New paradigm for watershed model development by coupling machine learning algorithm and mechanistic model
•New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best management practices evaluation were established.•The paradigm shows higher interpretability based on mechanistic model. The development of watershe...
Gespeichert in:
| Veröffentlicht in: | Journal of hydrology (Amsterdam) Jg. 636; S. 131264 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.06.2024
|
| Schlagworte: | |
| ISSN: | 0022-1694, 1879-2707 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best management practices evaluation were established.•The paradigm shows higher interpretability based on mechanistic model.
The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution is an important application of watershed model, and the best management practices (BMPs) have attracted wide attention as the main control approach of NPS pollution. In this study, a new paradigm was proposed based on the integration of data-driven and mechanistic methods, taking BMP evaluation as an example. Specifically, comprehensive databases were constructed for filter and retention BMPs by collecting, classifying and analyzing published data. Twelve machine learning algorithms were employed for regression analysis between BMPs efficiency and their influencing factors, while the constructed equations were coupled with physical-based models. A case study was performed in a typical catchment of Chaohu Lake Watershed, China. The results demonstrated total interception area, soil type, and vegetation biomass had significant impacts on BMPs performances, while the multilayer perceptron regression (MLPR), K nearest neighbor regression (KNRD), and extremely randomized tree (ETR) methods had the best performances of nutrients removal. The study generated over ten thousand datasets using mechanistic processes, resulting in more efficient and interpretable BMPs evaluator. Compare to traditional methods, this new paradigm has shown advantages in the model application at the watershed scale, enhancing the BMPs evaluator with a higher level of interpretability by coupling the approach with mechanistic models. |
|---|---|
| AbstractList | •New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best management practices evaluation were established.•The paradigm shows higher interpretability based on mechanistic model.
The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution is an important application of watershed model, and the best management practices (BMPs) have attracted wide attention as the main control approach of NPS pollution. In this study, a new paradigm was proposed based on the integration of data-driven and mechanistic methods, taking BMP evaluation as an example. Specifically, comprehensive databases were constructed for filter and retention BMPs by collecting, classifying and analyzing published data. Twelve machine learning algorithms were employed for regression analysis between BMPs efficiency and their influencing factors, while the constructed equations were coupled with physical-based models. A case study was performed in a typical catchment of Chaohu Lake Watershed, China. The results demonstrated total interception area, soil type, and vegetation biomass had significant impacts on BMPs performances, while the multilayer perceptron regression (MLPR), K nearest neighbor regression (KNRD), and extremely randomized tree (ETR) methods had the best performances of nutrients removal. The study generated over ten thousand datasets using mechanistic processes, resulting in more efficient and interpretable BMPs evaluator. Compare to traditional methods, this new paradigm has shown advantages in the model application at the watershed scale, enhancing the BMPs evaluator with a higher level of interpretability by coupling the approach with mechanistic models. The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution is an important application of watershed model, and the best management practices (BMPs) have attracted wide attention as the main control approach of NPS pollution. In this study, a new paradigm was proposed based on the integration of data-driven and mechanistic methods, taking BMP evaluation as an example. Specifically, comprehensive databases were constructed for filter and retention BMPs by collecting, classifying and analyzing published data. Twelve machine learning algorithms were employed for regression analysis between BMPs efficiency and their influencing factors, while the constructed equations were coupled with physical-based models. A case study was performed in a typical catchment of Chaohu Lake Watershed, China. The results demonstrated total interception area, soil type, and vegetation biomass had significant impacts on BMPs performances, while the multilayer perceptron regression (MLPR), K nearest neighbor regression (KNRD), and extremely randomized tree (ETR) methods had the best performances of nutrients removal. The study generated over ten thousand datasets using mechanistic processes, resulting in more efficient and interpretable BMPs evaluator. Compare to traditional methods, this new paradigm has shown advantages in the model application at the watershed scale, enhancing the BMPs evaluator with a higher level of interpretability by coupling the approach with mechanistic models. |
| ArticleNumber | 131264 |
| Author | Shen, Zhenyao Liu, Guowangchen Wang, Shuai Zhu, Kaihang Wang, Wenzhuo Chen, Lei |
| Author_xml | – sequence: 1 givenname: Guowangchen surname: Liu fullname: Liu, Guowangchen – sequence: 2 givenname: Lei orcidid: 0000-0001-8415-3896 surname: Chen fullname: Chen, Lei email: chenlei1982bnu@bnu.edu.cn – sequence: 3 givenname: Wenzhuo surname: Wang fullname: Wang, Wenzhuo – sequence: 4 givenname: Shuai surname: Wang fullname: Wang, Shuai – sequence: 5 givenname: Kaihang surname: Zhu fullname: Zhu, Kaihang – sequence: 6 givenname: Zhenyao orcidid: 0000-0002-6620-1943 surname: Shen fullname: Shen, Zhenyao |
| BookMark | eNqFkE1r3DAQhkVJoZu0P6GgYy_e6sPyBz2UEpo2ENJLexbyaLzWIkuupE3Yf18vzqmXzGVgeJ8X5rkmVyEGJOQjZ3vOePP5uD9OZ5ui3wsm6j2XXDT1G7LjXdtXomXtFdkxJkTFm75-R65zPrJ1pKx3xD3iM11MMtYdZjrGRJ9NwZQntHSOFj21-IQ-LjOGQoczhXhavAsHOhuYXEDq0aRwORh_iMmVaaYmrDDCZILLxcFW9J68HY3P-OFl35A_d99_3_6sHn79uL_99lCBrEWpULWNFe2oUFgzNjBCzQYY64GDVJ1VslvfMkyoQY214Ko3XCLC0FmwQ9M38oZ82nqXFP-eMBc9uwzovQkYT1lLwRred0qKNfpli0KKOSccNbhiiouhJOO85kxfBOujfhGsL4L1Jnil1X_0ktxs0vlV7uvG4WrhyWHSGRwGQOsSQtE2ulca_gFTOZ1D |
| CitedBy_id | crossref_primary_10_1016_j_watres_2025_124042 crossref_primary_10_1007_s11269_024_04067_5 crossref_primary_10_1080_19942060_2024_2387051 crossref_primary_10_1016_j_optcom_2025_131654 crossref_primary_10_1016_j_jhydrol_2025_133505 |
| Cites_doi | 10.1016/j.watres.2023.119991 10.1016/j.watres.2022.118721 10.1016/j.jenvman.2011.10.006 10.1016/j.jhydrol.2004.09.005 10.1029/2007WR006749 10.1016/j.jhydrol.2011.01.004 10.1016/j.scitotenv.2020.138091 10.3390/rs12030475 10.1016/j.envsoft.2019.104602 10.1016/j.scitotenv.2020.138600 10.1126/science.aaa8415 10.1016/j.jocs.2013.07.004 10.1016/j.scitotenv.2022.156643 10.2166/wst.2022.115 10.1016/j.jenvman.2021.114411 10.1016/j.jhydrol.2019.124133 10.1021/acs.est.9b07511 10.3390/su10020432 10.1016/j.chemosphere.2022.133875 10.1016/j.jenvman.2022.116491 10.1016/j.jhydrol.2020.124875 10.1016/j.advwatres.2012.09.001 10.1016/j.envsoft.2019.104529 10.1016/j.jhydrol.2010.06.033 10.1016/j.jhydrol.2019.06.073 10.1016/j.watres.2022.119028 10.3390/su11195426 10.1016/j.catena.2021.105178 10.1038/s41561-021-00889-9 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2024.131264 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2024_131264 S0022169424006590 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-e576d27f5e2daf6cfc40bcf4b1c358d538187a025b5f42159a13eecb8dcdb6963 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001237221700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Thu Oct 02 22:52:32 EDT 2025 Tue Nov 18 21:55:26 EST 2025 Sat Nov 29 03:08:18 EST 2025 Sat Jun 29 15:30:28 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Best management practices (BMPs) Machine learning (ML) Multilayer perceptron regression (MLPR) Watershed model Nonpoint source (NPS) pollution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-e576d27f5e2daf6cfc40bcf4b1c358d538187a025b5f42159a13eecb8dcdb6963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8415-3896 0000-0002-6620-1943 |
| PQID | 3206198532 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3206198532 crossref_citationtrail_10_1016_j_jhydrol_2024_131264 crossref_primary_10_1016_j_jhydrol_2024_131264 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131264 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Huang, Liu, Men, Guo, Miao, Jiao, Wang, Shoaib, Xia (b0150) 2020; 586 Janizadeh, Avand, Jaafari, Phong, Bayat, Ahmadisharaf, Prakash, Pham, Lee (b0070) 2019; 11 Rohmat, Labadie, Gates (b0135) 2019; 122 Liu, Chen, Wang, Sun, Shen (b0105) 2020; 725 Hawks, Aust, Bolding, Barrett, Schilling, Fielding (b0055) 2022; 305 Liu, Ting, Zhou (b0110) 2008 Lintern, McPhillips, Winfrey, Duncan, Grady (b0085) 2020; 54 Baumgart-Getz, Prokopy, Floress (b0025) 2012; 96 Badrzadeh, Samani, Mazaheri, Kuriqi (b0015) 2022; 838 Adamowski, Sun (b0005) 2010; 390 Chen, Xu, Li, Wang, Liu, Wang, Shen (b0035) 2023; 325 Kong, Ghaffar, Determann, Friese, Jomaa, Mi, Shatwell, Rinke, Rode (b0080) 2022; 221 Muleta, Nicklow (b0120) 2005; 306 Basu, Van Meter, Byrnes, Van Cappellen, Brouwer, Jacobsen, Jarsjö, Rudolph, Cunha, Nelson, Bhattacharya, Destouni, Olsen (b0020) 2022; 15 Jang, Engel, Yeum (b0065) 2020; 124 Regis (b0130) 2014; 5 Fletcher, Andrieu, Hamel (b0040) 2013; 51 Gusain, Mohanty, Ghosh, Chatterjee, Karmakar (b0050) 2020; 726 Mohammadifar, Gholami, Comino, Collins (b0115) 2021; 200 Huang, Liu, Wang, Gao, Han, Gao, Gao, Zhang, Wang, Zhang, Xia (b0060) 2022; 223 Schneider, Quaghebeur, Borzooei, Froemelt, Li, Saagi, Wade, Zhu, Torfs (b0140) 2022; 85 Liu, Chen, Shen, Xiao, Wei (b0100) 2019; 576 Liu, Bruins, Heberling (b0090) 2018; 10 Tang, Pei, Zheng, Zhao, Shu, Zhang (b0145) 2022; 295 Park, Oh, Jeon, Jung, Choi (b0125) 2011; 399 Xia, Zhao, Yan, Hu, Qiu, Yan (b0155) 2023; 238 Bulygina, Gupta (b0030) 2009; 45 Jordan, Mitchell (b0075) 2015; 349 Liu, Chen, Wei, Shen (b0095) 2019; 578 Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Tien Bui, D., 2020. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing 12, 475. https:--doi.org-10.3390-rs12030475. Gbedzi, Ofosu, Mortey, Obiri-Yeboah, Nyantakyi, Siabi, Abdallah, Domfeh, Amankwah-Minkah (b0045) 2022; 6 Gusain (10.1016/j.jhydrol.2024.131264_b0050) 2020; 726 Liu (10.1016/j.jhydrol.2024.131264_b0090) 2018; 10 Schneider (10.1016/j.jhydrol.2024.131264_b0140) 2022; 85 Tang (10.1016/j.jhydrol.2024.131264_b0145) 2022; 295 Regis (10.1016/j.jhydrol.2024.131264_b0130) 2014; 5 Wang (10.1016/j.jhydrol.2024.131264_b0150) 2020; 586 Jang (10.1016/j.jhydrol.2024.131264_b0065) 2020; 124 Chen (10.1016/j.jhydrol.2024.131264_b0035) 2023; 325 Adamowski (10.1016/j.jhydrol.2024.131264_b0005) 2010; 390 Baumgart-Getz (10.1016/j.jhydrol.2024.131264_b0025) 2012; 96 Liu (10.1016/j.jhydrol.2024.131264_b0105) 2020; 725 Park (10.1016/j.jhydrol.2024.131264_b0125) 2011; 399 Liu (10.1016/j.jhydrol.2024.131264_b0095) 2019; 578 Fletcher (10.1016/j.jhydrol.2024.131264_b0040) 2013; 51 Lintern (10.1016/j.jhydrol.2024.131264_b0085) 2020; 54 Gbedzi (10.1016/j.jhydrol.2024.131264_b0045) 2022; 6 Muleta (10.1016/j.jhydrol.2024.131264_b0120) 2005; 306 Badrzadeh (10.1016/j.jhydrol.2024.131264_b0015) 2022; 838 Liu (10.1016/j.jhydrol.2024.131264_b0110) 2008 Rohmat (10.1016/j.jhydrol.2024.131264_b0135) 2019; 122 Liu (10.1016/j.jhydrol.2024.131264_b0100) 2019; 576 Basu (10.1016/j.jhydrol.2024.131264_b0020) 2022; 15 Kong (10.1016/j.jhydrol.2024.131264_b0080) 2022; 221 Janizadeh (10.1016/j.jhydrol.2024.131264_b0070) 2019; 11 Jordan (10.1016/j.jhydrol.2024.131264_b0075) 2015; 349 Mohammadifar (10.1016/j.jhydrol.2024.131264_b0115) 2021; 200 Hawks (10.1016/j.jhydrol.2024.131264_b0055) 2022; 305 10.1016/j.jhydrol.2024.131264_b0010 Huang (10.1016/j.jhydrol.2024.131264_b0060) 2022; 223 Bulygina (10.1016/j.jhydrol.2024.131264_b0030) 2009; 45 Xia (10.1016/j.jhydrol.2024.131264_b0155) 2023; 238 |
| References_xml | – volume: 306 start-page: 127 year: 2005 end-page: 145 ident: b0120 article-title: Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model publication-title: J. Hydrol. – volume: 325 year: 2023 ident: b0035 article-title: New method for scaling nonpoint source pollution by integrating the SWAT model and IHA-based indicators publication-title: J. Environ. Manage. – volume: 122 year: 2019 ident: b0135 article-title: Deep learning for compute-efficient modeling of BMP impacts on stream- aquifer exchange and water law compliance in an irrigated river basin publication-title: Environ. Model. Softw. – volume: 586 year: 2020 ident: b0150 article-title: Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data publication-title: J. Hydrol. – volume: 726 year: 2020 ident: b0050 article-title: Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach publication-title: Sci. Total Environ. – volume: 725 year: 2020 ident: b0105 article-title: A water quality management methodology for optimizing best management practices considering changes in long-term efficiency publication-title: Sci. Total Environ. – volume: 390 start-page: 85 year: 2010 end-page: 91 ident: b0005 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. – volume: 10 start-page: 432 year: 2018 ident: b0090 article-title: Factors influencing farmers’ adoption of best management practices: a review and synthesis publication-title: Sustainability – start-page: 413 year: 2008 end-page: 422 ident: b0110 article-title: Isolation forest publication-title: 2008 Eighth IEEE International Conference on Data Mining. Presented at the 2008 Eighth IEEE International Conference on Data Mining (ICDM) – volume: 578 year: 2019 ident: b0095 article-title: New framework for optimizing best management practices at multiple scales publication-title: J. Hydrol. – volume: 11 start-page: 5426 year: 2019 ident: b0070 article-title: Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed publication-title: Iran. Sustainability – volume: 5 start-page: 12 year: 2014 end-page: 23 ident: b0130 article-title: Particle swarm with radial basis function surrogates for expensive black-box optimization publication-title: J. Comput. Sci. – reference: Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Tien Bui, D., 2020. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing 12, 475. https:--doi.org-10.3390-rs12030475. – volume: 51 start-page: 261 year: 2013 end-page: 279 ident: b0040 article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art publication-title: Adv. Water Resour. – volume: 576 start-page: 520 year: 2019 end-page: 527 ident: b0100 article-title: A fast and robust simulation-optimization methodology for stormwater quality management publication-title: J. Hydrol. – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: b0075 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science – volume: 295 year: 2022 ident: b0145 article-title: Twenty years of China’s water pollution control: Experiences and challenges publication-title: Chemosphere – volume: 305 year: 2022 ident: b0055 article-title: Linkages between Forestry Best Management Practices and erosion in the southeastern U.S publication-title: J. Environ. Manage. – volume: 838 year: 2022 ident: b0015 article-title: Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects publication-title: Sci. Total Environ. – volume: 221 year: 2022 ident: b0080 article-title: Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change publication-title: Water Res. – volume: 399 start-page: 263 year: 2011 end-page: 273 ident: b0125 article-title: Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation publication-title: J. Hydrol. – volume: 223 year: 2022 ident: b0060 article-title: Climate factors affect N2O emissions by influencing the migration and transformation of nonpoint source nitrogen in an agricultural watershed publication-title: Water Res. – volume: 96 start-page: 17 year: 2012 end-page: 25 ident: b0025 article-title: Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature publication-title: J. Environ. Manage. – volume: 85 start-page: 2503 year: 2022 end-page: 2524 ident: b0140 article-title: Hybrid modelling of water resource recovery facilities: status and opportunities publication-title: Water Sci. Technol. – volume: 238 year: 2023 ident: b0155 article-title: A new framework to model the distributed transfer and retention of nutrients by incorporating topology structure of small water bodies publication-title: Water Res. – volume: 124 year: 2020 ident: b0065 article-title: Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning publication-title: Environ. Model. Softw. – volume: 54 start-page: 9159 year: 2020 end-page: 9174 ident: b0085 article-title: Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds publication-title: Environ. Sci. Technol. – volume: 200 year: 2021 ident: b0115 article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory publication-title: Catena – volume: 6 year: 2022 ident: b0045 article-title: Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environmental publication-title: Challenges – volume: 15 start-page: 97 year: 2022 end-page: 105 ident: b0020 article-title: Managing nitrogen legacies to accelerate water quality improvement publication-title: Nat. Geosci. – volume: 45 year: 2009 ident: b0030 article-title: Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation: Bayesian ESTIMATion of model structure publication-title: Water Resour. Res. – volume: 238 year: 2023 ident: 10.1016/j.jhydrol.2024.131264_b0155 article-title: A new framework to model the distributed transfer and retention of nutrients by incorporating topology structure of small water bodies publication-title: Water Res. doi: 10.1016/j.watres.2023.119991 – volume: 6 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0045 article-title: Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environmental publication-title: Challenges – volume: 221 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0080 article-title: Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change publication-title: Water Res. doi: 10.1016/j.watres.2022.118721 – volume: 96 start-page: 17 year: 2012 ident: 10.1016/j.jhydrol.2024.131264_b0025 article-title: Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2011.10.006 – volume: 306 start-page: 127 year: 2005 ident: 10.1016/j.jhydrol.2024.131264_b0120 article-title: Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.09.005 – volume: 45 year: 2009 ident: 10.1016/j.jhydrol.2024.131264_b0030 article-title: Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation: Bayesian ESTIMATion of model structure publication-title: Water Resour. Res. doi: 10.1029/2007WR006749 – volume: 399 start-page: 263 year: 2011 ident: 10.1016/j.jhydrol.2024.131264_b0125 article-title: Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.004 – volume: 725 year: 2020 ident: 10.1016/j.jhydrol.2024.131264_b0105 article-title: A water quality management methodology for optimizing best management practices considering changes in long-term efficiency publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138091 – ident: 10.1016/j.jhydrol.2024.131264_b0010 doi: 10.3390/rs12030475 – volume: 124 year: 2020 ident: 10.1016/j.jhydrol.2024.131264_b0065 article-title: Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104602 – volume: 726 year: 2020 ident: 10.1016/j.jhydrol.2024.131264_b0050 article-title: Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138600 – volume: 349 start-page: 255 year: 2015 ident: 10.1016/j.jhydrol.2024.131264_b0075 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 5 start-page: 12 year: 2014 ident: 10.1016/j.jhydrol.2024.131264_b0130 article-title: Particle swarm with radial basis function surrogates for expensive black-box optimization publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.07.004 – volume: 838 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0015 article-title: Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.156643 – volume: 85 start-page: 2503 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0140 article-title: Hybrid modelling of water resource recovery facilities: status and opportunities publication-title: Water Sci. Technol. doi: 10.2166/wst.2022.115 – volume: 305 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0055 article-title: Linkages between Forestry Best Management Practices and erosion in the southeastern U.S publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.114411 – volume: 578 year: 2019 ident: 10.1016/j.jhydrol.2024.131264_b0095 article-title: New framework for optimizing best management practices at multiple scales publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124133 – volume: 54 start-page: 9159 year: 2020 ident: 10.1016/j.jhydrol.2024.131264_b0085 article-title: Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07511 – volume: 10 start-page: 432 year: 2018 ident: 10.1016/j.jhydrol.2024.131264_b0090 article-title: Factors influencing farmers’ adoption of best management practices: a review and synthesis publication-title: Sustainability doi: 10.3390/su10020432 – volume: 295 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0145 article-title: Twenty years of China’s water pollution control: Experiences and challenges publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133875 – volume: 325 year: 2023 ident: 10.1016/j.jhydrol.2024.131264_b0035 article-title: New method for scaling nonpoint source pollution by integrating the SWAT model and IHA-based indicators publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2022.116491 – volume: 586 year: 2020 ident: 10.1016/j.jhydrol.2024.131264_b0150 article-title: Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124875 – volume: 51 start-page: 261 year: 2013 ident: 10.1016/j.jhydrol.2024.131264_b0040 article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.09.001 – volume: 122 year: 2019 ident: 10.1016/j.jhydrol.2024.131264_b0135 article-title: Deep learning for compute-efficient modeling of BMP impacts on stream- aquifer exchange and water law compliance in an irrigated river basin publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104529 – volume: 390 start-page: 85 year: 2010 ident: 10.1016/j.jhydrol.2024.131264_b0005 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.06.033 – volume: 576 start-page: 520 year: 2019 ident: 10.1016/j.jhydrol.2024.131264_b0100 article-title: A fast and robust simulation-optimization methodology for stormwater quality management publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.073 – volume: 223 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0060 article-title: Climate factors affect N2O emissions by influencing the migration and transformation of nonpoint source nitrogen in an agricultural watershed publication-title: Water Res. doi: 10.1016/j.watres.2022.119028 – start-page: 413 year: 2008 ident: 10.1016/j.jhydrol.2024.131264_b0110 article-title: Isolation forest – volume: 11 start-page: 5426 year: 2019 ident: 10.1016/j.jhydrol.2024.131264_b0070 article-title: Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed publication-title: Iran. Sustainability doi: 10.3390/su11195426 – volume: 200 year: 2021 ident: 10.1016/j.jhydrol.2024.131264_b0115 article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory publication-title: Catena doi: 10.1016/j.catena.2021.105178 – volume: 15 start-page: 97 year: 2022 ident: 10.1016/j.jhydrol.2024.131264_b0020 article-title: Managing nitrogen legacies to accelerate water quality improvement publication-title: Nat. Geosci. doi: 10.1038/s41561-021-00889-9 |
| SSID | ssj0000334 |
| Score | 2.4733121 |
| Snippet | •New paradigm was used for development of watershed model.•Machine learning algorithm and mechanistic model are effectively coupled.•Equations for best... The development of watershed models faces double pressure of data requirements and physical interpretation. The simulation of nonpoint source (NPS) pollution... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 131264 |
| SubjectTerms | algorithms Best management practices (BMPs) biomass case studies China data collection hydrologic models lakes Machine learning (ML) mechanistic models Multilayer perceptron regression (MLPR) neural networks Nonpoint source (NPS) pollution pollution regression analysis soil types vegetation Watershed model watersheds |
| Title | New paradigm for watershed model development by coupling machine learning algorithm and mechanistic model |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2024.131264 https://www.proquest.com/docview/3206198532 |
| Volume | 636 |
| WOSCitedRecordID | wos001237221700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvE1dtDJCReEMpS-Jc_FhN46ZqQmKIvkXxJU2qNqm6Zhd-Bz-YYztOQmGMPfASVVZ86vZ8Pf7invMdhF4TkmVhyFzHJdJ3SEy5wxiXjuQsFCLkQKK1uv4kOjmJp1P6eTD4YWthzhdRWcaXl3T1X10NY-BsVTp7C3e3RmEAXoPT4Qpuh-s_OV5lLCpBb1HMljqJ8CJVCpo5MEvd9sbWSeksACCfvKpXuiZ9qfMqpW0kMXuTLmbVutjkpovGUqoiYa3rbAxdw2vzK7E2wk5AXsdLJcQgFOraE4dJUevT-Lq6SMsZgKbF51FTKjKRRXfQb4LRN1l-z-tqe_hLXqdF_-TCI12GVa-SwA1Nk2MbjUO_H09d3_WMyvlvod6cOsxHc_OxRuodRt39v0prb215bSKizXGbJ42ZRJlJjJk7aMeLAhoP0c744_H0U7fD-z6xKvRq_V1l2Ns_ruc6zrO1-2tKc_oA7TY-w2ODoYdoIMtH6N572aiYP0YFYAlbLGHAEm6xhDUEcA9LmF1hiyXcYAlbLOEWSxiwhHtYMoaeoK_vjk-PPjhNbw6H-8TbOBKeU4UXZYH0RJqFPOPkkPGMMJf7QSwCRQSjFAg1CzICtJKmri8hAMSCCxZC1H-KhmVVyj2E4Q61E3gMrBGeBZRngh6GAqJIQCnj-4jYby_hjXC96p-ySP7qvX00aqetjHLLTRNi65qkoZ-GViYAuZumvrKuTCA8q__c0lJW9Vnie0CYKXBi79lt13OA7ne_mudouFnX8gW6y883xdn6ZYPJnwogutE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+paradigm+for+watershed+model+development+by+coupling+machine+learning+algorithm+and+mechanistic+model&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Liu%2C+Guowangchen&rft.au=Chen%2C+Lei&rft.au=Wang%2C+Wenzhuo&rft.au=Wang%2C+Shuai&rft.date=2024-06-01&rft.issn=0022-1694&rft.volume=636&rft.spage=131264&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2024_131264 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |