2023; 325
Kong, Ghaffar, Determann, Friese, Jomaa, Mi, Shatwell, Rinke, Rode (b0080) 2022; 221
Muleta, Nicklow (b0120) 2005; 306
Basu, Van Meter, Byrnes, Van Cappellen, Brouwer, Jacobsen, Jarsjö, Rudolph, Cunha, Nelson, Bhattacharya, Destouni, Olsen (b0020) 2022; 15
Jang, Engel, Yeum (b0065) 2020; 124
Regis (b0130) 2014; 5
Fletcher, Andrieu, Hamel (b0040) 2013; 51
Gusain, Mohanty, Ghosh, Chatterjee, Karmakar (b0050) 2020; 726
Mohammadifar, Gholami, Comino, Collins (b0115) 2021; 200
Huang, Liu, Wang, Gao, Han, Gao, Gao, Zhang, Wang, Zhang, Xia (b0060) 2022; 223
Schneider, Quaghebeur, Borzooei, Froemelt, Li, Saagi, Wade, Zhu, Torfs (b0140) 2022; 85
Liu, Chen, Shen, Xiao, Wei (b0100) 2019; 576
Liu, Bruins, Heberling (b0090) 2018; 10
Tang, Pei, Zheng, Zhao, Shu, Zhang (b0145) 2022; 295
Park, Oh, Jeon, Jung, Choi (b0125) 2011; 399
Xia, Zhao, Yan, Hu, Qiu, Yan (b0155) 2023; 238
Bulygina, Gupta (b0030) 2009; 45
Jordan, Mitchell (b0075) 2015; 349
Liu, Chen, Wei, Shen (b0095) 2019; 578
Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Tien Bui, D., 2020. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing 12, 475. https:--doi.org-10.3390-rs12030475.
Gbedzi, Ofosu, Mortey, Obiri-Yeboah, Nyantakyi, Siabi, Abdallah, Domfeh, Amankwah-Minkah (b0045) 2022; 6
Gusain (10.1016/j.jhydrol.2024.131264_b0050) 2020; 726
Liu (10.1016/j.jhydrol.2024.131264_b0090) 2018; 10
Schneider (10.1016/j.jhydrol.2024.131264_b0140) 2022; 85
Tang (10.1016/j.jhydrol.2024.131264_b0145) 2022; 295
Regis (10.1016/j.jhydrol.2024.131264_b0130) 2014; 5
Wang (10.1016/j.jhydrol.2024.131264_b0150) 2020; 586
Jang (10.1016/j.jhydrol.2024.131264_b0065) 2020; 124
Chen (10.1016/j.jhydrol.2024.131264_b0035) 2023; 325
Adamowski (10.1016/j.jhydrol.2024.131264_b0005) 2010; 390
Baumgart-Getz (10.1016/j.jhydrol.2024.131264_b0025) 2012; 96
Liu (10.1016/j.jhydrol.2024.131264_b0105) 2020; 725
Park (10.1016/j.jhydrol.2024.131264_b0125) 2011; 399
Liu (10.1016/j.jhydrol.2024.131264_b0095) 2019; 578
Fletcher (10.1016/j.jhydrol.2024.131264_b0040) 2013; 51
Lintern (10.1016/j.jhydrol.2024.131264_b0085) 2020; 54
Gbedzi (10.1016/j.jhydrol.2024.131264_b0045) 2022; 6
Muleta (10.1016/j.jhydrol.2024.131264_b0120) 2005; 306
Badrzadeh (10.1016/j.jhydrol.2024.131264_b0015) 2022; 838
Liu (10.1016/j.jhydrol.2024.131264_b0110) 2008
Rohmat (10.1016/j.jhydrol.2024.131264_b0135) 2019; 122
Liu (10.1016/j.jhydrol.2024.131264_b0100) 2019; 576
Basu (10.1016/j.jhydrol.2024.131264_b0020) 2022; 15
Kong (10.1016/j.jhydrol.2024.131264_b0080) 2022; 221
Janizadeh (10.1016/j.jhydrol.2024.131264_b0070) 2019; 11
Jordan (10.1016/j.jhydrol.2024.131264_b0075) 2015; 349
Mohammadifar (10.1016/j.jhydrol.2024.131264_b0115) 2021; 200
Hawks (10.1016/j.jhydrol.2024.131264_b0055) 2022; 305
10.1016/j.jhydrol.2024.131264_b0010
Huang (10.1016/j.jhydrol.2024.131264_b0060) 2022; 223
Bulygina (10.1016/j.jhydrol.2024.131264_b0030) 2009; 45
Xia (10.1016/j.jhydrol.2024.131264_b0155) 2023; 238
References_xml – volume: 306
  start-page: 127
  year: 2005
  end-page: 145
  ident: b0120
  article-title: Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model
  publication-title: J. Hydrol.
– volume: 325
  year: 2023
  ident: b0035
  article-title: New method for scaling nonpoint source pollution by integrating the SWAT model and IHA-based indicators
  publication-title: J. Environ. Manage.
– volume: 122
  year: 2019
  ident: b0135
  article-title: Deep learning for compute-efficient modeling of BMP impacts on stream- aquifer exchange and water law compliance in an irrigated river basin
  publication-title: Environ. Model. Softw.
– volume: 586
  year: 2020
  ident: b0150
  article-title: Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data
  publication-title: J. Hydrol.
– volume: 726
  year: 2020
  ident: b0050
  article-title: Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach
  publication-title: Sci. Total Environ.
– volume: 725
  year: 2020
  ident: b0105
  article-title: A water quality management methodology for optimizing best management practices considering changes in long-term efficiency
  publication-title: Sci. Total Environ.
– volume: 390
  start-page: 85
  year: 2010
  end-page: 91
  ident: b0005
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
– volume: 10
  start-page: 432
  year: 2018
  ident: b0090
  article-title: Factors influencing farmers’ adoption of best management practices: a review and synthesis
  publication-title: Sustainability
– start-page: 413
  year: 2008
  end-page: 422
  ident: b0110
  article-title: Isolation forest
  publication-title: 2008 Eighth IEEE International Conference on Data Mining. Presented at the 2008 Eighth IEEE International Conference on Data Mining (ICDM)
– volume: 578
  year: 2019
  ident: b0095
  article-title: New framework for optimizing best management practices at multiple scales
  publication-title: J. Hydrol.
– volume: 11
  start-page: 5426
  year: 2019
  ident: b0070
  article-title: Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed
  publication-title: Iran. Sustainability
– volume: 5
  start-page: 12
  year: 2014
  end-page: 23
  ident: b0130
  article-title: Particle swarm with radial basis function surrogates for expensive black-box optimization
  publication-title: J. Comput. Sci.
– reference: Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Tien Bui, D., 2020. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing 12, 475. https:--doi.org-10.3390-rs12030475.
– volume: 51
  start-page: 261
  year: 2013
  end-page: 279
  ident: b0040
  article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
  publication-title: Adv. Water Resour.
– volume: 576
  start-page: 520
  year: 2019
  end-page: 527
  ident: b0100
  article-title: A fast and robust simulation-optimization methodology for stormwater quality management
  publication-title: J. Hydrol.
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: b0075
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
– volume: 295
  year: 2022
  ident: b0145
  article-title: Twenty years of China’s water pollution control: Experiences and challenges
  publication-title: Chemosphere
– volume: 305
  year: 2022
  ident: b0055
  article-title: Linkages between Forestry Best Management Practices and erosion in the southeastern U.S
  publication-title: J. Environ. Manage.
– volume: 838
  year: 2022
  ident: b0015
  article-title: Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects
  publication-title: Sci. Total Environ.
– volume: 221
  year: 2022
  ident: b0080
  article-title: Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change
  publication-title: Water Res.
– volume: 399
  start-page: 263
  year: 2011
  end-page: 273
  ident: b0125
  article-title: Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation
  publication-title: J. Hydrol.
– volume: 223
  year: 2022
  ident: b0060
  article-title: Climate factors affect N2O emissions by influencing the migration and transformation of nonpoint source nitrogen in an agricultural watershed
  publication-title: Water Res.
– volume: 96
  start-page: 17
  year: 2012
  end-page: 25
  ident: b0025
  article-title: Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature
  publication-title: J. Environ. Manage.
– volume: 85
  start-page: 2503
  year: 2022
  end-page: 2524
  ident: b0140
  article-title: Hybrid modelling of water resource recovery facilities: status and opportunities
  publication-title: Water Sci. Technol.
– volume: 238
  year: 2023
  ident: b0155
  article-title: A new framework to model the distributed transfer and retention of nutrients by incorporating topology structure of small water bodies
  publication-title: Water Res.
– volume: 124
  year: 2020
  ident: b0065
  article-title: Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning
  publication-title: Environ. Model. Softw.
– volume: 54
  start-page: 9159
  year: 2020
  end-page: 9174
  ident: b0085
  article-title: Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds
  publication-title: Environ. Sci. Technol.
– volume: 200
  year: 2021
  ident: b0115
  article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory
  publication-title: Catena
– volume: 6
  year: 2022
  ident: b0045
  article-title: Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environmental
  publication-title: Challenges
– volume: 15
  start-page: 97
  year: 2022
  end-page: 105
  ident: b0020
  article-title: Managing nitrogen legacies to accelerate water quality improvement
  publication-title: Nat. Geosci.
– volume: 45
  year: 2009
  ident: b0030
  article-title: Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation: Bayesian ESTIMATion of model structure
  publication-title: Water Resour. Res.
– volume: 238
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131264_b0155
  article-title: A new framework to model the distributed transfer and retention of nutrients by incorporating topology structure of small water bodies
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119991
– volume: 6
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0045
  article-title: Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environmental
  publication-title: Challenges
– volume: 221
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0080
  article-title: Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118721
– volume: 96
  start-page: 17
  year: 2012
  ident: 10.1016/j.jhydrol.2024.131264_b0025
  article-title: Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2011.10.006
– volume: 306
  start-page: 127
  year: 2005
  ident: 10.1016/j.jhydrol.2024.131264_b0120
  article-title: Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.09.005
– volume: 45
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131264_b0030
  article-title: Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation: Bayesian ESTIMATion of model structure
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006749
– volume: 399
  start-page: 263
  year: 2011
  ident: 10.1016/j.jhydrol.2024.131264_b0125
  article-title: Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.004
– volume: 725
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131264_b0105
  article-title: A water quality management methodology for optimizing best management practices considering changes in long-term efficiency
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138091
– ident: 10.1016/j.jhydrol.2024.131264_b0010
  doi: 10.3390/rs12030475
– volume: 124
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131264_b0065
  article-title: Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104602
– volume: 726
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131264_b0050
  article-title: Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138600
– volume: 349
  start-page: 255
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131264_b0075
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 5
  start-page: 12
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131264_b0130
  article-title: Particle swarm with radial basis function surrogates for expensive black-box optimization
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2013.07.004
– volume: 838
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0015
  article-title: Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.156643
– volume: 85
  start-page: 2503
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0140
  article-title: Hybrid modelling of water resource recovery facilities: status and opportunities
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2022.115
– volume: 305
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0055
  article-title: Linkages between Forestry Best Management Practices and erosion in the southeastern U.S
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.114411
– volume: 578
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131264_b0095
  article-title: New framework for optimizing best management practices at multiple scales
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124133
– volume: 54
  start-page: 9159
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131264_b0085
  article-title: Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07511
– volume: 10
  start-page: 432
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131264_b0090
  article-title: Factors influencing farmers’ adoption of best management practices: a review and synthesis
  publication-title: Sustainability
  doi: 10.3390/su10020432
– volume: 295
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0145
  article-title: Twenty years of China’s water pollution control: Experiences and challenges
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.133875
– volume: 325
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131264_b0035
  article-title: New method for scaling nonpoint source pollution by integrating the SWAT model and IHA-based indicators
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2022.116491
– volume: 586
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131264_b0150
  article-title: Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124875
– volume: 51
  start-page: 261
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131264_b0040
  article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.09.001
– volume: 122
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131264_b0135
  article-title: Deep learning for compute-efficient modeling of BMP impacts on stream- aquifer exchange and water law compliance in an irrigated river basin
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104529
– volume: 390
  start-page: 85
  year: 2010
  ident: 10.1016/j.jhydrol.2024.131264_b0005
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.06.033
– volume: 576
  start-page: 520
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131264_b0100
  article-title: A fast and robust simulation-optimization methodology for stormwater quality management
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.073
– volume: 223
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0060
  article-title: Climate factors affect N2O emissions by influencing the migration and transformation of nonpoint source nitrogen in an agricultural watershed
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119028
– start-page: 413
  year: 2008
  ident: 10.1016/j.jhydrol.2024.131264_b0110
  article-title: Isolation forest
– volume: 11
  start-page: 5426
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131264_b0070
  article-title: Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed
  publication-title: Iran. Sustainability
  doi: 10.3390/su11195426
– volume: 200
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131264_b0115
  article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105178
– volume: 15
  start-page: 97
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131264_b0020
  article-title: Managing nitrogen legacies to accelerate water quality improvement
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00889-9
SSID ssj0000334
Score 2.4733891
Snippet •New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best...
The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131264
SubjectTerms algorithms
Best management practices (BMPs)
biomass
case studies
China
data collection
hydrologic models
lakes
Machine learning (ML)
mechanistic models
Multilayer perceptron regression (MLPR)
neural networks
Nonpoint source (NPS) pollution
pollution
regression analysis
soil types
vegetation
Watershed model
watersheds
Title New paradigm for watershed model development by coupling machine learning algorithm and mechanistic model
URI https://dx.doi.org/10.1016/j.jhydrol.2024.131264
https://www.proquest.com/docview/3206198532
Volume 636
WOSCitedRecordID wos001237221700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQviKsYNxkJ8TKl0NiJk8dq6rioGkh00DcrsZ02VZuUrlk3fj3HsZ1U06aNB16iyIrd1ufr8Rf7nO8g9I5JJWORMU-pNPYoZcSLSSA8X6SJ0ALuWZ1b9XPEjo-jyST-3ulsXS7M2YIVRXR-Hq_-q6mhDYytU2f_wdzNoNAA92B0uILZ4Xorw-uIRS3oLfPpsg4i3CZaQXMGzLIue-PypOooACCfoqxWdU76so6rVK6QxPQgWUzLdb6ZmSoaS6WThGtdZzPQNbx2diHXRtgJyOtgqYUYpEZds-Mwyqt6N74qt0kxBdA0-Dy0qSIjlbcb_cYZ_VLFn1lVXm7-MauSfHfnwqdthNVOJkE_NEWOnTcOSXiw6vVJH5iad6WPN9sN897c_J6eHtp2aBc1d5B__I0fnYxGfDycjN-vfnu63Jg-lre1V-6gPZ8FcdRFe4Mvw8nXdhEnhDqhef0V2-SvD1d-8nW05tICX7OW8UP0wJoFDwxMHqGOKh6je5-UFSp_gnKAC3ZwwQAX3MAF11bGO3DB6QV2cMEWLtjBBTdwwQAXvAMXM9BTdHI0HB9-9mz5DU8Q6m88Ba-i0mdZoHyZZKHIBP2YioymfUGCSAaa67EEOHMaZBSYY5z0iVIijaSQaQiO_RnqFmWhniPMiAgoCZkEDwBvyEA7KYulDGIZMaH8dB9RN3tcWG16XSJlwV0Q4pzbSed60rmZ9H3Ua7qtjDjLTR0iZxpuGaZhjhzAdVPXt86UHDywPlZLClVWp5z4wIljoL3-i1s88xLdb_8Lr1B3s67Ua3RXnG3y0_UbC8O_imetuQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+paradigm+for+watershed+model+development+by+coupling+machine+learning+algorithm+and+mechanistic+model&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Liu%2C+Guowangchen&rft.au=Chen%2C+Lei&rft.au=Wang%2C+Wenzhuo&rft.au=Wang%2C+Shuai&rft.date=2024-06-01&rft.issn=0022-1694&rft.volume=636+p.131264-&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131264&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon