Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation
Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of ink...
Saved in:
| Published in: | Food hydrocolloids Vol. 131; p. 107824 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2022
|
| Subjects: | |
| ISSN: | 0268-005X, 1873-7137 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG0.5 inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG0.5 inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG0.5 inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG0.5 inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks.
[Display omitted]
•Adding polysaccharides to SPI emulsion gel was beneficial for printability and rheological properties.•The gel strength of SPI-XG inks was stronger than SPI-GG inks at same concentration.•SPI-GG0.5 inks' 3D printed products had the lowest dimensional printing deviation.•The surface texture of SPI-GG0.5 inks was smoother than that of SPI-XG0.5 inks.•LAOS rheology confirmed high network strength with poor flexibility of SPI-XG0.5 inks. |
|---|---|
| AbstractList | Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG0.5 inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG0.5 inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG0.5 inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG0.5 inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks.
[Display omitted]
•Adding polysaccharides to SPI emulsion gel was beneficial for printability and rheological properties.•The gel strength of SPI-XG inks was stronger than SPI-GG inks at same concentration.•SPI-GG0.5 inks' 3D printed products had the lowest dimensional printing deviation.•The surface texture of SPI-GG0.5 inks was smoother than that of SPI-XG0.5 inks.•LAOS rheology confirmed high network strength with poor flexibility of SPI-XG0.5 inks. Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG₀.₅ inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG₀.₅ inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG₀.₅ inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG₀.₅ inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks. |
| ArticleNumber | 107824 |
| Author | Wang, Xue-ying Yu, Jie Li, Dong Wang, Li-jun Wang, Yong |
| Author_xml | – sequence: 1 givenname: Jie surname: Yu fullname: Yu, Jie organization: College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China – sequence: 2 givenname: Xue-ying orcidid: 0000-0002-8583-5319 surname: Wang fullname: Wang, Xue-ying organization: School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing, 100048, China – sequence: 3 givenname: Dong surname: Li fullname: Li, Dong email: dongli@cau.edu.cn organization: College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China – sequence: 4 givenname: Li-jun surname: Wang fullname: Wang, Li-jun email: wlj@cau.edu.cn organization: College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China – sequence: 5 givenname: Yong orcidid: 0000-0003-3744-912X surname: Wang fullname: Wang, Yong organization: School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia |
| BookMark | eNqFkD1vHCEQhlHkSDk7-QmRKNPsBVh2wUkRRf6MZCmNLaVDLAw2lz24MJyVa_PLzflcpXE1mmGeV8NzTI5STkDIR86WnPHx82oZcvYPO78UTIg2U1rIN2TBteo7xXt1RBZMjLpjbPj1jhwjrhjjinG-IP_O4RHmvFlDqjQHinlHNyVXiIlGzLOtQGG9nTHmRO9hRmqRwt9atvtJN1kET_tzur-ggTHVmO5pTL_xC70IAdxz6ibPO7TOPdgSPWB7d7lscrG1hbwnb4OdET681BNyd3lxe3bd3fy8-nH2_aZzvRS185OeOAjJZVDaagte9HKcQCk9qdPQWsZBg5_6STE3wRC4HLXWUoqejae6PyGfDrntf3-2gNWsIzqYZ5sgb9GIUQ2D4lrytvr1sOpKRiwQjIv1-dhabJwNZ2Zv3qzMi3mzN28O5hs9_Ec3MWtbdq9y3w5c0wyPEYpBFyE58LE0kcbn-ErCE-MFpe0 |
| CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_144351 crossref_primary_10_1016_j_foodhyd_2023_108939 crossref_primary_10_1002_fft2_70029 crossref_primary_10_1016_j_foodchem_2024_139436 crossref_primary_10_1016_j_foodhyd_2024_110613 crossref_primary_10_3390_gels10120840 crossref_primary_10_1016_j_foodhyd_2024_110737 crossref_primary_10_1016_j_ijbiomac_2024_138110 crossref_primary_10_1016_j_lwt_2025_117749 crossref_primary_10_1080_17452759_2024_2438899 crossref_primary_10_1016_j_jfoodeng_2025_112766 crossref_primary_10_1016_j_foodhyd_2024_110611 crossref_primary_10_1016_j_foodhyd_2024_110612 crossref_primary_10_1016_j_memori_2025_100124 crossref_primary_10_1016_j_jfoodeng_2025_112640 crossref_primary_10_1016_j_foodhyd_2025_111313 crossref_primary_10_1016_j_foodhyd_2025_111275 crossref_primary_10_1016_j_foodhyd_2024_110340 crossref_primary_10_1016_j_lwt_2025_118437 crossref_primary_10_1007_s11483_025_09964_9 crossref_primary_10_1016_j_foodhyd_2023_109116 crossref_primary_10_1007_s11947_024_03666_9 crossref_primary_10_1016_j_foodhyd_2024_109754 crossref_primary_10_1016_j_foodres_2025_116213 crossref_primary_10_1016_j_ijbiomac_2025_144468 crossref_primary_10_1016_j_foodchem_2024_141114 crossref_primary_10_1016_j_foodchem_2025_143136 crossref_primary_10_1016_j_tifs_2024_104691 crossref_primary_10_1007_s11130_024_01214_6 crossref_primary_10_1016_j_fbio_2023_102994 crossref_primary_10_1016_j_colsurfa_2022_129964 crossref_primary_10_1016_j_ijbiomac_2024_135229 crossref_primary_10_1016_j_foodhyd_2024_110605 crossref_primary_10_1016_j_ijbiomac_2024_138466 crossref_primary_10_1016_j_jfutfo_2024_11_001 crossref_primary_10_1016_j_foodhyd_2024_110574 crossref_primary_10_1016_j_foodhyd_2024_110052 crossref_primary_10_1016_j_foodhyd_2022_108133 crossref_primary_10_1016_j_ijbiomac_2025_143424 crossref_primary_10_1016_j_foodres_2025_115873 crossref_primary_10_1146_annurev_food_111523_121736 crossref_primary_10_1016_j_foodhyd_2023_108715 crossref_primary_10_1016_j_foodchem_2025_146379 crossref_primary_10_1016_j_ijbiomac_2025_142298 crossref_primary_10_1016_j_ijbiomac_2023_126421 crossref_primary_10_1016_j_fbio_2024_104721 crossref_primary_10_1016_j_carbpol_2024_121891 crossref_primary_10_1016_j_ijbiomac_2025_146470 crossref_primary_10_1016_j_cis_2023_103051 crossref_primary_10_1016_j_foodhyd_2024_110839 crossref_primary_10_1016_j_ijbiomac_2023_125217 crossref_primary_10_1016_j_jfoodeng_2023_111410 crossref_primary_10_1016_j_ultsonch_2024_107205 crossref_primary_10_1016_j_foodhyd_2024_110439 crossref_primary_10_1016_j_foodhyd_2025_111525 crossref_primary_10_3390_foods12071433 crossref_primary_10_1016_j_foodhyd_2023_109097 crossref_primary_10_1016_j_foodhyd_2023_109493 crossref_primary_10_1016_j_foodhyd_2024_110440 crossref_primary_10_1016_j_ijbiomac_2024_138842 crossref_primary_10_1016_j_foodchem_2024_142023 crossref_primary_10_1016_j_ifset_2023_103545 crossref_primary_10_1111_1750_3841_17101 crossref_primary_10_1016_j_foodhyd_2023_109254 crossref_primary_10_1016_j_tifs_2023_02_004 crossref_primary_10_1016_j_ijbiomac_2025_145415 crossref_primary_10_1016_j_ijbiomac_2025_144049 crossref_primary_10_1016_j_foodchem_2024_140402 crossref_primary_10_1016_j_ijbiomac_2025_140004 crossref_primary_10_1016_j_fochx_2024_102131 crossref_primary_10_1016_j_foodchem_2023_136910 crossref_primary_10_1007_s11947_023_03265_0 crossref_primary_10_1007_s11947_025_04022_1 crossref_primary_10_1016_j_fochx_2025_102602 crossref_primary_10_3390_foods11193020 crossref_primary_10_1016_j_ijbiomac_2024_133788 crossref_primary_10_1016_j_ijbiomac_2023_126839 crossref_primary_10_1016_j_foodchem_2023_137447 crossref_primary_10_1016_j_ijbiomac_2024_134079 crossref_primary_10_1016_j_tifs_2025_104937 crossref_primary_10_1016_j_fbio_2025_106361 crossref_primary_10_1016_j_foodhyd_2024_111001 crossref_primary_10_1016_j_jfoodeng_2024_112354 crossref_primary_10_1016_j_fochx_2025_102280 crossref_primary_10_1016_j_foodres_2024_114703 crossref_primary_10_3390_gels11080574 crossref_primary_10_1016_j_foodhyd_2022_108036 crossref_primary_10_1007_s11814_024_00090_9 crossref_primary_10_1016_j_foodchem_2024_142416 crossref_primary_10_1016_j_foodhyd_2023_108611 crossref_primary_10_1016_j_foodchem_2025_145785 crossref_primary_10_1016_j_ijbiomac_2025_141162 crossref_primary_10_1016_j_jfutfo_2024_09_002 crossref_primary_10_1016_j_ijbiomac_2025_147143 crossref_primary_10_1039_D4FO00982G crossref_primary_10_1016_j_foodchem_2024_141319 crossref_primary_10_1016_j_foodhyd_2024_110817 crossref_primary_10_1016_j_ijbiomac_2025_147381 crossref_primary_10_1016_j_foodhyd_2024_110019 crossref_primary_10_1016_j_foodchem_2023_135394 crossref_primary_10_1007_s11947_025_03987_3 crossref_primary_10_1016_j_foodhyd_2024_110655 crossref_primary_10_3390_foods11162410 crossref_primary_10_1016_j_foodhyd_2025_111477 crossref_primary_10_1016_j_ijbiomac_2024_134110 crossref_primary_10_1016_j_foodhyd_2025_111476 crossref_primary_10_1016_j_foodhyd_2025_111352 crossref_primary_10_3390_gels11080620 crossref_primary_10_1007_s11947_024_03680_x crossref_primary_10_1002_sfp2_1015 crossref_primary_10_1016_j_foodhyd_2025_111076 crossref_primary_10_1016_j_foodhyd_2023_108588 crossref_primary_10_1016_j_foodhyd_2024_109799 crossref_primary_10_1016_j_foodhyd_2023_108905 crossref_primary_10_1016_j_lwt_2023_115478 crossref_primary_10_1016_j_foodchem_2025_142819 crossref_primary_10_1016_j_lwt_2025_117816 crossref_primary_10_1016_j_foodhyd_2022_108293 crossref_primary_10_1016_j_foodhyd_2024_109782 crossref_primary_10_1111_1750_3841_70498 crossref_primary_10_1016_j_carbpol_2024_122759 crossref_primary_10_1016_j_foodchem_2025_143108 crossref_primary_10_1016_j_foodhyd_2023_108872 crossref_primary_10_1016_j_foodhyd_2022_108332 crossref_primary_10_1016_j_foodhyd_2025_111120 crossref_primary_10_1016_j_foodhyd_2023_108632 crossref_primary_10_1016_j_foodhyd_2024_109942 crossref_primary_10_1002_adma_202312707 crossref_primary_10_1016_j_foodchem_2024_140575 crossref_primary_10_1016_j_ijbiomac_2023_126465 crossref_primary_10_1007_s44187_024_00122_7 crossref_primary_10_1016_j_fpsl_2024_101401 crossref_primary_10_3390_bioengineering10070845 crossref_primary_10_1016_j_ijbiomac_2023_128803 crossref_primary_10_1016_j_jfoodeng_2023_111455 crossref_primary_10_1016_j_ijbiomac_2024_138252 crossref_primary_10_3390_foods12183387 crossref_primary_10_1016_j_foodres_2023_113760 crossref_primary_10_1016_j_ifset_2022_103102 crossref_primary_10_1016_j_ijbiomac_2025_139975 crossref_primary_10_1016_j_carbpol_2023_121658 crossref_primary_10_1016_j_foodres_2023_113489 crossref_primary_10_1016_j_cis_2024_103339 crossref_primary_10_1016_j_susmat_2025_e01285 crossref_primary_10_1016_j_foodhyd_2024_110086 crossref_primary_10_1016_j_ijbiomac_2025_145338 crossref_primary_10_1007_s11947_024_03669_6 crossref_primary_10_3390_surfaces8030064 crossref_primary_10_1111_1541_4337_70095 crossref_primary_10_1016_j_fbio_2024_103844 crossref_primary_10_1016_j_jece_2025_115796 crossref_primary_10_1016_j_eurpolymj_2025_114212 crossref_primary_10_1016_j_ijbiomac_2024_135648 crossref_primary_10_1016_j_ijbiomac_2025_139870 crossref_primary_10_1016_j_lwt_2024_116809 crossref_primary_10_1016_j_foodhyd_2025_111337 crossref_primary_10_1016_j_jfoodeng_2023_111687 crossref_primary_10_3390_gels9050366 crossref_primary_10_1111_1541_4337_13276 crossref_primary_10_1016_j_ijbiomac_2025_141549 crossref_primary_10_1016_j_foodhyd_2023_109582 crossref_primary_10_1016_j_foodres_2025_116787 crossref_primary_10_1016_j_ijbiomac_2024_138637 crossref_primary_10_1016_j_jfoodeng_2024_112150 crossref_primary_10_3390_foods13091289 crossref_primary_10_3390_gels10120828 crossref_primary_10_1016_j_ijbiomac_2025_140854 crossref_primary_10_1016_j_foodhyd_2023_109586 crossref_primary_10_1016_j_foodchem_2024_141889 crossref_primary_10_1016_j_foodhyd_2023_109347 crossref_primary_10_1016_j_foodres_2025_117113 crossref_primary_10_1039_D3FO04945K crossref_primary_10_3390_foods13142215 crossref_primary_10_1016_j_foodchem_2025_143044 crossref_primary_10_1016_j_foodchem_2024_141005 crossref_primary_10_1016_j_foodhyd_2023_109109 crossref_primary_10_1016_j_ijbiomac_2023_124101 crossref_primary_10_3390_foods14111965 crossref_primary_10_1016_j_foodchem_2024_140794 |
| Cites_doi | 10.1016/j.foodhyd.2020.106359 10.1016/j.foodhyd.2018.08.026 10.1016/j.foodhyd.2021.107160 10.1016/j.ijbiomac.2018.06.048 10.1021/acs.jafc.8b02829 10.1016/j.foodhyd.2015.10.010 10.1016/j.jmbbm.2016.07.020 10.1016/j.foodhyd.2014.09.025 10.1016/j.foodhyd.2020.106145 10.1016/j.foodchem.2021.130354 10.1016/j.lwt.2018.06.014 10.1002/jsfa.10659 10.1122/1.5045073 10.1080/10408398.2018.1514363 10.1016/j.foodhyd.2019.105466 10.1016/j.foodhyd.2019.105317 10.1016/j.foodhyd.2020.105893 10.1016/j.foodhyd.2017.12.016 10.1016/j.foodhyd.2020.106365 10.1002/jsfa.9228 10.1016/j.tifs.2016.08.014 10.1016/j.foodres.2015.01.025 10.1016/j.foodhyd.2021.106967 10.1016/j.colsurfa.2020.125577 10.1007/s11483-018-9531-x 10.1016/j.foodhyd.2021.106813 10.1016/j.foodhyd.2012.07.012 10.1016/j.foodhyd.2021.107173 10.1016/j.addma.2020.101160 10.1016/j.foodchem.2020.128049 10.1016/j.foodhyd.2021.106962 10.1016/j.foodhyd.2021.106612 10.1016/j.carbpol.2014.02.089 10.1016/j.foodhyd.2021.107387 10.1016/j.foodhyd.2021.106683 10.1016/j.foodhyd.2021.107418 10.1016/j.foodhyd.2020.106482 10.1016/j.carbpol.2017.09.097 10.1016/j.foodhyd.2021.107113 10.1016/j.foodhyd.2016.11.032 10.1016/j.foodhyd.2021.107050 10.1016/j.carbpol.2019.115469 10.1016/j.foodhyd.2020.106546 10.1016/j.foodhyd.2018.06.050 10.1016/j.foodhyd.2021.107183 10.1016/j.foodhyd.2020.105940 10.1007/s11947-019-02344-5 10.1016/j.foodhyd.2021.107265 10.1016/j.colsurfb.2021.111595 10.1016/j.ceramint.2019.11.225 10.1016/j.foodchem.2021.131349 10.1021/jf104204e 10.1016/j.carbpol.2021.118660 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.foodhyd.2022.107824 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7137 |
| ExternalDocumentID | 10_1016_j_foodhyd_2022_107824 S0268005X22003447 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-db8b1e2414f78a8aed2346be778b79fed201e8edb3b70cbe5f146888442306983 |
| ISICitedReferencesCount | 206 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000818010000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-005X |
| IngestDate | Sat Sep 27 17:58:30 EDT 2025 Tue Nov 18 21:32:41 EST 2025 Sat Nov 29 07:20:54 EST 2025 Fri Feb 23 02:40:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Printability Microstructure SPI emulsion gel inks Polysaccharide 3D printing Rheological properties |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-db8b1e2414f78a8aed2346be778b79fed201e8edb3b70cbe5f146888442306983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8583-5319 0000-0003-3744-912X |
| PQID | 2675571841 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2675571841 crossref_citationtrail_10_1016_j_foodhyd_2022_107824 crossref_primary_10_1016_j_foodhyd_2022_107824 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2022_107824 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Food hydrocolloids |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Matsuyama, Kazuhiro, Nakauma, Funami, Nambu, Matsumiya (bib28) 2021; 111 Liu, Zhang, Bhandari (bib24) 2018; 117 Kadamne, Castrodale, Proctor (bib20) 2011; 59 Chang, Li, Wang, Bi, Adhikari (bib11) 2014; 108 Duvarci, Yazar, Kokini (bib15) 2017; 60 Kruk, Ptaszek, Kaczmarczyk (bib21) 2021; 117 Moud, Kamkar, Sanati-Nezhad, Hejazi, Sundararaj (bib30) 2021; 609 Jiang, Zheng, Zou, Tong, Han, Wang (bib18) 2019; 59 Chivero, Gohtani, Yoshii, Nakamura (bib13) 2015; 70 Ramya, Kodavaty, Dorishetty, Setti, Deshpande (bib39) 2019; 63 Feng, Fan, Wang, Wang, Xia, Huang (bib17) 2022; 124 Anvari, Joyner (bib4) 2018; 79 Bascuas, Morell, Hernando, Quiles (bib6) 2021; 118 Yang, Thielen, Berton-Carabin, van der Linden, Sagis (bib54) 2020; 101 Tippetts, Shen, Martini (bib46) 2013; 30 Liu, Zhang, Wang, Bao, Regenstein, Zhou (bib25) 2019; 12 Precha-Atsawanan, Uttapap, Sagis (bib36) 2018; 85 Zhao, Zhang, Chitrakar, Adhikari (bib56) 2020 Shahbazi, Jäger, Ettelaie, Chen (bib41) 2021; 120 Bulut, Candoğan (bib10) 2022; 154 Azam, Zhang, Bhandari, Yang (bib5) 2018; 13 Xia, Siu, Sagis (bib51) 2021; 120 Brito-Oliveira, Moraes, Pinho, Campanella (bib9) 2022; 123 Ji, Xu, Li, Li, Zhong, Lu (bib19) 2022; 125 Morales-Contreras, Rosas-Flores, Contreras-Esquivel, Wicker, Morales-Castro (bib29) 2018; 179 Farias, Khan (bib16) 2021; 201 Phuhongsung, Zhang, Devahastin (bib35) 2020; 122 Tian, Zhang, Taha, Chen, Hu, Pan (bib45) 2020; 109 Ozel, Aydin, Grunin, Oztop (bib32) 2018; 66 Santos, Calero, Guerrero, Muñoz (bib40) 2015; 44 Pant, Lee, Karyappa, Lee, An, Hashimoto (bib34) 2021; 114 Liu, Zhang, Yang (bib26) 2018; 96 Xing, Chitrakar, Hati, Xie, Li, Li (bib52) 2022; 123 Yu, Wang, Li, Wang (bib55) 2022; 123 Qu, Wang, Li, Wang (bib38) 2021; 274 Bi, Xu, Guo, Du, Yu, Wu (bib7) 2022; 371 Liu, Sun, Li, Shang, Wang, Lv (bib23) 2021; 363 Witczak, Chmielewska, Ziobro, Korus, Juszczak (bib50) 2021; 118 Dick, Bhandari, Dong, Prakash (bib14) 2020; 107 Bootsma, Fitzgerald, Free, Dimbath, Conjerti, Reese (bib8) 2017; 70 Chen, Zhang, Sun, Phuhongsung (bib12) 2022; 123 Alavi, Chen, Emam-Djomeh (bib2) 2021; 112 Ptaszek, Kabziński, Ptaszek, Kaczmarczyk, Kruk, Bieńczak (bib37) 2016; 54 Yang, Gao, Yang (bib53) 2020; 99 Tian, Wang, Lan, Wang, Hu, Zhao (bib44) 2021; 113 Liu, Bhandari, Prakash, Mantihal, Zhang (bib22) 2019; 87 de Souza Paglarini, Vidal, Ribeiro, Badan Ribeiro, Bernardinelli, Herrero (bib42) 2021; 101 Abayazid, Ghajari (bib1) 2020; 33 Wang, Hu, Du, Peng, Ma, Zhang (bib48) 2021; 121 Alazzawi, Rohn, Beyoglu, Haber (bib3) 2020; 46 Munoz-Gonzalez, Ruiz-Capillas, Salvador, Herrero (bib31) 2021; 339 Vieira, Oliveira, Amado, Fasolin, Vicente, Pastrana (bib47) 2020; 107 Souza, Garcia-Rojas (bib43) 2017; 66 Ma, Cui, Lu, Hu, Xu, Song (bib27) 2022; 125 Warnakulasuriya, Nickerson (bib49) 2018; 98 Ozel, Aydin, Oztop (bib33) 2020; 229 Tian (10.1016/j.foodhyd.2022.107824_bib44) 2021; 113 Xia (10.1016/j.foodhyd.2022.107824_bib51) 2021; 120 Pant (10.1016/j.foodhyd.2022.107824_bib34) 2021; 114 Duvarci (10.1016/j.foodhyd.2022.107824_bib15) 2017; 60 Xing (10.1016/j.foodhyd.2022.107824_bib52) 2022; 123 Bootsma (10.1016/j.foodhyd.2022.107824_bib8) 2017; 70 Qu (10.1016/j.foodhyd.2022.107824_bib38) 2021; 274 Kruk (10.1016/j.foodhyd.2022.107824_bib21) 2021; 117 Wang (10.1016/j.foodhyd.2022.107824_bib48) 2021; 121 Ptaszek (10.1016/j.foodhyd.2022.107824_bib37) 2016; 54 Feng (10.1016/j.foodhyd.2022.107824_bib17) 2022; 124 Jiang (10.1016/j.foodhyd.2022.107824_bib18) 2019; 59 Chivero (10.1016/j.foodhyd.2022.107824_bib13) 2015; 70 Phuhongsung (10.1016/j.foodhyd.2022.107824_bib35) 2020; 122 Witczak (10.1016/j.foodhyd.2022.107824_bib50) 2021; 118 Santos (10.1016/j.foodhyd.2022.107824_bib40) 2015; 44 Alavi (10.1016/j.foodhyd.2022.107824_bib2) 2021; 112 Ji (10.1016/j.foodhyd.2022.107824_bib19) 2022; 125 Bi (10.1016/j.foodhyd.2022.107824_bib7) 2022; 371 Morales-Contreras (10.1016/j.foodhyd.2022.107824_bib29) 2018; 179 Yu (10.1016/j.foodhyd.2022.107824_bib55) 2022; 123 Liu (10.1016/j.foodhyd.2022.107824_bib25) 2019; 12 Bascuas (10.1016/j.foodhyd.2022.107824_bib6) 2021; 118 Liu (10.1016/j.foodhyd.2022.107824_bib22) 2019; 87 Souza (10.1016/j.foodhyd.2022.107824_bib43) 2017; 66 Yang (10.1016/j.foodhyd.2022.107824_bib54) 2020; 101 Tian (10.1016/j.foodhyd.2022.107824_bib45) 2020; 109 Warnakulasuriya (10.1016/j.foodhyd.2022.107824_bib49) 2018; 98 Brito-Oliveira (10.1016/j.foodhyd.2022.107824_bib9) 2022; 123 Anvari (10.1016/j.foodhyd.2022.107824_bib4) 2018; 79 Azam (10.1016/j.foodhyd.2022.107824_bib5) 2018; 13 Farias (10.1016/j.foodhyd.2022.107824_bib16) 2021; 201 Liu (10.1016/j.foodhyd.2022.107824_bib23) 2021; 363 Liu (10.1016/j.foodhyd.2022.107824_bib24) 2018; 117 Ozel (10.1016/j.foodhyd.2022.107824_bib32) 2018; 66 Chang (10.1016/j.foodhyd.2022.107824_bib11) 2014; 108 Zhao (10.1016/j.foodhyd.2022.107824_bib56) 2020 Kadamne (10.1016/j.foodhyd.2022.107824_bib20) 2011; 59 Yang (10.1016/j.foodhyd.2022.107824_bib53) 2020; 99 Liu (10.1016/j.foodhyd.2022.107824_bib26) 2018; 96 Ozel (10.1016/j.foodhyd.2022.107824_bib33) 2020; 229 Tippetts (10.1016/j.foodhyd.2022.107824_bib46) 2013; 30 Dick (10.1016/j.foodhyd.2022.107824_bib14) 2020; 107 de Souza Paglarini (10.1016/j.foodhyd.2022.107824_bib42) 2021; 101 Shahbazi (10.1016/j.foodhyd.2022.107824_bib41) 2021; 120 Ma (10.1016/j.foodhyd.2022.107824_bib27) 2022; 125 Vieira (10.1016/j.foodhyd.2022.107824_bib47) 2020; 107 Moud (10.1016/j.foodhyd.2022.107824_bib30) 2021; 609 Alazzawi (10.1016/j.foodhyd.2022.107824_bib3) 2020; 46 Chen (10.1016/j.foodhyd.2022.107824_bib12) 2022; 123 Munoz-Gonzalez (10.1016/j.foodhyd.2022.107824_bib31) 2021; 339 Precha-Atsawanan (10.1016/j.foodhyd.2022.107824_bib36) 2018; 85 Ramya (10.1016/j.foodhyd.2022.107824_bib39) 2019; 63 Matsuyama (10.1016/j.foodhyd.2022.107824_bib28) 2021; 111 Abayazid (10.1016/j.foodhyd.2022.107824_bib1) 2020; 33 Bulut (10.1016/j.foodhyd.2022.107824_bib10) 2022; 154 |
| References_xml | – volume: 363 start-page: 130354 year: 2021 ident: bib23 article-title: Value-added application of Platycodon grandiflorus (Jacq.) A.DC. roots (PGR) by ultrasound-assisted extraction (UAE) process to improve physicochemical quality, structural characteristics and functional properties publication-title: Food Chemistry – volume: 54 start-page: 293 year: 2016 end-page: 301 ident: bib37 article-title: The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method publication-title: Food Hydrocolloids – volume: 79 start-page: 518 year: 2018 end-page: 525 ident: bib4 article-title: Effect of fish gelatin and gum Arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties publication-title: Food Hydrocolloids – volume: 30 start-page: 559 year: 2013 end-page: 566 ident: bib46 article-title: Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH publication-title: Food Hydrocolloids – volume: 179 start-page: 282 year: 2018 end-page: 289 ident: bib29 article-title: Pectin from husk tomato (physalis ixocarpa brot.): Rheological behavior at different extraction conditions publication-title: Carbohydrate Polymers – volume: 123 year: 2022 ident: bib12 article-title: Improving 3D/4D printing characteristics of natural food gels by novel additives: A review publication-title: Food Hydrocolloids – volume: 60 start-page: 2 year: 2017 end-page: 11 ident: bib15 article-title: The comparison of Laos behavior of structured food materials (suspensions, emulsions and elastic networks) publication-title: Trends in Food Science & Technology – volume: 59 start-page: 2190 year: 2011 end-page: 2196 ident: bib20 article-title: Measurement of conjugated linoleic acid (cla) in cla-rich potato chips by atr-ftir spectroscopy publication-title: Journal of Agricultural and Food Chemistry – volume: 125 year: 2022 ident: bib19 article-title: Effect of starch molecular structure on precision and texture properties of 3D printed products publication-title: Food Hydrocolloids – volume: 117 year: 2021 ident: bib21 article-title: Technological aspects of xanthan gum and gum Arabic presence in chicken egg albumin wet foams: Application of nonlinear rheology and nonparametric statistics publication-title: Food Hydrocolloids – volume: 13 start-page: 250 year: 2018 end-page: 262 ident: bib5 article-title: Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate publication-title: Food Biophysics – volume: 114 year: 2021 ident: bib34 article-title: 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients publication-title: Food Hydrocolloids – volume: 98 start-page: 5559 year: 2018 end-page: 5571 ident: bib49 article-title: Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes publication-title: Journal of the Science of Food and Agriculture – volume: 70 start-page: 7 year: 2015 end-page: 14 ident: bib13 article-title: Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions publication-title: Food Research International – start-page: 1 year: 2020 end-page: 15 ident: bib56 article-title: Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures publication-title: Critical Reviews in Food Science and Nutrition – volume: 609 year: 2021 ident: bib30 article-title: Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 59 start-page: 2335 year: 2019 end-page: 2347 ident: bib18 article-title: 3D food printing: Main components selection by considering rheological properties publication-title: Critical Reviews in Food Science and Nutrition – volume: 96 start-page: 589 year: 2018 end-page: 596 ident: bib26 article-title: Dual extrusion 3D printing of mashed potatoes/strawberry juice gel publication-title: Lebensmittel-Wissenschaft & Technologie – volume: 112 year: 2021 ident: bib2 article-title: Structuring of acidic oil-in-water emulsions by controlled aggregation of nanofibrillated egg white protein in the aqueous phase using sodium hexametaphosphate publication-title: Food Hydrocolloids – volume: 229 start-page: 115469 year: 2020 ident: bib33 article-title: In vitro digestion of polysaccharide including whey protein isolate hydrogels publication-title: Carbohydrate Polymers – volume: 274 year: 2021 ident: bib38 article-title: Rheological behavior of nanocellulose gels at various calcium chloride concentrations publication-title: Carbohydrate Polymers – volume: 63 start-page: 215 year: 2019 end-page: 228 ident: bib39 article-title: Characterizing the yielding processes in pluronic-hyaluronic acid thermoreversible gelling systems using oscillatory rheology publication-title: Journal of Rheology – volume: 122 year: 2020 ident: bib35 article-title: Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics publication-title: Lebensmittel-Wissenschaft & Technologie – volume: 201 year: 2021 ident: bib16 article-title: Probing gels and emulsions using large-amplitude oscillatory shear and frictional studies with soft substrate skin surrogates publication-title: Colloids and Surfaces B: Biointerfaces – volume: 46 start-page: 8473 year: 2020 end-page: 8477 ident: bib3 article-title: Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions publication-title: Ceramics International – volume: 123 year: 2022 ident: bib52 article-title: Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation publication-title: Food Hydrocolloids – volume: 101 start-page: 505 year: 2021 end-page: 517 ident: bib42 article-title: Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage publication-title: Journal of the Science of Food and Agriculture – volume: 109 year: 2020 ident: bib45 article-title: Interfacial and emulsifying properties of publication-title: Food Hydrocolloids – volume: 111 year: 2021 ident: bib28 article-title: Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions publication-title: Food Hydrocolloids – volume: 66 start-page: 268 year: 2017 end-page: 275 ident: bib43 article-title: Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio publication-title: Food Hydrocolloids – volume: 123 year: 2022 ident: bib55 article-title: Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl publication-title: Food Hydrocolloids – volume: 118 year: 2021 ident: bib6 article-title: Recent trends in oil structuring using hydrocolloids publication-title: Food Hydrocolloids – volume: 121 year: 2021 ident: bib48 article-title: Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application publication-title: Food Hydrocolloids – volume: 101 year: 2020 ident: bib54 article-title: Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents publication-title: Food Hydrocolloids – volume: 107 year: 2020 ident: bib14 article-title: Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food publication-title: Food Hydrocolloids – volume: 123 year: 2022 ident: bib9 article-title: Modeling creep/recovery behavior of cold-set gels using different approaches publication-title: Food Hydrocolloids – volume: 339 start-page: 128049 year: 2021 ident: bib31 article-title: Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties publication-title: Food Chemistry – volume: 87 start-page: 413 year: 2019 end-page: 424 ident: bib22 article-title: Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing publication-title: Food Hydrocolloids – volume: 371 year: 2022 ident: bib7 article-title: Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance publication-title: Food Chemistry – volume: 117 start-page: 1179 year: 2018 end-page: 1187 ident: bib24 article-title: Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes publication-title: International Journal of Biological Macromolecules – volume: 120 year: 2021 ident: bib41 article-title: Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks publication-title: Food Hydrocolloids – volume: 125 year: 2022 ident: bib27 article-title: High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing publication-title: Food Hydrocolloids – volume: 85 start-page: 1 year: 2018 end-page: 9 ident: bib36 article-title: Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels publication-title: Food Hydrocolloids – volume: 33 year: 2020 ident: bib1 article-title: Material characterisation of additively manufactured elastomers at different strain rates and build orientations publication-title: Additive Manufacturing – volume: 70 start-page: 84 year: 2017 end-page: 94 ident: bib8 article-title: 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 154 year: 2022 ident: bib10 article-title: Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level publication-title: Lebensmittel-Wissenschaft & Technologie – volume: 66 start-page: 9542 year: 2018 end-page: 9555 ident: bib32 article-title: Physico-chemical changes of composite whey protein hydrogels in simulated gastric fluid conditions publication-title: Journal of Agricultural and Food Chemistry – volume: 107 year: 2020 ident: bib47 article-title: 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization publication-title: Food Hydrocolloids – volume: 99 year: 2020 ident: bib53 article-title: Effects of sucrose addition on the rheology and structure of iota-carrageenan publication-title: Food Hydrocolloids – volume: 118 year: 2021 ident: bib50 article-title: Rapeseed protein as a novel ingredient of gluten-free dough: Rheological and thermal properties publication-title: Food Hydrocolloids – volume: 124 year: 2022 ident: bib17 article-title: Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing publication-title: Food Hydrocolloids – volume: 120 year: 2021 ident: bib51 article-title: Linear and non-linear rheology of heat-set soy protein gels: Effects of selective proteolysis of β-conglycinin and glycinin publication-title: Food Hydrocolloids – volume: 12 start-page: 1967 year: 2019 end-page: 1979 ident: bib25 article-title: Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance publication-title: Food and Bioprocess Technology – volume: 108 start-page: 183 year: 2014 end-page: 191 ident: bib11 article-title: Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels publication-title: Carbohydrate Polymers – volume: 44 start-page: 109 year: 2015 end-page: 114 ident: bib40 article-title: Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum publication-title: Food Hydrocolloids – volume: 113 year: 2021 ident: bib44 article-title: Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing publication-title: Food Hydrocolloids – volume: 112 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib2 article-title: Structuring of acidic oil-in-water emulsions by controlled aggregation of nanofibrillated egg white protein in the aqueous phase using sodium hexametaphosphate publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106359 – volume: 87 start-page: 413 year: 2019 ident: 10.1016/j.foodhyd.2022.107824_bib22 article-title: Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.08.026 – volume: 123 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib12 article-title: Improving 3D/4D printing characteristics of natural food gels by novel additives: A review publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107160 – volume: 117 start-page: 1179 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib24 article-title: Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.06.048 – volume: 66 start-page: 9542 issue: 36 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib32 article-title: Physico-chemical changes of composite whey protein hydrogels in simulated gastric fluid conditions publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b02829 – volume: 54 start-page: 293 year: 2016 ident: 10.1016/j.foodhyd.2022.107824_bib37 article-title: The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.10.010 – volume: 70 start-page: 84 year: 2017 ident: 10.1016/j.foodhyd.2022.107824_bib8 article-title: 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties publication-title: Journal of the Mechanical Behavior of Biomedical Materials doi: 10.1016/j.jmbbm.2016.07.020 – start-page: 1 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib56 article-title: Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures publication-title: Critical Reviews in Food Science and Nutrition – volume: 44 start-page: 109 year: 2015 ident: 10.1016/j.foodhyd.2022.107824_bib40 article-title: Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.09.025 – volume: 109 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib45 article-title: Interfacial and emulsifying properties of β-conglycinin/pectin mixtures at the oil/water interface: Effect of pH publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106145 – volume: 363 start-page: 130354 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib23 article-title: Value-added application of Platycodon grandiflorus (Jacq.) A.DC. roots (PGR) by ultrasound-assisted extraction (UAE) process to improve physicochemical quality, structural characteristics and functional properties publication-title: Food Chemistry doi: 10.1016/j.foodchem.2021.130354 – volume: 96 start-page: 589 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib26 article-title: Dual extrusion 3D printing of mashed potatoes/strawberry juice gel publication-title: Lebensmittel-Wissenschaft & Technologie doi: 10.1016/j.lwt.2018.06.014 – volume: 101 start-page: 505 issue: 2 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib42 article-title: Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.10659 – volume: 63 start-page: 215 issue: 2 year: 2019 ident: 10.1016/j.foodhyd.2022.107824_bib39 article-title: Characterizing the yielding processes in pluronic-hyaluronic acid thermoreversible gelling systems using oscillatory rheology publication-title: Journal of Rheology doi: 10.1122/1.5045073 – volume: 59 start-page: 2335 issue: 14 year: 2019 ident: 10.1016/j.foodhyd.2022.107824_bib18 article-title: 3D food printing: Main components selection by considering rheological properties publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2018.1514363 – volume: 101 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib54 article-title: Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105466 – volume: 99 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib53 article-title: Effects of sucrose addition on the rheology and structure of iota-carrageenan publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105317 – volume: 107 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib47 article-title: 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105893 – volume: 79 start-page: 518 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib4 article-title: Effect of fish gelatin and gum Arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.12.016 – volume: 111 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib28 article-title: Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106365 – volume: 98 start-page: 5559 issue: 15 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib49 article-title: Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.9228 – volume: 60 start-page: 2 year: 2017 ident: 10.1016/j.foodhyd.2022.107824_bib15 article-title: The comparison of Laos behavior of structured food materials (suspensions, emulsions and elastic networks) publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.08.014 – volume: 70 start-page: 7 year: 2015 ident: 10.1016/j.foodhyd.2022.107824_bib13 article-title: Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions publication-title: Food Research International doi: 10.1016/j.foodres.2015.01.025 – volume: 120 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib41 article-title: Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106967 – volume: 609 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib30 article-title: Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2020.125577 – volume: 13 start-page: 250 issue: 3 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib5 article-title: Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate publication-title: Food Biophysics doi: 10.1007/s11483-018-9531-x – volume: 118 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib50 article-title: Rapeseed protein as a novel ingredient of gluten-free dough: Rheological and thermal properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106813 – volume: 30 start-page: 559 issue: 2 year: 2013 ident: 10.1016/j.foodhyd.2022.107824_bib46 article-title: Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.07.012 – volume: 123 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib52 article-title: Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107173 – volume: 33 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib1 article-title: Material characterisation of additively manufactured elastomers at different strain rates and build orientations publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101160 – volume: 339 start-page: 128049 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib31 article-title: Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties publication-title: Food Chemistry doi: 10.1016/j.foodchem.2020.128049 – volume: 120 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib51 article-title: Linear and non-linear rheology of heat-set soy protein gels: Effects of selective proteolysis of β-conglycinin and glycinin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106962 – volume: 118 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib6 article-title: Recent trends in oil structuring using hydrocolloids publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106612 – volume: 108 start-page: 183 year: 2014 ident: 10.1016/j.foodhyd.2022.107824_bib11 article-title: Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2014.02.089 – volume: 125 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib19 article-title: Effect of starch molecular structure on precision and texture properties of 3D printed products publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107387 – volume: 117 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib21 article-title: Technological aspects of xanthan gum and gum Arabic presence in chicken egg albumin wet foams: Application of nonlinear rheology and nonparametric statistics publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106683 – volume: 125 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib27 article-title: High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107418 – volume: 113 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib44 article-title: Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106482 – volume: 179 start-page: 282 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib29 article-title: Pectin from husk tomato (physalis ixocarpa brot.): Rheological behavior at different extraction conditions publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.09.097 – volume: 123 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib55 article-title: Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107113 – volume: 66 start-page: 268 year: 2017 ident: 10.1016/j.foodhyd.2022.107824_bib43 article-title: Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.11.032 – volume: 121 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib48 article-title: Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107050 – volume: 229 start-page: 115469 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib33 article-title: In vitro digestion of polysaccharide including whey protein isolate hydrogels publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.115469 – volume: 114 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib34 article-title: 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106546 – volume: 122 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib35 article-title: Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics publication-title: Lebensmittel-Wissenschaft & Technologie – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.foodhyd.2022.107824_bib36 article-title: Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.06.050 – volume: 154 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib10 article-title: Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level publication-title: Lebensmittel-Wissenschaft & Technologie – volume: 123 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib9 article-title: Modeling creep/recovery behavior of cold-set gels using different approaches publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107183 – volume: 107 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib14 article-title: Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105940 – volume: 12 start-page: 1967 issue: 12 year: 2019 ident: 10.1016/j.foodhyd.2022.107824_bib25 article-title: Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-019-02344-5 – volume: 124 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib17 article-title: Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107265 – volume: 201 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib16 article-title: Probing gels and emulsions using large-amplitude oscillatory shear and frictional studies with soft substrate skin surrogates publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2021.111595 – volume: 46 start-page: 8473 issue: 6 year: 2020 ident: 10.1016/j.foodhyd.2022.107824_bib3 article-title: Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions publication-title: Ceramics International doi: 10.1016/j.ceramint.2019.11.225 – volume: 371 year: 2022 ident: 10.1016/j.foodhyd.2022.107824_bib7 article-title: Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance publication-title: Food Chemistry doi: 10.1016/j.foodchem.2021.131349 – volume: 59 start-page: 2190 issue: 6 year: 2011 ident: 10.1016/j.foodhyd.2022.107824_bib20 article-title: Measurement of conjugated linoleic acid (cla) in cla-rich potato chips by atr-ftir spectroscopy publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf104204e – volume: 274 year: 2021 ident: 10.1016/j.foodhyd.2022.107824_bib38 article-title: Rheological behavior of nanocellulose gels at various calcium chloride concentrations publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118660 |
| SSID | ssj0017011 |
| Score | 2.6884553 |
| Snippet | Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107824 |
| SubjectTerms | 3D printing emulsions Fourier transform infrared spectroscopy gel strength gels guar gum hydrocolloids hydrogen Microstructure Polysaccharide Printability Rheological properties soy protein isolate SPI emulsion gel inks texture three-dimensional printing xanthan gum |
| Title | Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation |
| URI | https://dx.doi.org/10.1016/j.foodhyd.2022.107824 https://www.proquest.com/docview/2675571841 |
| Volume | 131 |
| WOSCitedRecordID | wos000818010000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017011 issn: 0268-005X databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvGQkxCVyyau1w23FdgWoKhy6UjhFceIsKSUpm2bVXvnlzCR22q0W7XLgEqVW7Fj5vs6M7XkQ8sa2s6E3kj5zUxUzX2UZC0aYG8_LbC8QStk8bopN8OlUhGHwtddbm1iYiwUvCrFeB8v_CjW0AdgYOvsPcHeDQgPcA-hwBdjheiPgd9yA0BKsyo3VJGPICyuHN4Ntaamf9QJ3yawz0IxYaQYk9HmNLQy1Wmp5x1aG6Y5x12_VRr38aHzndLJjdJMuF5sqTjBqK08br65EJ0U2SHfFP2Gg75sUNCVwrszTzor_VjccyrfHQ3rzOqwV2xidit5CbTR8uW0xT05yNq-L3a0LWPUaJzgj4dyRYCAGwkvi2HOs5cBB08VnVwr5dr9hPsAPAdMf4NC6w1armZP86Zfo5HQyiWbjcPZ2-YthvTE8l9fFV26RA5cPA9EnB0efxuHn7gSK203t5m6K2-ivd1e--W92zZ6Gb8yW2X1yT6836FHLkwekp4qH5O5OFspH5PcOY2iZUWAM1YyhmjHUMIYiY2hc0T3GUO-Y4nSpYQxFxrynLV9w1D2-0Et8eUxOT8azDx-ZLs3BEs93VyyVQjoKrD8_4yIWsUpdzx9JxbmQPMjgp-0ooVLpSW4nUg0zDPETwvdxyRsI7wnpF2WhnhIaOAmYSFIpx1E-l7FMssxVgrsyGcVewg-Jbz5slOi89Vg-ZREZB8V5pPGIEI-oxeOQDLpuyzZxy3UdhEEt0tZna1VGwLvrur42KEcgnfHILS5UWVeRC-vxIZh_vvPsBs88J3e2f5MXpA9AqpfkdnKxyqvzV5qhfwAJWbgX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+soy+protein+isolate+emulsion+gels+as+extrusion-based+3D+food+printing+inks%3A+Effect+of+polysaccharides+incorporation&rft.jtitle=Food+hydrocolloids&rft.au=Yu%2C+Jie&rft.au=Wang%2C+Xue-ying&rft.au=Li%2C+Dong&rft.au=Wang%2C+Li-jun&rft.date=2022-10-01&rft.issn=0268-005X&rft.volume=131+p.107824-&rft_id=info:doi/10.1016%2Fj.foodhyd.2022.107824&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |