Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation

Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of ink...

Full description

Saved in:
Bibliographic Details
Published in:Food hydrocolloids Vol. 131; p. 107824
Main Authors: Yu, Jie, Wang, Xue-ying, Li, Dong, Wang, Li-jun, Wang, Yong
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2022
Subjects:
ISSN:0268-005X, 1873-7137
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG0.5 inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG0.5 inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG0.5 inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG0.5 inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks. [Display omitted] •Adding polysaccharides to SPI emulsion gel was beneficial for printability and rheological properties.•The gel strength of SPI-XG inks was stronger than SPI-GG inks at same concentration.•SPI-GG0.5 inks' 3D printed products had the lowest dimensional printing deviation.•The surface texture of SPI-GG0.5 inks was smoother than that of SPI-XG0.5 inks.•LAOS rheology confirmed high network strength with poor flexibility of SPI-XG0.5 inks.
AbstractList Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG0.5 inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG0.5 inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG0.5 inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG0.5 inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks. [Display omitted] •Adding polysaccharides to SPI emulsion gel was beneficial for printability and rheological properties.•The gel strength of SPI-XG inks was stronger than SPI-GG inks at same concentration.•SPI-GG0.5 inks' 3D printed products had the lowest dimensional printing deviation.•The surface texture of SPI-GG0.5 inks was smoother than that of SPI-XG0.5 inks.•LAOS rheology confirmed high network strength with poor flexibility of SPI-XG0.5 inks.
Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG₀.₅ inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG₀.₅ inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG₀.₅ inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG₀.₅ inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks.
ArticleNumber 107824
Author Wang, Xue-ying
Yu, Jie
Li, Dong
Wang, Li-jun
Wang, Yong
Author_xml – sequence: 1
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
  organization: College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China
– sequence: 2
  givenname: Xue-ying
  orcidid: 0000-0002-8583-5319
  surname: Wang
  fullname: Wang, Xue-ying
  organization: School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing, 100048, China
– sequence: 3
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  email: dongli@cau.edu.cn
  organization: College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China
– sequence: 4
  givenname: Li-jun
  surname: Wang
  fullname: Wang, Li-jun
  email: wlj@cau.edu.cn
  organization: College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
– sequence: 5
  givenname: Yong
  orcidid: 0000-0003-3744-912X
  surname: Wang
  fullname: Wang, Yong
  organization: School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
BookMark eNqFkD1vHCEQhlHkSDk7-QmRKNPsBVh2wUkRRf6MZCmNLaVDLAw2lz24MJyVa_PLzflcpXE1mmGeV8NzTI5STkDIR86WnPHx82oZcvYPO78UTIg2U1rIN2TBteo7xXt1RBZMjLpjbPj1jhwjrhjjinG-IP_O4RHmvFlDqjQHinlHNyVXiIlGzLOtQGG9nTHmRO9hRmqRwt9atvtJN1kET_tzur-ggTHVmO5pTL_xC70IAdxz6ibPO7TOPdgSPWB7d7lscrG1hbwnb4OdET681BNyd3lxe3bd3fy8-nH2_aZzvRS185OeOAjJZVDaagte9HKcQCk9qdPQWsZBg5_6STE3wRC4HLXWUoqejae6PyGfDrntf3-2gNWsIzqYZ5sgb9GIUQ2D4lrytvr1sOpKRiwQjIv1-dhabJwNZ2Zv3qzMi3mzN28O5hs9_Ec3MWtbdq9y3w5c0wyPEYpBFyE58LE0kcbn-ErCE-MFpe0
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_144351
crossref_primary_10_1016_j_foodhyd_2023_108939
crossref_primary_10_1002_fft2_70029
crossref_primary_10_1016_j_foodchem_2024_139436
crossref_primary_10_1016_j_foodhyd_2024_110613
crossref_primary_10_3390_gels10120840
crossref_primary_10_1016_j_foodhyd_2024_110737
crossref_primary_10_1016_j_ijbiomac_2024_138110
crossref_primary_10_1016_j_lwt_2025_117749
crossref_primary_10_1080_17452759_2024_2438899
crossref_primary_10_1016_j_jfoodeng_2025_112766
crossref_primary_10_1016_j_foodhyd_2024_110611
crossref_primary_10_1016_j_foodhyd_2024_110612
crossref_primary_10_1016_j_memori_2025_100124
crossref_primary_10_1016_j_jfoodeng_2025_112640
crossref_primary_10_1016_j_foodhyd_2025_111313
crossref_primary_10_1016_j_foodhyd_2025_111275
crossref_primary_10_1016_j_foodhyd_2024_110340
crossref_primary_10_1016_j_lwt_2025_118437
crossref_primary_10_1007_s11483_025_09964_9
crossref_primary_10_1016_j_foodhyd_2023_109116
crossref_primary_10_1007_s11947_024_03666_9
crossref_primary_10_1016_j_foodhyd_2024_109754
crossref_primary_10_1016_j_foodres_2025_116213
crossref_primary_10_1016_j_ijbiomac_2025_144468
crossref_primary_10_1016_j_foodchem_2024_141114
crossref_primary_10_1016_j_foodchem_2025_143136
crossref_primary_10_1016_j_tifs_2024_104691
crossref_primary_10_1007_s11130_024_01214_6
crossref_primary_10_1016_j_fbio_2023_102994
crossref_primary_10_1016_j_colsurfa_2022_129964
crossref_primary_10_1016_j_ijbiomac_2024_135229
crossref_primary_10_1016_j_foodhyd_2024_110605
crossref_primary_10_1016_j_ijbiomac_2024_138466
crossref_primary_10_1016_j_jfutfo_2024_11_001
crossref_primary_10_1016_j_foodhyd_2024_110574
crossref_primary_10_1016_j_foodhyd_2024_110052
crossref_primary_10_1016_j_foodhyd_2022_108133
crossref_primary_10_1016_j_ijbiomac_2025_143424
crossref_primary_10_1016_j_foodres_2025_115873
crossref_primary_10_1146_annurev_food_111523_121736
crossref_primary_10_1016_j_foodhyd_2023_108715
crossref_primary_10_1016_j_foodchem_2025_146379
crossref_primary_10_1016_j_ijbiomac_2025_142298
crossref_primary_10_1016_j_ijbiomac_2023_126421
crossref_primary_10_1016_j_fbio_2024_104721
crossref_primary_10_1016_j_carbpol_2024_121891
crossref_primary_10_1016_j_ijbiomac_2025_146470
crossref_primary_10_1016_j_cis_2023_103051
crossref_primary_10_1016_j_foodhyd_2024_110839
crossref_primary_10_1016_j_ijbiomac_2023_125217
crossref_primary_10_1016_j_jfoodeng_2023_111410
crossref_primary_10_1016_j_ultsonch_2024_107205
crossref_primary_10_1016_j_foodhyd_2024_110439
crossref_primary_10_1016_j_foodhyd_2025_111525
crossref_primary_10_3390_foods12071433
crossref_primary_10_1016_j_foodhyd_2023_109097
crossref_primary_10_1016_j_foodhyd_2023_109493
crossref_primary_10_1016_j_foodhyd_2024_110440
crossref_primary_10_1016_j_ijbiomac_2024_138842
crossref_primary_10_1016_j_foodchem_2024_142023
crossref_primary_10_1016_j_ifset_2023_103545
crossref_primary_10_1111_1750_3841_17101
crossref_primary_10_1016_j_foodhyd_2023_109254
crossref_primary_10_1016_j_tifs_2023_02_004
crossref_primary_10_1016_j_ijbiomac_2025_145415
crossref_primary_10_1016_j_ijbiomac_2025_144049
crossref_primary_10_1016_j_foodchem_2024_140402
crossref_primary_10_1016_j_ijbiomac_2025_140004
crossref_primary_10_1016_j_fochx_2024_102131
crossref_primary_10_1016_j_foodchem_2023_136910
crossref_primary_10_1007_s11947_023_03265_0
crossref_primary_10_1007_s11947_025_04022_1
crossref_primary_10_1016_j_fochx_2025_102602
crossref_primary_10_3390_foods11193020
crossref_primary_10_1016_j_ijbiomac_2024_133788
crossref_primary_10_1016_j_ijbiomac_2023_126839
crossref_primary_10_1016_j_foodchem_2023_137447
crossref_primary_10_1016_j_ijbiomac_2024_134079
crossref_primary_10_1016_j_tifs_2025_104937
crossref_primary_10_1016_j_fbio_2025_106361
crossref_primary_10_1016_j_foodhyd_2024_111001
crossref_primary_10_1016_j_jfoodeng_2024_112354
crossref_primary_10_1016_j_fochx_2025_102280
crossref_primary_10_1016_j_foodres_2024_114703
crossref_primary_10_3390_gels11080574
crossref_primary_10_1016_j_foodhyd_2022_108036
crossref_primary_10_1007_s11814_024_00090_9
crossref_primary_10_1016_j_foodchem_2024_142416
crossref_primary_10_1016_j_foodhyd_2023_108611
crossref_primary_10_1016_j_foodchem_2025_145785
crossref_primary_10_1016_j_ijbiomac_2025_141162
crossref_primary_10_1016_j_jfutfo_2024_09_002
crossref_primary_10_1016_j_ijbiomac_2025_147143
crossref_primary_10_1039_D4FO00982G
crossref_primary_10_1016_j_foodchem_2024_141319
crossref_primary_10_1016_j_foodhyd_2024_110817
crossref_primary_10_1016_j_ijbiomac_2025_147381
crossref_primary_10_1016_j_foodhyd_2024_110019
crossref_primary_10_1016_j_foodchem_2023_135394
crossref_primary_10_1007_s11947_025_03987_3
crossref_primary_10_1016_j_foodhyd_2024_110655
crossref_primary_10_3390_foods11162410
crossref_primary_10_1016_j_foodhyd_2025_111477
crossref_primary_10_1016_j_ijbiomac_2024_134110
crossref_primary_10_1016_j_foodhyd_2025_111476
crossref_primary_10_1016_j_foodhyd_2025_111352
crossref_primary_10_3390_gels11080620
crossref_primary_10_1007_s11947_024_03680_x
crossref_primary_10_1002_sfp2_1015
crossref_primary_10_1016_j_foodhyd_2025_111076
crossref_primary_10_1016_j_foodhyd_2023_108588
crossref_primary_10_1016_j_foodhyd_2024_109799
crossref_primary_10_1016_j_foodhyd_2023_108905
crossref_primary_10_1016_j_lwt_2023_115478
crossref_primary_10_1016_j_foodchem_2025_142819
crossref_primary_10_1016_j_lwt_2025_117816
crossref_primary_10_1016_j_foodhyd_2022_108293
crossref_primary_10_1016_j_foodhyd_2024_109782
crossref_primary_10_1111_1750_3841_70498
crossref_primary_10_1016_j_carbpol_2024_122759
crossref_primary_10_1016_j_foodchem_2025_143108
crossref_primary_10_1016_j_foodhyd_2023_108872
crossref_primary_10_1016_j_foodhyd_2022_108332
crossref_primary_10_1016_j_foodhyd_2025_111120
crossref_primary_10_1016_j_foodhyd_2023_108632
crossref_primary_10_1016_j_foodhyd_2024_109942
crossref_primary_10_1002_adma_202312707
crossref_primary_10_1016_j_foodchem_2024_140575
crossref_primary_10_1016_j_ijbiomac_2023_126465
crossref_primary_10_1007_s44187_024_00122_7
crossref_primary_10_1016_j_fpsl_2024_101401
crossref_primary_10_3390_bioengineering10070845
crossref_primary_10_1016_j_ijbiomac_2023_128803
crossref_primary_10_1016_j_jfoodeng_2023_111455
crossref_primary_10_1016_j_ijbiomac_2024_138252
crossref_primary_10_3390_foods12183387
crossref_primary_10_1016_j_foodres_2023_113760
crossref_primary_10_1016_j_ifset_2022_103102
crossref_primary_10_1016_j_ijbiomac_2025_139975
crossref_primary_10_1016_j_carbpol_2023_121658
crossref_primary_10_1016_j_foodres_2023_113489
crossref_primary_10_1016_j_cis_2024_103339
crossref_primary_10_1016_j_susmat_2025_e01285
crossref_primary_10_1016_j_foodhyd_2024_110086
crossref_primary_10_1016_j_ijbiomac_2025_145338
crossref_primary_10_1007_s11947_024_03669_6
crossref_primary_10_3390_surfaces8030064
crossref_primary_10_1111_1541_4337_70095
crossref_primary_10_1016_j_fbio_2024_103844
crossref_primary_10_1016_j_jece_2025_115796
crossref_primary_10_1016_j_eurpolymj_2025_114212
crossref_primary_10_1016_j_ijbiomac_2024_135648
crossref_primary_10_1016_j_ijbiomac_2025_139870
crossref_primary_10_1016_j_lwt_2024_116809
crossref_primary_10_1016_j_foodhyd_2025_111337
crossref_primary_10_1016_j_jfoodeng_2023_111687
crossref_primary_10_3390_gels9050366
crossref_primary_10_1111_1541_4337_13276
crossref_primary_10_1016_j_ijbiomac_2025_141549
crossref_primary_10_1016_j_foodhyd_2023_109582
crossref_primary_10_1016_j_foodres_2025_116787
crossref_primary_10_1016_j_ijbiomac_2024_138637
crossref_primary_10_1016_j_jfoodeng_2024_112150
crossref_primary_10_3390_foods13091289
crossref_primary_10_3390_gels10120828
crossref_primary_10_1016_j_ijbiomac_2025_140854
crossref_primary_10_1016_j_foodhyd_2023_109586
crossref_primary_10_1016_j_foodchem_2024_141889
crossref_primary_10_1016_j_foodhyd_2023_109347
crossref_primary_10_1016_j_foodres_2025_117113
crossref_primary_10_1039_D3FO04945K
crossref_primary_10_3390_foods13142215
crossref_primary_10_1016_j_foodchem_2025_143044
crossref_primary_10_1016_j_foodchem_2024_141005
crossref_primary_10_1016_j_foodhyd_2023_109109
crossref_primary_10_1016_j_ijbiomac_2023_124101
crossref_primary_10_3390_foods14111965
crossref_primary_10_1016_j_foodchem_2024_140794
Cites_doi 10.1016/j.foodhyd.2020.106359
10.1016/j.foodhyd.2018.08.026
10.1016/j.foodhyd.2021.107160
10.1016/j.ijbiomac.2018.06.048
10.1021/acs.jafc.8b02829
10.1016/j.foodhyd.2015.10.010
10.1016/j.jmbbm.2016.07.020
10.1016/j.foodhyd.2014.09.025
10.1016/j.foodhyd.2020.106145
10.1016/j.foodchem.2021.130354
10.1016/j.lwt.2018.06.014
10.1002/jsfa.10659
10.1122/1.5045073
10.1080/10408398.2018.1514363
10.1016/j.foodhyd.2019.105466
10.1016/j.foodhyd.2019.105317
10.1016/j.foodhyd.2020.105893
10.1016/j.foodhyd.2017.12.016
10.1016/j.foodhyd.2020.106365
10.1002/jsfa.9228
10.1016/j.tifs.2016.08.014
10.1016/j.foodres.2015.01.025
10.1016/j.foodhyd.2021.106967
10.1016/j.colsurfa.2020.125577
10.1007/s11483-018-9531-x
10.1016/j.foodhyd.2021.106813
10.1016/j.foodhyd.2012.07.012
10.1016/j.foodhyd.2021.107173
10.1016/j.addma.2020.101160
10.1016/j.foodchem.2020.128049
10.1016/j.foodhyd.2021.106962
10.1016/j.foodhyd.2021.106612
10.1016/j.carbpol.2014.02.089
10.1016/j.foodhyd.2021.107387
10.1016/j.foodhyd.2021.106683
10.1016/j.foodhyd.2021.107418
10.1016/j.foodhyd.2020.106482
10.1016/j.carbpol.2017.09.097
10.1016/j.foodhyd.2021.107113
10.1016/j.foodhyd.2016.11.032
10.1016/j.foodhyd.2021.107050
10.1016/j.carbpol.2019.115469
10.1016/j.foodhyd.2020.106546
10.1016/j.foodhyd.2018.06.050
10.1016/j.foodhyd.2021.107183
10.1016/j.foodhyd.2020.105940
10.1007/s11947-019-02344-5
10.1016/j.foodhyd.2021.107265
10.1016/j.colsurfb.2021.111595
10.1016/j.ceramint.2019.11.225
10.1016/j.foodchem.2021.131349
10.1021/jf104204e
10.1016/j.carbpol.2021.118660
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodhyd.2022.107824
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7137
ExternalDocumentID 10_1016_j_foodhyd_2022_107824
S0268005X22003447
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLY
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
UHS
UNMZH
WH7
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-db8b1e2414f78a8aed2346be778b79fed201e8edb3b70cbe5f146888442306983
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000818010000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-005X
IngestDate Sat Sep 27 17:58:30 EDT 2025
Tue Nov 18 21:32:41 EST 2025
Sat Nov 29 07:20:54 EST 2025
Fri Feb 23 02:40:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Printability
Microstructure
SPI emulsion gel inks
Polysaccharide
3D printing
Rheological properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-db8b1e2414f78a8aed2346be778b79fed201e8edb3b70cbe5f146888442306983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8583-5319
0000-0003-3744-912X
PQID 2675571841
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2675571841
crossref_citationtrail_10_1016_j_foodhyd_2022_107824
crossref_primary_10_1016_j_foodhyd_2022_107824
elsevier_sciencedirect_doi_10_1016_j_foodhyd_2022_107824
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Food hydrocolloids
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Matsuyama, Kazuhiro, Nakauma, Funami, Nambu, Matsumiya (bib28) 2021; 111
Liu, Zhang, Bhandari (bib24) 2018; 117
Kadamne, Castrodale, Proctor (bib20) 2011; 59
Chang, Li, Wang, Bi, Adhikari (bib11) 2014; 108
Duvarci, Yazar, Kokini (bib15) 2017; 60
Kruk, Ptaszek, Kaczmarczyk (bib21) 2021; 117
Moud, Kamkar, Sanati-Nezhad, Hejazi, Sundararaj (bib30) 2021; 609
Jiang, Zheng, Zou, Tong, Han, Wang (bib18) 2019; 59
Chivero, Gohtani, Yoshii, Nakamura (bib13) 2015; 70
Ramya, Kodavaty, Dorishetty, Setti, Deshpande (bib39) 2019; 63
Feng, Fan, Wang, Wang, Xia, Huang (bib17) 2022; 124
Anvari, Joyner (bib4) 2018; 79
Bascuas, Morell, Hernando, Quiles (bib6) 2021; 118
Yang, Thielen, Berton-Carabin, van der Linden, Sagis (bib54) 2020; 101
Tippetts, Shen, Martini (bib46) 2013; 30
Liu, Zhang, Wang, Bao, Regenstein, Zhou (bib25) 2019; 12
Precha-Atsawanan, Uttapap, Sagis (bib36) 2018; 85
Zhao, Zhang, Chitrakar, Adhikari (bib56) 2020
Shahbazi, Jäger, Ettelaie, Chen (bib41) 2021; 120
Bulut, Candoğan (bib10) 2022; 154
Azam, Zhang, Bhandari, Yang (bib5) 2018; 13
Xia, Siu, Sagis (bib51) 2021; 120
Brito-Oliveira, Moraes, Pinho, Campanella (bib9) 2022; 123
Ji, Xu, Li, Li, Zhong, Lu (bib19) 2022; 125
Morales-Contreras, Rosas-Flores, Contreras-Esquivel, Wicker, Morales-Castro (bib29) 2018; 179
Farias, Khan (bib16) 2021; 201
Phuhongsung, Zhang, Devahastin (bib35) 2020; 122
Tian, Zhang, Taha, Chen, Hu, Pan (bib45) 2020; 109
Ozel, Aydin, Grunin, Oztop (bib32) 2018; 66
Santos, Calero, Guerrero, Muñoz (bib40) 2015; 44
Pant, Lee, Karyappa, Lee, An, Hashimoto (bib34) 2021; 114
Liu, Zhang, Yang (bib26) 2018; 96
Xing, Chitrakar, Hati, Xie, Li, Li (bib52) 2022; 123
Yu, Wang, Li, Wang (bib55) 2022; 123
Qu, Wang, Li, Wang (bib38) 2021; 274
Bi, Xu, Guo, Du, Yu, Wu (bib7) 2022; 371
Liu, Sun, Li, Shang, Wang, Lv (bib23) 2021; 363
Witczak, Chmielewska, Ziobro, Korus, Juszczak (bib50) 2021; 118
Dick, Bhandari, Dong, Prakash (bib14) 2020; 107
Bootsma, Fitzgerald, Free, Dimbath, Conjerti, Reese (bib8) 2017; 70
Chen, Zhang, Sun, Phuhongsung (bib12) 2022; 123
Alavi, Chen, Emam-Djomeh (bib2) 2021; 112
Ptaszek, Kabziński, Ptaszek, Kaczmarczyk, Kruk, Bieńczak (bib37) 2016; 54
Yang, Gao, Yang (bib53) 2020; 99
Tian, Wang, Lan, Wang, Hu, Zhao (bib44) 2021; 113
Liu, Bhandari, Prakash, Mantihal, Zhang (bib22) 2019; 87
de Souza Paglarini, Vidal, Ribeiro, Badan Ribeiro, Bernardinelli, Herrero (bib42) 2021; 101
Abayazid, Ghajari (bib1) 2020; 33
Wang, Hu, Du, Peng, Ma, Zhang (bib48) 2021; 121
Alazzawi, Rohn, Beyoglu, Haber (bib3) 2020; 46
Munoz-Gonzalez, Ruiz-Capillas, Salvador, Herrero (bib31) 2021; 339
Vieira, Oliveira, Amado, Fasolin, Vicente, Pastrana (bib47) 2020; 107
Souza, Garcia-Rojas (bib43) 2017; 66
Ma, Cui, Lu, Hu, Xu, Song (bib27) 2022; 125
Warnakulasuriya, Nickerson (bib49) 2018; 98
Ozel, Aydin, Oztop (bib33) 2020; 229
Tian (10.1016/j.foodhyd.2022.107824_bib44) 2021; 113
Xia (10.1016/j.foodhyd.2022.107824_bib51) 2021; 120
Pant (10.1016/j.foodhyd.2022.107824_bib34) 2021; 114
Duvarci (10.1016/j.foodhyd.2022.107824_bib15) 2017; 60
Xing (10.1016/j.foodhyd.2022.107824_bib52) 2022; 123
Bootsma (10.1016/j.foodhyd.2022.107824_bib8) 2017; 70
Qu (10.1016/j.foodhyd.2022.107824_bib38) 2021; 274
Kruk (10.1016/j.foodhyd.2022.107824_bib21) 2021; 117
Wang (10.1016/j.foodhyd.2022.107824_bib48) 2021; 121
Ptaszek (10.1016/j.foodhyd.2022.107824_bib37) 2016; 54
Feng (10.1016/j.foodhyd.2022.107824_bib17) 2022; 124
Jiang (10.1016/j.foodhyd.2022.107824_bib18) 2019; 59
Chivero (10.1016/j.foodhyd.2022.107824_bib13) 2015; 70
Phuhongsung (10.1016/j.foodhyd.2022.107824_bib35) 2020; 122
Witczak (10.1016/j.foodhyd.2022.107824_bib50) 2021; 118
Santos (10.1016/j.foodhyd.2022.107824_bib40) 2015; 44
Alavi (10.1016/j.foodhyd.2022.107824_bib2) 2021; 112
Ji (10.1016/j.foodhyd.2022.107824_bib19) 2022; 125
Bi (10.1016/j.foodhyd.2022.107824_bib7) 2022; 371
Morales-Contreras (10.1016/j.foodhyd.2022.107824_bib29) 2018; 179
Yu (10.1016/j.foodhyd.2022.107824_bib55) 2022; 123
Liu (10.1016/j.foodhyd.2022.107824_bib25) 2019; 12
Bascuas (10.1016/j.foodhyd.2022.107824_bib6) 2021; 118
Liu (10.1016/j.foodhyd.2022.107824_bib22) 2019; 87
Souza (10.1016/j.foodhyd.2022.107824_bib43) 2017; 66
Yang (10.1016/j.foodhyd.2022.107824_bib54) 2020; 101
Tian (10.1016/j.foodhyd.2022.107824_bib45) 2020; 109
Warnakulasuriya (10.1016/j.foodhyd.2022.107824_bib49) 2018; 98
Brito-Oliveira (10.1016/j.foodhyd.2022.107824_bib9) 2022; 123
Anvari (10.1016/j.foodhyd.2022.107824_bib4) 2018; 79
Azam (10.1016/j.foodhyd.2022.107824_bib5) 2018; 13
Farias (10.1016/j.foodhyd.2022.107824_bib16) 2021; 201
Liu (10.1016/j.foodhyd.2022.107824_bib23) 2021; 363
Liu (10.1016/j.foodhyd.2022.107824_bib24) 2018; 117
Ozel (10.1016/j.foodhyd.2022.107824_bib32) 2018; 66
Chang (10.1016/j.foodhyd.2022.107824_bib11) 2014; 108
Zhao (10.1016/j.foodhyd.2022.107824_bib56) 2020
Kadamne (10.1016/j.foodhyd.2022.107824_bib20) 2011; 59
Yang (10.1016/j.foodhyd.2022.107824_bib53) 2020; 99
Liu (10.1016/j.foodhyd.2022.107824_bib26) 2018; 96
Ozel (10.1016/j.foodhyd.2022.107824_bib33) 2020; 229
Tippetts (10.1016/j.foodhyd.2022.107824_bib46) 2013; 30
Dick (10.1016/j.foodhyd.2022.107824_bib14) 2020; 107
de Souza Paglarini (10.1016/j.foodhyd.2022.107824_bib42) 2021; 101
Shahbazi (10.1016/j.foodhyd.2022.107824_bib41) 2021; 120
Ma (10.1016/j.foodhyd.2022.107824_bib27) 2022; 125
Vieira (10.1016/j.foodhyd.2022.107824_bib47) 2020; 107
Moud (10.1016/j.foodhyd.2022.107824_bib30) 2021; 609
Alazzawi (10.1016/j.foodhyd.2022.107824_bib3) 2020; 46
Chen (10.1016/j.foodhyd.2022.107824_bib12) 2022; 123
Munoz-Gonzalez (10.1016/j.foodhyd.2022.107824_bib31) 2021; 339
Precha-Atsawanan (10.1016/j.foodhyd.2022.107824_bib36) 2018; 85
Ramya (10.1016/j.foodhyd.2022.107824_bib39) 2019; 63
Matsuyama (10.1016/j.foodhyd.2022.107824_bib28) 2021; 111
Abayazid (10.1016/j.foodhyd.2022.107824_bib1) 2020; 33
Bulut (10.1016/j.foodhyd.2022.107824_bib10) 2022; 154
References_xml – volume: 363
  start-page: 130354
  year: 2021
  ident: bib23
  article-title: Value-added application of Platycodon grandiflorus (Jacq.) A.DC. roots (PGR) by ultrasound-assisted extraction (UAE) process to improve physicochemical quality, structural characteristics and functional properties
  publication-title: Food Chemistry
– volume: 54
  start-page: 293
  year: 2016
  end-page: 301
  ident: bib37
  article-title: The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method
  publication-title: Food Hydrocolloids
– volume: 79
  start-page: 518
  year: 2018
  end-page: 525
  ident: bib4
  article-title: Effect of fish gelatin and gum Arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties
  publication-title: Food Hydrocolloids
– volume: 30
  start-page: 559
  year: 2013
  end-page: 566
  ident: bib46
  article-title: Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH
  publication-title: Food Hydrocolloids
– volume: 179
  start-page: 282
  year: 2018
  end-page: 289
  ident: bib29
  article-title: Pectin from husk tomato (physalis ixocarpa brot.): Rheological behavior at different extraction conditions
  publication-title: Carbohydrate Polymers
– volume: 123
  year: 2022
  ident: bib12
  article-title: Improving 3D/4D printing characteristics of natural food gels by novel additives: A review
  publication-title: Food Hydrocolloids
– volume: 60
  start-page: 2
  year: 2017
  end-page: 11
  ident: bib15
  article-title: The comparison of Laos behavior of structured food materials (suspensions, emulsions and elastic networks)
  publication-title: Trends in Food Science & Technology
– volume: 59
  start-page: 2190
  year: 2011
  end-page: 2196
  ident: bib20
  article-title: Measurement of conjugated linoleic acid (cla) in cla-rich potato chips by atr-ftir spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 125
  year: 2022
  ident: bib19
  article-title: Effect of starch molecular structure on precision and texture properties of 3D printed products
  publication-title: Food Hydrocolloids
– volume: 117
  year: 2021
  ident: bib21
  article-title: Technological aspects of xanthan gum and gum Arabic presence in chicken egg albumin wet foams: Application of nonlinear rheology and nonparametric statistics
  publication-title: Food Hydrocolloids
– volume: 13
  start-page: 250
  year: 2018
  end-page: 262
  ident: bib5
  article-title: Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate
  publication-title: Food Biophysics
– volume: 114
  year: 2021
  ident: bib34
  article-title: 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients
  publication-title: Food Hydrocolloids
– volume: 98
  start-page: 5559
  year: 2018
  end-page: 5571
  ident: bib49
  article-title: Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes
  publication-title: Journal of the Science of Food and Agriculture
– volume: 70
  start-page: 7
  year: 2015
  end-page: 14
  ident: bib13
  article-title: Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions
  publication-title: Food Research International
– start-page: 1
  year: 2020
  end-page: 15
  ident: bib56
  article-title: Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 609
  year: 2021
  ident: bib30
  article-title: Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 59
  start-page: 2335
  year: 2019
  end-page: 2347
  ident: bib18
  article-title: 3D food printing: Main components selection by considering rheological properties
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 96
  start-page: 589
  year: 2018
  end-page: 596
  ident: bib26
  article-title: Dual extrusion 3D printing of mashed potatoes/strawberry juice gel
  publication-title: Lebensmittel-Wissenschaft & Technologie
– volume: 112
  year: 2021
  ident: bib2
  article-title: Structuring of acidic oil-in-water emulsions by controlled aggregation of nanofibrillated egg white protein in the aqueous phase using sodium hexametaphosphate
  publication-title: Food Hydrocolloids
– volume: 229
  start-page: 115469
  year: 2020
  ident: bib33
  article-title: In vitro digestion of polysaccharide including whey protein isolate hydrogels
  publication-title: Carbohydrate Polymers
– volume: 274
  year: 2021
  ident: bib38
  article-title: Rheological behavior of nanocellulose gels at various calcium chloride concentrations
  publication-title: Carbohydrate Polymers
– volume: 63
  start-page: 215
  year: 2019
  end-page: 228
  ident: bib39
  article-title: Characterizing the yielding processes in pluronic-hyaluronic acid thermoreversible gelling systems using oscillatory rheology
  publication-title: Journal of Rheology
– volume: 122
  year: 2020
  ident: bib35
  article-title: Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics
  publication-title: Lebensmittel-Wissenschaft & Technologie
– volume: 201
  year: 2021
  ident: bib16
  article-title: Probing gels and emulsions using large-amplitude oscillatory shear and frictional studies with soft substrate skin surrogates
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 46
  start-page: 8473
  year: 2020
  end-page: 8477
  ident: bib3
  article-title: Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions
  publication-title: Ceramics International
– volume: 123
  year: 2022
  ident: bib52
  article-title: Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation
  publication-title: Food Hydrocolloids
– volume: 101
  start-page: 505
  year: 2021
  end-page: 517
  ident: bib42
  article-title: Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage
  publication-title: Journal of the Science of Food and Agriculture
– volume: 109
  year: 2020
  ident: bib45
  article-title: Interfacial and emulsifying properties of
  publication-title: Food Hydrocolloids
– volume: 111
  year: 2021
  ident: bib28
  article-title: Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions
  publication-title: Food Hydrocolloids
– volume: 66
  start-page: 268
  year: 2017
  end-page: 275
  ident: bib43
  article-title: Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio
  publication-title: Food Hydrocolloids
– volume: 123
  year: 2022
  ident: bib55
  article-title: Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl
  publication-title: Food Hydrocolloids
– volume: 118
  year: 2021
  ident: bib6
  article-title: Recent trends in oil structuring using hydrocolloids
  publication-title: Food Hydrocolloids
– volume: 121
  year: 2021
  ident: bib48
  article-title: Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application
  publication-title: Food Hydrocolloids
– volume: 101
  year: 2020
  ident: bib54
  article-title: Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents
  publication-title: Food Hydrocolloids
– volume: 107
  year: 2020
  ident: bib14
  article-title: Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food
  publication-title: Food Hydrocolloids
– volume: 123
  year: 2022
  ident: bib9
  article-title: Modeling creep/recovery behavior of cold-set gels using different approaches
  publication-title: Food Hydrocolloids
– volume: 339
  start-page: 128049
  year: 2021
  ident: bib31
  article-title: Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties
  publication-title: Food Chemistry
– volume: 87
  start-page: 413
  year: 2019
  end-page: 424
  ident: bib22
  article-title: Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing
  publication-title: Food Hydrocolloids
– volume: 371
  year: 2022
  ident: bib7
  article-title: Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance
  publication-title: Food Chemistry
– volume: 117
  start-page: 1179
  year: 2018
  end-page: 1187
  ident: bib24
  article-title: Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes
  publication-title: International Journal of Biological Macromolecules
– volume: 120
  year: 2021
  ident: bib41
  article-title: Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks
  publication-title: Food Hydrocolloids
– volume: 125
  year: 2022
  ident: bib27
  article-title: High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing
  publication-title: Food Hydrocolloids
– volume: 85
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib36
  article-title: Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels
  publication-title: Food Hydrocolloids
– volume: 33
  year: 2020
  ident: bib1
  article-title: Material characterisation of additively manufactured elastomers at different strain rates and build orientations
  publication-title: Additive Manufacturing
– volume: 70
  start-page: 84
  year: 2017
  end-page: 94
  ident: bib8
  article-title: 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 154
  year: 2022
  ident: bib10
  article-title: Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level
  publication-title: Lebensmittel-Wissenschaft & Technologie
– volume: 66
  start-page: 9542
  year: 2018
  end-page: 9555
  ident: bib32
  article-title: Physico-chemical changes of composite whey protein hydrogels in simulated gastric fluid conditions
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 107
  year: 2020
  ident: bib47
  article-title: 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization
  publication-title: Food Hydrocolloids
– volume: 99
  year: 2020
  ident: bib53
  article-title: Effects of sucrose addition on the rheology and structure of iota-carrageenan
  publication-title: Food Hydrocolloids
– volume: 118
  year: 2021
  ident: bib50
  article-title: Rapeseed protein as a novel ingredient of gluten-free dough: Rheological and thermal properties
  publication-title: Food Hydrocolloids
– volume: 124
  year: 2022
  ident: bib17
  article-title: Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing
  publication-title: Food Hydrocolloids
– volume: 120
  year: 2021
  ident: bib51
  article-title: Linear and non-linear rheology of heat-set soy protein gels: Effects of selective proteolysis of β-conglycinin and glycinin
  publication-title: Food Hydrocolloids
– volume: 12
  start-page: 1967
  year: 2019
  end-page: 1979
  ident: bib25
  article-title: Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance
  publication-title: Food and Bioprocess Technology
– volume: 108
  start-page: 183
  year: 2014
  end-page: 191
  ident: bib11
  article-title: Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels
  publication-title: Carbohydrate Polymers
– volume: 44
  start-page: 109
  year: 2015
  end-page: 114
  ident: bib40
  article-title: Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum
  publication-title: Food Hydrocolloids
– volume: 113
  year: 2021
  ident: bib44
  article-title: Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing
  publication-title: Food Hydrocolloids
– volume: 112
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib2
  article-title: Structuring of acidic oil-in-water emulsions by controlled aggregation of nanofibrillated egg white protein in the aqueous phase using sodium hexametaphosphate
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106359
– volume: 87
  start-page: 413
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107824_bib22
  article-title: Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.08.026
– volume: 123
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib12
  article-title: Improving 3D/4D printing characteristics of natural food gels by novel additives: A review
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107160
– volume: 117
  start-page: 1179
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib24
  article-title: Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2018.06.048
– volume: 66
  start-page: 9542
  issue: 36
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib32
  article-title: Physico-chemical changes of composite whey protein hydrogels in simulated gastric fluid conditions
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.8b02829
– volume: 54
  start-page: 293
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107824_bib37
  article-title: The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.10.010
– volume: 70
  start-page: 84
  year: 2017
  ident: 10.1016/j.foodhyd.2022.107824_bib8
  article-title: 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
  doi: 10.1016/j.jmbbm.2016.07.020
– start-page: 1
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib56
  article-title: Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 44
  start-page: 109
  year: 2015
  ident: 10.1016/j.foodhyd.2022.107824_bib40
  article-title: Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.09.025
– volume: 109
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib45
  article-title: Interfacial and emulsifying properties of β-conglycinin/pectin mixtures at the oil/water interface: Effect of pH
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106145
– volume: 363
  start-page: 130354
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib23
  article-title: Value-added application of Platycodon grandiflorus (Jacq.) A.DC. roots (PGR) by ultrasound-assisted extraction (UAE) process to improve physicochemical quality, structural characteristics and functional properties
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.130354
– volume: 96
  start-page: 589
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib26
  article-title: Dual extrusion 3D printing of mashed potatoes/strawberry juice gel
  publication-title: Lebensmittel-Wissenschaft & Technologie
  doi: 10.1016/j.lwt.2018.06.014
– volume: 101
  start-page: 505
  issue: 2
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib42
  article-title: Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.10659
– volume: 63
  start-page: 215
  issue: 2
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107824_bib39
  article-title: Characterizing the yielding processes in pluronic-hyaluronic acid thermoreversible gelling systems using oscillatory rheology
  publication-title: Journal of Rheology
  doi: 10.1122/1.5045073
– volume: 59
  start-page: 2335
  issue: 14
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107824_bib18
  article-title: 3D food printing: Main components selection by considering rheological properties
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2018.1514363
– volume: 101
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib54
  article-title: Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105466
– volume: 99
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib53
  article-title: Effects of sucrose addition on the rheology and structure of iota-carrageenan
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105317
– volume: 107
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib47
  article-title: 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.105893
– volume: 79
  start-page: 518
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib4
  article-title: Effect of fish gelatin and gum Arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.12.016
– volume: 111
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib28
  article-title: Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106365
– volume: 98
  start-page: 5559
  issue: 15
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib49
  article-title: Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.9228
– volume: 60
  start-page: 2
  year: 2017
  ident: 10.1016/j.foodhyd.2022.107824_bib15
  article-title: The comparison of Laos behavior of structured food materials (suspensions, emulsions and elastic networks)
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.08.014
– volume: 70
  start-page: 7
  year: 2015
  ident: 10.1016/j.foodhyd.2022.107824_bib13
  article-title: Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2015.01.025
– volume: 120
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib41
  article-title: Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.106967
– volume: 609
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib30
  article-title: Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2020.125577
– volume: 13
  start-page: 250
  issue: 3
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib5
  article-title: Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate
  publication-title: Food Biophysics
  doi: 10.1007/s11483-018-9531-x
– volume: 118
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib50
  article-title: Rapeseed protein as a novel ingredient of gluten-free dough: Rheological and thermal properties
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.106813
– volume: 30
  start-page: 559
  issue: 2
  year: 2013
  ident: 10.1016/j.foodhyd.2022.107824_bib46
  article-title: Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2012.07.012
– volume: 123
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib52
  article-title: Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107173
– volume: 33
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib1
  article-title: Material characterisation of additively manufactured elastomers at different strain rates and build orientations
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101160
– volume: 339
  start-page: 128049
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib31
  article-title: Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.128049
– volume: 120
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib51
  article-title: Linear and non-linear rheology of heat-set soy protein gels: Effects of selective proteolysis of β-conglycinin and glycinin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.106962
– volume: 118
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib6
  article-title: Recent trends in oil structuring using hydrocolloids
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.106612
– volume: 108
  start-page: 183
  year: 2014
  ident: 10.1016/j.foodhyd.2022.107824_bib11
  article-title: Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2014.02.089
– volume: 125
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib19
  article-title: Effect of starch molecular structure on precision and texture properties of 3D printed products
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107387
– volume: 117
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib21
  article-title: Technological aspects of xanthan gum and gum Arabic presence in chicken egg albumin wet foams: Application of nonlinear rheology and nonparametric statistics
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.106683
– volume: 125
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib27
  article-title: High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107418
– volume: 113
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib44
  article-title: Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106482
– volume: 179
  start-page: 282
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib29
  article-title: Pectin from husk tomato (physalis ixocarpa brot.): Rheological behavior at different extraction conditions
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.09.097
– volume: 123
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib55
  article-title: Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107113
– volume: 66
  start-page: 268
  year: 2017
  ident: 10.1016/j.foodhyd.2022.107824_bib43
  article-title: Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.11.032
– volume: 121
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib48
  article-title: Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107050
– volume: 229
  start-page: 115469
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib33
  article-title: In vitro digestion of polysaccharide including whey protein isolate hydrogels
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2019.115469
– volume: 114
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib34
  article-title: 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106546
– volume: 122
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib35
  article-title: Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics
  publication-title: Lebensmittel-Wissenschaft & Technologie
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107824_bib36
  article-title: Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.06.050
– volume: 154
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib10
  article-title: Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level
  publication-title: Lebensmittel-Wissenschaft & Technologie
– volume: 123
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib9
  article-title: Modeling creep/recovery behavior of cold-set gels using different approaches
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107183
– volume: 107
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib14
  article-title: Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.105940
– volume: 12
  start-page: 1967
  issue: 12
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107824_bib25
  article-title: Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-019-02344-5
– volume: 124
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib17
  article-title: Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107265
– volume: 201
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib16
  article-title: Probing gels and emulsions using large-amplitude oscillatory shear and frictional studies with soft substrate skin surrogates
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2021.111595
– volume: 46
  start-page: 8473
  issue: 6
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107824_bib3
  article-title: Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2019.11.225
– volume: 371
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107824_bib7
  article-title: Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.131349
– volume: 59
  start-page: 2190
  issue: 6
  year: 2011
  ident: 10.1016/j.foodhyd.2022.107824_bib20
  article-title: Measurement of conjugated linoleic acid (cla) in cla-rich potato chips by atr-ftir spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf104204e
– volume: 274
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107824_bib38
  article-title: Rheological behavior of nanocellulose gels at various calcium chloride concentrations
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118660
SSID ssj0017011
Score 2.6884553
Snippet Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107824
SubjectTerms 3D printing
emulsions
Fourier transform infrared spectroscopy
gel strength
gels
guar gum
hydrocolloids
hydrogen
Microstructure
Polysaccharide
Printability
Rheological properties
soy protein isolate
SPI emulsion gel inks
texture
three-dimensional printing
xanthan gum
Title Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation
URI https://dx.doi.org/10.1016/j.foodhyd.2022.107824
https://www.proquest.com/docview/2675571841
Volume 131
WOSCitedRecordID wos000818010000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017011
  issn: 0268-005X
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvGQkxCVyyau1w23FdgWoKhy6UjhFceIsKSUpm2bVXvnlzCR22q0W7XLgEqVW7Fj5vs6M7XkQ8sa2s6E3kj5zUxUzX2UZC0aYG8_LbC8QStk8bopN8OlUhGHwtddbm1iYiwUvCrFeB8v_CjW0AdgYOvsPcHeDQgPcA-hwBdjheiPgd9yA0BKsyo3VJGPICyuHN4Ntaamf9QJ3yawz0IxYaQYk9HmNLQy1Wmp5x1aG6Y5x12_VRr38aHzndLJjdJMuF5sqTjBqK08br65EJ0U2SHfFP2Gg75sUNCVwrszTzor_VjccyrfHQ3rzOqwV2xidit5CbTR8uW0xT05yNq-L3a0LWPUaJzgj4dyRYCAGwkvi2HOs5cBB08VnVwr5dr9hPsAPAdMf4NC6w1armZP86Zfo5HQyiWbjcPZ2-YthvTE8l9fFV26RA5cPA9EnB0efxuHn7gSK203t5m6K2-ivd1e--W92zZ6Gb8yW2X1yT6836FHLkwekp4qH5O5OFspH5PcOY2iZUWAM1YyhmjHUMIYiY2hc0T3GUO-Y4nSpYQxFxrynLV9w1D2-0Et8eUxOT8azDx-ZLs3BEs93VyyVQjoKrD8_4yIWsUpdzx9JxbmQPMjgp-0ooVLpSW4nUg0zDPETwvdxyRsI7wnpF2WhnhIaOAmYSFIpx1E-l7FMssxVgrsyGcVewg-Jbz5slOi89Vg-ZREZB8V5pPGIEI-oxeOQDLpuyzZxy3UdhEEt0tZna1VGwLvrur42KEcgnfHILS5UWVeRC-vxIZh_vvPsBs88J3e2f5MXpA9AqpfkdnKxyqvzV5qhfwAJWbgX
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+soy+protein+isolate+emulsion+gels+as+extrusion-based+3D+food+printing+inks%3A+Effect+of+polysaccharides+incorporation&rft.jtitle=Food+hydrocolloids&rft.au=Yu%2C+Jie&rft.au=Wang%2C+Xue-ying&rft.au=Li%2C+Dong&rft.au=Wang%2C+Li-jun&rft.date=2022-10-01&rft.issn=0268-005X&rft.volume=131+p.107824-&rft_id=info:doi/10.1016%2Fj.foodhyd.2022.107824&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon