Parametric Expansions of an Algebraic Variety Near Its Singularities II

The paper is a continuation and completion of the paper Bruno, A.D.; Azimov, A.A. Parametric Expansions of an Algebraic Variety Near Its Singularities. Axioms 2023, 5, 469, where we calculated parametric expansions of the three-dimensional algebraic manifold Ω, which appeared in theoretical physics,...

Full description

Saved in:
Bibliographic Details
Published in:Axioms Vol. 13; no. 2; p. 106
Main Authors: Bruno, Alexander D., Azimov, Alijon A.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2024
Subjects:
ISSN:2075-1680, 2075-1680
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper is a continuation and completion of the paper Bruno, A.D.; Azimov, A.A. Parametric Expansions of an Algebraic Variety Near Its Singularities. Axioms 2023, 5, 469, where we calculated parametric expansions of the three-dimensional algebraic manifold Ω, which appeared in theoretical physics, near its 3 singular points and near its one line of singular points. For that we used algorithms of Nonlinear Analysis: extraction of truncated polynomials, using the Newton polyhedron, their power transformations and Formal Generalized Implicit Function Theorem. Here we calculate parametric expansions of the manifold Ω near its one more singular point, near two curves of singular points and near infinity. Here we use 3 new things: (1) computation in algebraic extension of the field of rational numbers, (2) expansions near a curve of singular points and (3) calculation of branches near infinity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13020106