Analyzing the secondary wastewater-treatment process using Faster R-CNN and YOLOv5 object detection algorithms

The activated sludge (AS) process is the most common type of secondary wastewater treatment, applied worldwide. Due to the complexity of microbial communities, imbalances between the different types of bacteria may occur and disturb the process, with pronounced economical and environmental consequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production Jg. 416; S. 137913
Hauptverfasser: Inbar, Offir, Shahar, Moni, Gidron, Jacob, Cohen, Ido, Menashe, Ofir, Avisar, Dror
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2023
Schlagworte:
ISSN:0959-6526, 1879-1786
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The activated sludge (AS) process is the most common type of secondary wastewater treatment, applied worldwide. Due to the complexity of microbial communities, imbalances between the different types of bacteria may occur and disturb the process, with pronounced economical and environmental consequences. Microscopic inspection of the morphology of flocs and microorganisms provides key information on AS properties and function. This is a time-consuming, highly skilled, and expensive process that is not readily available in all locations. Thus, most wastewater-treatment plants do not carry out this essential analysis, resulting in frequent operational faults. In this study, we develop a novel deep learning (DL) object detection algorithm to analyze and monitor the AS process based on a unique microscopic image database of flocs and microorganisms. Specifically, we applied YOLOv5 and Faster R-CNN algorithms as tools for segmentation and object detection to analyze the wastewater. The mean average precision (mAP) of the YOLOv5 was 0.67, outperforming the Faster R-CNN by 15%. Histogram equalization preprocessing of both bright-field and phase-contrast images significantly improved the results of the algorithm in all classes. In the case of YOLOv5, the mAP increased by 16.67%, to 0.77, where the AP of protozoa, filaments, and open floc classes outperformed the previous model by over 20%. These results demonstrate the potential of leveraging DL algorithms to enhance the analysis and monitoring of WWTPs in an affordable manner, consequently reducing environmental pollution caused by contaminated effluent. The fundamental challenge addressed herein has important global relevance, especially in an era in which the demand for high-quality wastewater reuse is expected to increase dramatically. [Display omitted] •Deep learning object detection algorithms for secondary treatment are proposed.•Mean average precision of YOLOv5 was 0.67, outperforming Faster R-CNN by 15%.•Histogram equalization significantly improved mAP of YOLOv5 by 16.67% to 0.77•Unique microscopic image database from Israeli WWTPs was used.•This framework can be adopted by WWTPs to manage secondary treatment process.
AbstractList The activated sludge (AS) process is the most common type of secondary wastewater treatment, applied worldwide. Due to the complexity of microbial communities, imbalances between the different types of bacteria may occur and disturb the process, with pronounced economical and environmental consequences. Microscopic inspection of the morphology of flocs and microorganisms provides key information on AS properties and function. This is a time-consuming, highly skilled, and expensive process that is not readily available in all locations. Thus, most wastewater-treatment plants do not carry out this essential analysis, resulting in frequent operational faults. In this study, we develop a novel deep learning (DL) object detection algorithm to analyze and monitor the AS process based on a unique microscopic image database of flocs and microorganisms. Specifically, we applied YOLOv5 and Faster R-CNN algorithms as tools for segmentation and object detection to analyze the wastewater. The mean average precision (mAP) of the YOLOv5 was 0.67, outperforming the Faster R-CNN by 15%. Histogram equalization preprocessing of both bright-field and phase-contrast images significantly improved the results of the algorithm in all classes. In the case of YOLOv5, the mAP increased by 16.67%, to 0.77, where the AP of protozoa, filaments, and open floc classes outperformed the previous model by over 20%. These results demonstrate the potential of leveraging DL algorithms to enhance the analysis and monitoring of WWTPs in an affordable manner, consequently reducing environmental pollution caused by contaminated effluent. The fundamental challenge addressed herein has important global relevance, especially in an era in which the demand for high-quality wastewater reuse is expected to increase dramatically. [Display omitted] •Deep learning object detection algorithms for secondary treatment are proposed.•Mean average precision of YOLOv5 was 0.67, outperforming Faster R-CNN by 15%.•Histogram equalization significantly improved mAP of YOLOv5 by 16.67% to 0.77•Unique microscopic image database from Israeli WWTPs was used.•This framework can be adopted by WWTPs to manage secondary treatment process.
The activated sludge (AS) process is the most common type of secondary wastewater treatment, applied worldwide. Due to the complexity of microbial communities, imbalances between the different types of bacteria may occur and disturb the process, with pronounced economical and environmental consequences. Microscopic inspection of the morphology of flocs and microorganisms provides key information on AS properties and function. This is a time-consuming, highly skilled, and expensive process that is not readily available in all locations. Thus, most wastewater-treatment plants do not carry out this essential analysis, resulting in frequent operational faults. In this study, we develop a novel deep learning (DL) object detection algorithm to analyze and monitor the AS process based on a unique microscopic image database of flocs and microorganisms. Specifically, we applied YOLOv5 and Faster R-CNN algorithms as tools for segmentation and object detection to analyze the wastewater. The mean average precision (mAP) of the YOLOv5 was 0.67, outperforming the Faster R-CNN by 15%. Histogram equalization preprocessing of both bright-field and phase-contrast images significantly improved the results of the algorithm in all classes. In the case of YOLOv5, the mAP increased by 16.67%, to 0.77, where the AP of protozoa, filaments, and open floc classes outperformed the previous model by over 20%. These results demonstrate the potential of leveraging DL algorithms to enhance the analysis and monitoring of WWTPs in an affordable manner, consequently reducing environmental pollution caused by contaminated effluent. The fundamental challenge addressed herein has important global relevance, especially in an era in which the demand for high-quality wastewater reuse is expected to increase dramatically.
ArticleNumber 137913
Author Shahar, Moni
Inbar, Offir
Menashe, Ofir
Gidron, Jacob
Avisar, Dror
Cohen, Ido
Author_xml – sequence: 1
  givenname: Offir
  surname: Inbar
  fullname: Inbar, Offir
  organization: The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: Moni
  orcidid: 0000-0001-7512-9640
  surname: Shahar
  fullname: Shahar, Moni
  organization: TAD – Center for Artificial Intelligence & Data Science, Tel Aviv University, Tel Aviv, Israel
– sequence: 3
  givenname: Jacob
  surname: Gidron
  fullname: Gidron, Jacob
  organization: School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
– sequence: 4
  givenname: Ido
  orcidid: 0009-0008-9187-0840
  surname: Cohen
  fullname: Cohen, Ido
  organization: School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
– sequence: 5
  givenname: Ofir
  orcidid: 0000-0001-7368-0754
  surname: Menashe
  fullname: Menashe, Ofir
  organization: Water Industry Engineering Department, The Engineering Faculty, Kinneret Academic College on the Sea of Galilee, M.P. Emek Ha'Yarden, Israel
– sequence: 6
  givenname: Dror
  orcidid: 0000-0001-9199-1548
  surname: Avisar
  fullname: Avisar, Dror
  email: droravi@tauex.tau.ac.il
  organization: The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
BookMark eNqFkEtLxDAUhYMoOD5-gpClm45J0zYNLkQGXzA4IG5chTS51ZROoklGGX-9KePKjauzOd-5l-8I7TvvAKEzSuaU0OZimA96hPfg5yUp2ZwyLijbQzPaclFQ3jb7aEZELYqmLptDdBTjQAjlhFcz5K6dGrff1r3i9AY4gvbOqLDFXyom-FIJQpECqLQGl3C-oSFGvIkTcDtVAn4qFo-PWDmDX1bL1WeNfTeATthAymG9w2p89cGmt3U8QQe9GiOc_uYxer69eV7cF8vV3cPielloVpWpMIbUHW37qlG6aioiGtUp6KmirGqNFrTiHemgBuhNxWrSl43uWiUE15y2NTtG57vZ_PDHBmKSaxs1jKNy4DdRlqLMqgRnLFcvd1UdfIwBeqltUtPbKSg7SkrkJFkO8leynCTLneRM13_o92DX2d-_3NWOgyzh00KQUVtwGowNWZo03v6z8ANFyp3n
CitedBy_id crossref_primary_10_1016_j_jwpe_2025_108513
crossref_primary_10_1016_j_compind_2024_104154
crossref_primary_10_1038_s41598_025_93954_x
crossref_primary_10_3390_info15010011
crossref_primary_10_1016_j_jwpe_2025_108457
crossref_primary_10_1016_j_marpetgeo_2024_106965
crossref_primary_10_1111_jmi_13385
crossref_primary_10_1016_j_jenvman_2025_127008
crossref_primary_10_3390_w16182680
crossref_primary_10_3390_electronics13193840
crossref_primary_10_1002_advs_202406912
crossref_primary_10_1016_j_scitotenv_2024_175813
crossref_primary_10_1007_s11042_025_20750_0
crossref_primary_10_1080_10402004_2024_2449503
crossref_primary_10_1016_j_compchemeng_2024_108791
crossref_primary_10_1016_j_envres_2025_120822
crossref_primary_10_1016_j_jclepro_2024_140573
crossref_primary_10_1016_j_jwpe_2024_105212
crossref_primary_10_1016_j_landurbplan_2024_105204
crossref_primary_10_1016_j_compag_2025_110277
crossref_primary_10_3390_pr12061054
crossref_primary_10_1016_j_jenvman_2025_126886
crossref_primary_10_1016_j_jenvman_2024_122386
crossref_primary_10_1088_1361_6501_adf657
crossref_primary_10_1039_D4EW00111G
crossref_primary_10_1109_ACCESS_2024_3477967
Cites_doi 10.1016/j.scitotenv.2022.154930
10.1016/j.watres.2017.06.063
10.1016/j.watres.2004.03.007
10.1515/aep-2017-0042
10.1016/0043-1354(94)90120-1
10.1016/j.jece.2022.107430
10.1007/978-94-011-3951-9_10
10.1016/j.chemosphere.2019.02.088
10.1007/s12355-018-0633-z
10.1016/j.aca.2013.09.016
10.1016/j.desal.2004.06.113
10.1109/30.754419
10.1016/j.dsp.2003.07.002
10.1093/eurheartj/ehy404
10.1007/s11831-020-09425-1
10.3390/w14081275
10.1016/j.psep.2019.11.014
10.1016/j.watres.2007.01.011
10.1016/j.cej.2010.07.061
10.1016/j.watres.2007.12.013
10.3390/electronics10141711
10.1007/978-981-13-9042-5_56
10.1109/TNNLS.2018.2876865
10.1016/0043-1354(94)00326-3
10.1016/j.scitotenv.2022.153311
10.2166/wst.2018.189
10.1016/j.jwpe.2014.12.009
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2023.137913
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2023_137913
S0959652623020711
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-dd05b18f46ac464096abaef1a1348dc9147b0be5eefd4350f26cb8a997c71853
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001036439000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Wed Oct 01 14:56:04 EDT 2025
Sat Nov 29 07:07:06 EST 2025
Tue Nov 18 20:15:46 EST 2025
Fri Feb 23 02:36:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Activated sludge
Secondary treatment
Wastewater
Water quality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-dd05b18f46ac464096abaef1a1348dc9147b0be5eefd4350f26cb8a997c71853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9199-1548
0009-0008-9187-0840
0000-0001-7368-0754
0000-0001-7512-9640
PQID 2922029733
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2922029733
crossref_citationtrail_10_1016_j_jclepro_2023_137913
crossref_primary_10_1016_j_jclepro_2023_137913
elsevier_sciencedirect_doi_10_1016_j_jclepro_2023_137913
PublicationCentury 2000
PublicationDate 2023-09-01
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ly, Truong, Ji, Nguyen, Cho, Ngo, Zhang (bib24) 2022; 832
Yao, Qi, Zhang, Shao, Yang, Li (bib43) 2021; 10
Jocher, Stoken, Borovec, NanoCode012, ChristopherSTAN, Changyu, Laughing, tkianai, yx, Hogan, lorenzomammana, Chaurasia, Diaconu, Marc, haoyang0106, ml5ah, Doug, Ingham, Frederik, Colmagro, Ye, Jacobsolawetz, Poznanski, Fang, Kim, Doan, 于力军 (bib18) 2021
Eikelboom (bib13) 2000
Salvadó, Palomo, Mas, Puigagut, Gracia (bib36) 2004; 38
Madoni (bib25) 1994; 28
Girshick (bib15) 2015
Zaghloul, Achari (bib44) 2022; 10
Madoni (bib26) 2010
Sonune, Ghate (bib38) 2004; 167
Dhal, Das, Ray, Gálvez, Das (bib12) 2021; 28
Burger, Krysiak-Baltyn, Scales, Martin, Stickland, Gras (bib6) 2017; 123
Park, Baek, Kim, You, Kim (bib30) 2022; 14
Wu, Kirillov, Massa, Lo, Girshick (bib42) 2019
Schuler, Jang (bib37) 2007; 41
Johnston, LaPara, Behrens (bib19) 2019; 9
Wang, Chen, Zhang (bib39) 1999; 45
Al'Aref, Anchouche, Singh, Slomka, Kolli, Kumar, Pandey, Maliakal, van Rosendael, Beecy, Berman, Leipsic, Nieman, Andreini, Pontone, Schoepf, Shaw, Chang, Narula, Bax, Guan, Min (bib2) 2019; 40
Prasad, Venkataramana, Kumar, Prasannamedha, Harshana, Srividya, Harrinei, Indraganti (bib32) 2022; 821
Gnida (bib16) 2017; 43
Lindrea, Seviour, Seviour, Blackall, Soddell (bib23) 1998
Deng, Dong, Socher, Li, Li, Fei-Fei (bib10) 2010
Minaee, Boykov, Porikli, Plaza, Kehtarnavaz, Terzopoulos (bib28) 2022; 44
(bib41) 2022
Rolnick, Donti, Kaack, Kochanski, Lacoste, Sankaran, Ross, Milojevic-Dupont, Jaques, Waldman-Brown, Luccioni, Maharaj, Sherwin, Mukkavilli, Kording, Gomes, Ng, Hassabis, Platt, Creutzig, Chayes, Bengio (bib35) 2019
Kim, Sung, Park (bib21) 2020
Wilén, Onuki, Hermansson, Lumley, Mino (bib40) 2008; 42
Zhao, Zheng, Xu, Wu (bib45) 2019; 30
Jones, Schuler (bib20) 2010; 164
Roboflow (bib34)
Albawi, Mohammed, Al-Zawi (bib1) 2018
Redmon, Divvala, Girshick, Farhadi (bib33) 2016
Zhou, Zhao, Nie (bib47) 2021
Fito, Tefera, Kloos, Van Hulle (bib14) 2019; 21
Koivuranta, Stoor, Hattuniemi, Niinimäki (bib22) 2015; 5
Campbell, Wang, Daniels (bib7) 2019; 223
Cheng, Shi (bib9) 2004; 14
bib17
Mesquita, Amaral, Ferreira (bib27) 2013; 802
Boretti, Rosa (bib5) 2019
Perez, Wang (bib31) 2017
Oliveira, Alliet, Coufort-Saudejaud, Frances (bib29) 2018; 77
Bharati, Pramanik (bib4) 2020; 999
Zhao, Dai, Qiao, Sun, Hao, Yang (bib46) 2020; 133
Chauhan, Ghanshala, Joshi (bib8) 2018
Barbusiński, Kościelniak (bib3) 1995; 29
Deshpande, Singh, Herunde (bib11) 2020; 9
Madoni (10.1016/j.jclepro.2023.137913_bib25) 1994; 28
Gnida (10.1016/j.jclepro.2023.137913_bib16) 2017; 43
Boretti (10.1016/j.jclepro.2023.137913_bib5)
Zhou (10.1016/j.jclepro.2023.137913_bib47) 2021
Deng (10.1016/j.jclepro.2023.137913_bib10)
Johnston (10.1016/j.jclepro.2023.137913_bib19) 2019; 9
Oliveira (10.1016/j.jclepro.2023.137913_bib29) 2018; 77
Lindrea (10.1016/j.jclepro.2023.137913_bib23) 1998
Chauhan (10.1016/j.jclepro.2023.137913_bib8) 2018
Yao (10.1016/j.jclepro.2023.137913_bib43) 2021; 10
Zhao (10.1016/j.jclepro.2023.137913_bib46) 2020; 133
Fito (10.1016/j.jclepro.2023.137913_bib14) 2019; 21
Ly (10.1016/j.jclepro.2023.137913_bib24) 2022; 832
Dhal (10.1016/j.jclepro.2023.137913_bib12) 2021; 28
Mesquita (10.1016/j.jclepro.2023.137913_bib27) 2013; 802
Campbell (10.1016/j.jclepro.2023.137913_bib7) 2019; 223
Albawi (10.1016/j.jclepro.2023.137913_bib1) 2018
Prasad (10.1016/j.jclepro.2023.137913_bib32) 2022; 821
Schuler (10.1016/j.jclepro.2023.137913_bib37) 2007; 41
Jocher (10.1016/j.jclepro.2023.137913_bib18) 2021
Deshpande (10.1016/j.jclepro.2023.137913_bib11) 2020; 9
Minaee (10.1016/j.jclepro.2023.137913_bib28) 2022; 44
Al'Aref (10.1016/j.jclepro.2023.137913_bib2) 2019; 40
Jones (10.1016/j.jclepro.2023.137913_bib20) 2010; 164
Eikelboom (10.1016/j.jclepro.2023.137913_bib13) 2000
Girshick (10.1016/j.jclepro.2023.137913_bib15) 2015
(10.1016/j.jclepro.2023.137913_bib41) 2022
Wu (10.1016/j.jclepro.2023.137913_bib42)
Cheng (10.1016/j.jclepro.2023.137913_bib9) 2004; 14
Roboflow (10.1016/j.jclepro.2023.137913_bib34)
Zaghloul (10.1016/j.jclepro.2023.137913_bib44) 2022; 10
Sonune (10.1016/j.jclepro.2023.137913_bib38) 2004; 167
Perez (10.1016/j.jclepro.2023.137913_bib31)
Barbusiński (10.1016/j.jclepro.2023.137913_bib3) 1995; 29
Kim (10.1016/j.jclepro.2023.137913_bib21) 2020
Rolnick (10.1016/j.jclepro.2023.137913_bib35) 2019
Salvadó (10.1016/j.jclepro.2023.137913_bib36) 2004; 38
Zhao (10.1016/j.jclepro.2023.137913_bib45) 2019; 30
Madoni (10.1016/j.jclepro.2023.137913_bib26)
Bharati (10.1016/j.jclepro.2023.137913_bib4) 2020; 999
Wang (10.1016/j.jclepro.2023.137913_bib39) 1999; 45
Wilén (10.1016/j.jclepro.2023.137913_bib40) 2008; 42
Burger (10.1016/j.jclepro.2023.137913_bib6) 2017; 123
Redmon (10.1016/j.jclepro.2023.137913_bib33) 2016
Koivuranta (10.1016/j.jclepro.2023.137913_bib22) 2015; 5
Park (10.1016/j.jclepro.2023.137913_bib30) 2022; 14
References_xml – ident: bib17
– volume: 14
  start-page: 1275
  year: 2022
  ident: bib30
  article-title: Deep learning-based algal detection model development considering field application
  publication-title: Water
– volume: 42
  start-page: 2300
  year: 2008
  end-page: 2308
  ident: bib40
  article-title: Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability
  publication-title: Water Res.
– volume: 123
  start-page: 578
  year: 2017
  end-page: 585
  ident: bib6
  article-title: The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process
  publication-title: Water Res.
– volume: 43
  start-page: 66
  year: 2017
  end-page: 71
  ident: bib16
  article-title: Use of DAIME for characterisation of activated sludge flocs
  publication-title: Arch. Environ. Protect.
– year: 2019
  ident: bib5
  article-title: Reassessing the projections of the world water development report
– volume: 9
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib19
  article-title: Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure
  publication-title: Sci. Rep.
– volume: 44
  start-page: 3523
  year: 2022
  end-page: 3542
  ident: bib28
  article-title: Image segmentation using deep learning: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 821
  year: 2022
  ident: bib32
  article-title: Analysis and prediction of water quality using deep learning and auto deep learning techniques
  publication-title: Sci. Total Environ.
– year: 2015
  ident: bib15
  article-title: Fast R-CNN
– volume: 77
  start-page: 2415
  year: 2018
  end-page: 2425
  ident: bib29
  article-title: New insights in morphological analysis for managing activated sludge systems
  publication-title: Water Sci. Technol.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib1
  article-title: Understanding of a convolutional neural network
  publication-title: Proceedings of 2017 International Conference on Engineering and Technology
– volume: 38
  start-page: 2571
  year: 2004
  end-page: 2578
  ident: bib36
  article-title: Dynamics of nematodes in a high organic loading rotating biological contactors
  publication-title: Water Res.
– volume: 133
  start-page: 169
  year: 2020
  end-page: 182
  ident: bib46
  article-title: Application of artificial intelligence to wastewater treatment: a bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse
  publication-title: Process Saf. Environ. Protect.
– volume: 164
  start-page: 16
  year: 2010
  end-page: 22
  ident: bib20
  article-title: Seasonal variability of biomass density and activated sludge settleability in full-scale wastewater treatment systems
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 265
  year: 2019
  end-page: 277
  ident: bib14
  article-title: Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment
  publication-title: Sugar Tech
– year: 2019
  ident: bib35
  article-title: Tackling climate change with machine learning
  publication-title: ArXiv
– volume: 40
  start-page: 1975
  year: 2019
  end-page: 1986
  ident: bib2
  article-title: Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging
  publication-title: Eur. Heart J.
– volume: 28
  start-page: 67
  year: 1994
  end-page: 75
  ident: bib25
  article-title: A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis
  publication-title: Water Res.
– volume: 10
  start-page: 1711
  year: 2021
  ident: bib43
  article-title: A real-time detection algorithm for kiwifruit defects based on YOLOv5
  publication-title: Electronics
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: bib45
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 802
  start-page: 14
  year: 2013
  end-page: 28
  ident: bib27
  article-title: Activated sludge characterization through microscopy: a review on quantitative image analysis and chemometric techniques
  publication-title: Anal. Chim. Acta
– year: 2017
  ident: bib31
  article-title: The effectiveness of data augmentation in image classification using deep learning
– volume: 5
  start-page: 28
  year: 2015
  end-page: 34
  ident: bib22
  article-title: On-line optical monitoring of activated sludge floc morphology
  publication-title: J. Water Proc. Eng.
– start-page: 2020
  year: 2020
  ident: bib21
  article-title: Comparison of faster-RCNN, YOLO, and SSD for real-time vehicle type recognition
  publication-title: IEEE International Conference on Consumer Electronics - Asia
– volume: 832
  year: 2022
  ident: bib24
  article-title: Exploring potential machine learning application based on big data for prediction of wastewater quality from different full-scale wastewater treatment plants
  publication-title: Sci. Total Environ.
– year: 2010
  ident: bib10
  article-title: ImageNet: a large-scale hierarchical image database
– volume: 29
  start-page: 1703
  year: 1995
  end-page: 1710
  ident: bib3
  article-title: Influence of substrate loading intensity on floc size in activated sludge process
  publication-title: Water Res.
– start-page: 257
  year: 1998
  end-page: 300
  ident: bib23
  article-title: Practical methods for the examination and characterization of activated sludge
  publication-title: The Microbiology of Activated Sludge
– volume: 10
  year: 2022
  ident: bib44
  article-title: Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal
  publication-title: J. Environ. Chem. Eng.
– volume: 223
  start-page: 694
  year: 2019
  end-page: 703
  ident: bib7
  article-title: Assessing activated sludge morphology and oxygen transfer performance using image analysis
  publication-title: Chemosphere
– start-page: 278
  year: 2018
  end-page: 282
  ident: bib8
  article-title: Convolutional neural network (CNN) for image detection and recognition
  publication-title: ICSCCC 2018 - 1st International Conference on Secure Cyber Computing and Communications
– volume: 167
  start-page: 55
  year: 2004
  end-page: 63
  ident: bib38
  article-title: Developments in wastewater treatment methods
  publication-title: Desalination
– volume: 9
  start-page: 46
  year: 2020
  end-page: 64
  ident: bib11
  article-title: Comparative analysis on YOLO object detection with OpenCV
  publication-title: International Journal of Research in Industrial Engineering
– volume: 41
  start-page: 1814
  year: 2007
  end-page: 1822
  ident: bib37
  article-title: Density effects on activated sludge zone settling velocities
  publication-title: Water Res.
– year: 2000
  ident: bib13
  article-title: Proces Control of Activated Sludge Plants by Microscopic Investigation
– year: 2022
  ident: bib41
  article-title: The Global Risks Report 2022
– start-page: 6
  year: 2021
  end-page: 11
  ident: bib47
  article-title: Safety helmet detection based on YOLOv5
  publication-title: Proceedings of 2021 IEEE International Conference on Power Electronics, Computer Applications
– ident: bib34
  article-title: Give your software the power to see objects in images and video
– volume: 14
  start-page: 158
  year: 2004
  end-page: 170
  ident: bib9
  article-title: A simple and effective histogram equalization approach to image enhancement
  publication-title: Digit. Signal Process.
– volume: 999
  start-page: 657
  year: 2020
  end-page: 668
  ident: bib4
  article-title: Deep learning techniques—R-CNN to mask R-CNN: a survey
  publication-title: Adv. Intell. Syst. Comput.
– year: 2016
  ident: bib33
  article-title: You Only Look once: Unified, Real-Time Object Detection
– volume: 28
  start-page: 1471
  year: 2021
  end-page: 1496
  ident: bib12
  article-title: Histogram equalization variants as optimization problems: a review
  publication-title: Arch. Comput. Methods Eng.
– year: 2019
  ident: bib42
  article-title: Detectron2 model zoo
– year: 2010
  ident: bib26
  article-title: Protozoa in wastewater treatment processes: a minireview
– year: 2021
  ident: bib18
  article-title: ultralytics/yolov5: v4.0 - nn.SiLU( ) activations, Weights & Biases logging
  publication-title: PyTorch Hub integration
– volume: 45
  start-page: 68
  year: 1999
  end-page: 75
  ident: bib39
  article-title: Image enhancement based on equal area dualistic sub-image histogram equalization method
  publication-title: IEEE Trans. Consum. Electron.
– volume: 832
  year: 2022
  ident: 10.1016/j.jclepro.2023.137913_bib24
  article-title: Exploring potential machine learning application based on big data for prediction of wastewater quality from different full-scale wastewater treatment plants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154930
– ident: 10.1016/j.jclepro.2023.137913_bib5
– volume: 123
  start-page: 578
  year: 2017
  ident: 10.1016/j.jclepro.2023.137913_bib6
  article-title: The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.06.063
– ident: 10.1016/j.jclepro.2023.137913_bib10
– volume: 38
  start-page: 2571
  year: 2004
  ident: 10.1016/j.jclepro.2023.137913_bib36
  article-title: Dynamics of nematodes in a high organic loading rotating biological contactors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.03.007
– ident: 10.1016/j.jclepro.2023.137913_bib42
– volume: 43
  start-page: 66
  year: 2017
  ident: 10.1016/j.jclepro.2023.137913_bib16
  article-title: Use of DAIME for characterisation of activated sludge flocs
  publication-title: Arch. Environ. Protect.
  doi: 10.1515/aep-2017-0042
– volume: 28
  start-page: 67
  year: 1994
  ident: 10.1016/j.jclepro.2023.137913_bib25
  article-title: A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)90120-1
– volume: 10
  year: 2022
  ident: 10.1016/j.jclepro.2023.137913_bib44
  article-title: Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107430
– start-page: 257
  year: 1998
  ident: 10.1016/j.jclepro.2023.137913_bib23
  article-title: Practical methods for the examination and characterization of activated sludge
  publication-title: The Microbiology of Activated Sludge
  doi: 10.1007/978-94-011-3951-9_10
– year: 2022
  ident: 10.1016/j.jclepro.2023.137913_bib41
– start-page: 1
  year: 2018
  ident: 10.1016/j.jclepro.2023.137913_bib1
  article-title: Understanding of a convolutional neural network
– volume: 223
  start-page: 694
  year: 2019
  ident: 10.1016/j.jclepro.2023.137913_bib7
  article-title: Assessing activated sludge morphology and oxygen transfer performance using image analysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.088
– volume: 21
  start-page: 265
  year: 2019
  ident: 10.1016/j.jclepro.2023.137913_bib14
  article-title: Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment
  publication-title: Sugar Tech
  doi: 10.1007/s12355-018-0633-z
– volume: 802
  start-page: 14
  year: 2013
  ident: 10.1016/j.jclepro.2023.137913_bib27
  article-title: Activated sludge characterization through microscopy: a review on quantitative image analysis and chemometric techniques
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.09.016
– ident: 10.1016/j.jclepro.2023.137913_bib31
– year: 2021
  ident: 10.1016/j.jclepro.2023.137913_bib18
  article-title: ultralytics/yolov5: v4.0 - nn.SiLU( ) activations, Weights & Biases logging
  publication-title: PyTorch Hub integration
– volume: 167
  start-page: 55
  year: 2004
  ident: 10.1016/j.jclepro.2023.137913_bib38
  article-title: Developments in wastewater treatment methods
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.06.113
– volume: 44
  start-page: 3523
  year: 2022
  ident: 10.1016/j.jclepro.2023.137913_bib28
  article-title: Image segmentation using deep learning: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 45
  start-page: 68
  year: 1999
  ident: 10.1016/j.jclepro.2023.137913_bib39
  article-title: Image enhancement based on equal area dualistic sub-image histogram equalization method
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.754419
– volume: 14
  start-page: 158
  year: 2004
  ident: 10.1016/j.jclepro.2023.137913_bib9
  article-title: A simple and effective histogram equalization approach to image enhancement
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2003.07.002
– volume: 40
  start-page: 1975
  year: 2019
  ident: 10.1016/j.jclepro.2023.137913_bib2
  article-title: Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehy404
– volume: 28
  start-page: 1471
  year: 2021
  ident: 10.1016/j.jclepro.2023.137913_bib12
  article-title: Histogram equalization variants as optimization problems: a review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09425-1
– volume: 14
  start-page: 1275
  issue: 2022
  year: 2022
  ident: 10.1016/j.jclepro.2023.137913_bib30
  article-title: Deep learning-based algal detection model development considering field application
  publication-title: Water
  doi: 10.3390/w14081275
– year: 2016
  ident: 10.1016/j.jclepro.2023.137913_bib33
– volume: 133
  start-page: 169
  year: 2020
  ident: 10.1016/j.jclepro.2023.137913_bib46
  article-title: Application of artificial intelligence to wastewater treatment: a bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2019.11.014
– volume: 41
  start-page: 1814
  year: 2007
  ident: 10.1016/j.jclepro.2023.137913_bib37
  article-title: Density effects on activated sludge zone settling velocities
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.01.011
– volume: 164
  start-page: 16
  year: 2010
  ident: 10.1016/j.jclepro.2023.137913_bib20
  article-title: Seasonal variability of biomass density and activated sludge settleability in full-scale wastewater treatment systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.07.061
– year: 2019
  ident: 10.1016/j.jclepro.2023.137913_bib35
  article-title: Tackling climate change with machine learning
  publication-title: ArXiv
– year: 2015
  ident: 10.1016/j.jclepro.2023.137913_bib15
– volume: 42
  start-page: 2300
  year: 2008
  ident: 10.1016/j.jclepro.2023.137913_bib40
  article-title: Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.12.013
– volume: 9
  start-page: 1
  issue: 1 9
  year: 2019
  ident: 10.1016/j.jclepro.2023.137913_bib19
  article-title: Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure
  publication-title: Sci. Rep.
– ident: 10.1016/j.jclepro.2023.137913_bib34
– volume: 10
  start-page: 1711
  issue: 2021
  year: 2021
  ident: 10.1016/j.jclepro.2023.137913_bib43
  article-title: A real-time detection algorithm for kiwifruit defects based on YOLOv5
  publication-title: Electronics
  doi: 10.3390/electronics10141711
– volume: 999
  start-page: 657
  year: 2020
  ident: 10.1016/j.jclepro.2023.137913_bib4
  article-title: Deep learning techniques—R-CNN to mask R-CNN: a survey
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-981-13-9042-5_56
– start-page: 2020
  year: 2020
  ident: 10.1016/j.jclepro.2023.137913_bib21
  article-title: Comparison of faster-RCNN, YOLO, and SSD for real-time vehicle type recognition
– ident: 10.1016/j.jclepro.2023.137913_bib26
– volume: 30
  start-page: 3212
  year: 2019
  ident: 10.1016/j.jclepro.2023.137913_bib45
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 29
  start-page: 1703
  year: 1995
  ident: 10.1016/j.jclepro.2023.137913_bib3
  article-title: Influence of substrate loading intensity on floc size in activated sludge process
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)00326-3
– volume: 821
  year: 2022
  ident: 10.1016/j.jclepro.2023.137913_bib32
  article-title: Analysis and prediction of water quality using deep learning and auto deep learning techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153311
– start-page: 278
  year: 2018
  ident: 10.1016/j.jclepro.2023.137913_bib8
  article-title: Convolutional neural network (CNN) for image detection and recognition
  publication-title: ICSCCC 2018 - 1st International Conference on Secure Cyber Computing and Communications
– volume: 77
  start-page: 2415
  year: 2018
  ident: 10.1016/j.jclepro.2023.137913_bib29
  article-title: New insights in morphological analysis for managing activated sludge systems
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2018.189
– year: 2000
  ident: 10.1016/j.jclepro.2023.137913_bib13
– volume: 5
  start-page: 28
  year: 2015
  ident: 10.1016/j.jclepro.2023.137913_bib22
  article-title: On-line optical monitoring of activated sludge floc morphology
  publication-title: J. Water Proc. Eng.
  doi: 10.1016/j.jwpe.2014.12.009
– start-page: 6
  year: 2021
  ident: 10.1016/j.jclepro.2023.137913_bib47
  article-title: Safety helmet detection based on YOLOv5
– volume: 9
  start-page: 46
  year: 2020
  ident: 10.1016/j.jclepro.2023.137913_bib11
  article-title: Comparative analysis on YOLO object detection with OpenCV
  publication-title: International Journal of Research in Industrial Engineering
SSID ssj0017074
Score 2.531208
Snippet The activated sludge (AS) process is the most common type of secondary wastewater treatment, applied worldwide. Due to the complexity of microbial communities,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137913
SubjectTerms Activated sludge
algorithms
Computer vision
Deep learning
pollution
Protozoa
Secondary treatment
Wastewater
wastewater treatment
Water quality
water reuse
Title Analyzing the secondary wastewater-treatment process using Faster R-CNN and YOLOv5 object detection algorithms
URI https://dx.doi.org/10.1016/j.jclepro.2023.137913
https://www.proquest.com/docview/2922029733
Volume 416
WOSCitedRecordID wos001036439000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMcEE-xvGQkxKVKydv2cbVqRVdVi6BI5WTZjkNbrZLQpsuKX884dtIKinY5cIkiK3aSmS-T8TwRest8X0e5FJ6S0hTVJrEnCEs9lgXUqMs6EbRpNkEmEzqfs4_OqrRp2gmQoqBXV6z6r6yGMWC2SZ39B3Z3i8IAnAPT4Qhsh-ONGN-UGfnZZkFtzIY3M6FxP8TGGMqAjt4uuryyeQK9bWMyGJpL1r1P3tlk0ngVvk7H08ukV0pjrellutaus_jFt3K9rBeu1Pmfyi08kyhgqcoWlN1z9o8KaWO6p3m-7CKDPy_Ewg4bIdMFBS2ztY0KOAfBLTt_SZtSMsrKfatFGHVhWfvmxzSx2fKtJAblsFf1g4iwIPIOyndralj1V_Aa8AZ9s7SbsPuhtU78yZQPv4zHfDaYz95V3z3Tasy45F3fldvoOCQJA1F4fDoazM875xPxbfHu9hF3iV_vD975byrNbz_3RmOZPUD3HTfwqYXIQ3RLF4_Qvb0ClI9R0YEFA1hwBxZ8CCzYgQU3YMEWLLgBCwawYAsWbMGCO7DgHVieoNlwMDv74LkOHJ6K4rD2ssxPZEDzOBUqTmPY7gopdB6IIIppplgQE-lLnWidZ6B3-3mYKkkFY0QRowg-RUdFWehnCEeZMg5gQQVVsfEuU6p8SmSscyIki05Q3NKQK1ed3jRJueBtGOKKO9JzQ3puSX-C-t20ypZnuW4CbRnEnY5pdUcOELtu6puWoRxksHGswZdUbjc8ZGHYNIGLnt_gmhfo7u6LeImO6vVWv0J31GW93KxfOzD-ArFurRQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+secondary+wastewater-treatment+process+using+Faster+R-CNN+and+YOLOv5+object+detection+algorithms&rft.jtitle=Journal+of+cleaner+production&rft.au=Inbar%2C+Offir&rft.au=Shahar%2C+Moni&rft.au=Gidron%2C+Jacob&rft.au=Cohen%2C+Ido&rft.date=2023-09-01&rft.issn=0959-6526&rft.volume=416+p.137913-&rft_id=info:doi/10.1016%2Fj.jclepro.2023.137913&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon