VMDI-LSTM-ED: A novel enhanced decomposition ensemble model incorporating data integration for accurate non-stationary daily streamflow forecasting

•A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition ensemble model.•VMDI-LSTM-ED enhances predictions by integrating recent observations.•VMDI-LSTM-ED can effectively predict peak streamflow and captu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 653; p. 132769
Main Authors: Liu, Jiadong, Xu, Teng, Lu, Chunhui
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2025
Subjects:
ISSN:0022-1694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition ensemble model.•VMDI-LSTM-ED enhances predictions by integrating recent observations.•VMDI-LSTM-ED can effectively predict peak streamflow and capture its changing trend.•VMDI-LSTM-ED outperforms other models in all six selected basins. Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual streamflow poses a challenge to accurate forecasting. While decomposition ensemble models can address non-stationary nonlinear streamflow, they still suffer from low forecast accuracy when dealing with highly non-stationary streamflow. Recent studies have shown that incorporating lagged streamflow into long short-term memory (LSTM) networks, known as data integration (DI), represents an effective approach for streamflow forecasting. Nevertheless, existing decomposition ensemble models do not fully leverage the benefits of recent observations. To enhance the precision of non-stationary streamflow forecasting, we propose an improved decomposition ensemble model based on DI called VMDI-LSTM-ED, which utilizes recent observations to improve prediction while processing the subsignals of Variational mode decomposition (VMD) decomposition using LSTM with Encoder-Decoder framework (LSTM-ED). In order to evaluate the reliability and applicability of VMDI-LSTM-ED and demonstrate its superiority, we conducted model tests in six different basins in the United States and compared VMDI-LSTM-ED with VMD-LSTM, Transformer, and LSTM-ED. The results indicate that VMDI-LSTM-ED yields the best streamflow forecast result across all tested basins, with an average Nash-Sutcliffe Efficiency (NSE) of 0.880 for 1-day ahead forecasts over the six basins; whereas NSE values for VMD-LSTM, Transformer, and LSTM-ED are only 0.687, 0.556, and 0.368 respectively. In addition, VMDI-LSTM-ED is good not only for high-streamflow areas but also for low-streamflow areas, and the prediction effect of peak streamflow is the best.
AbstractList Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual streamflow poses a challenge to accurate forecasting. While decomposition ensemble models can address non-stationary nonlinear streamflow, they still suffer from low forecast accuracy when dealing with highly non-stationary streamflow. Recent studies have shown that incorporating lagged streamflow into long short-term memory (LSTM) networks, known as data integration (DI), represents an effective approach for streamflow forecasting. Nevertheless, existing decomposition ensemble models do not fully leverage the benefits of recent observations. To enhance the precision of non-stationary streamflow forecasting, we propose an improved decomposition ensemble model based on DI called VMDI-LSTM-ED, which utilizes recent observations to improve prediction while processing the subsignals of Variational mode decomposition (VMD) decomposition using LSTM with Encoder-Decoder framework (LSTM-ED). In order to evaluate the reliability and applicability of VMDI-LSTM-ED and demonstrate its superiority, we conducted model tests in six different basins in the United States and compared VMDI-LSTM-ED with VMD-LSTM, Transformer, and LSTM-ED. The results indicate that VMDI-LSTM-ED yields the best streamflow forecast result across all tested basins, with an average Nash-Sutcliffe Efficiency (NSE) of 0.880 for 1-day ahead forecasts over the six basins; whereas NSE values for VMD-LSTM, Transformer, and LSTM-ED are only 0.687, 0.556, and 0.368 respectively. In addition, VMDI-LSTM-ED is good not only for high-streamflow areas but also for low-streamflow areas, and the prediction effect of peak streamflow is the best.
•A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition ensemble model.•VMDI-LSTM-ED enhances predictions by integrating recent observations.•VMDI-LSTM-ED can effectively predict peak streamflow and capture its changing trend.•VMDI-LSTM-ED outperforms other models in all six selected basins. Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual streamflow poses a challenge to accurate forecasting. While decomposition ensemble models can address non-stationary nonlinear streamflow, they still suffer from low forecast accuracy when dealing with highly non-stationary streamflow. Recent studies have shown that incorporating lagged streamflow into long short-term memory (LSTM) networks, known as data integration (DI), represents an effective approach for streamflow forecasting. Nevertheless, existing decomposition ensemble models do not fully leverage the benefits of recent observations. To enhance the precision of non-stationary streamflow forecasting, we propose an improved decomposition ensemble model based on DI called VMDI-LSTM-ED, which utilizes recent observations to improve prediction while processing the subsignals of Variational mode decomposition (VMD) decomposition using LSTM with Encoder-Decoder framework (LSTM-ED). In order to evaluate the reliability and applicability of VMDI-LSTM-ED and demonstrate its superiority, we conducted model tests in six different basins in the United States and compared VMDI-LSTM-ED with VMD-LSTM, Transformer, and LSTM-ED. The results indicate that VMDI-LSTM-ED yields the best streamflow forecast result across all tested basins, with an average Nash-Sutcliffe Efficiency (NSE) of 0.880 for 1-day ahead forecasts over the six basins; whereas NSE values for VMD-LSTM, Transformer, and LSTM-ED are only 0.687, 0.556, and 0.368 respectively. In addition, VMDI-LSTM-ED is good not only for high-streamflow areas but also for low-streamflow areas, and the prediction effect of peak streamflow is the best.
ArticleNumber 132769
Author Liu, Jiadong
Lu, Chunhui
Xu, Teng
Author_xml – sequence: 1
  givenname: Jiadong
  surname: Liu
  fullname: Liu, Jiadong
  organization: The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
– sequence: 2
  givenname: Teng
  orcidid: 0000-0002-0207-9061
  surname: Xu
  fullname: Xu, Teng
  email: teng.xu@hhu.edu.cn
  organization: The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
– sequence: 3
  givenname: Chunhui
  surname: Lu
  fullname: Lu, Chunhui
  organization: The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
BookMark eNqFkc1u1DAUhb0oEm3hEZCyZJPBP5NxAgtUtQUqTcWCwtZyrm9ajxJ7sD2t5jl4YW5IV2zqjeVzzznS_XzGTkIMyNg7wVeCi82H3Wr3cHQpjivJZbMSSupNd8JOOZeyFptu_Zqd5bzjdJRan7I_v26vburtj7vb-vrqY3VRhfiIY4XhwQZAVzmEOO1j9sXHQHLGqR-xmqIjlw8Q0z4mW3y4r5wtlqSC97NA7iGmygIc6InUG-pc_g1sOpLZj8cql4R2Gsb4NJsRbJ6b3rBXgx0zvn2-z9nPL9d3l9_q7fevN5cX2xrUWpbata0DWkN3HFEPLW8E9J0C3TnegLS9tr2TorUDKMl1M1gtQLWNlkrbrnfqnL1fevcp_j5gLmbyGXAcbcB4yIZSxLBtO0XWT4sVUsw54WDAL8uURJsYwc2M3-zMM34z4zcLfko3_6X3yU-E4cXc5yWHROHRYzIZPM7_4glWMS76Fxr-AjnzqkA
CitedBy_id crossref_primary_10_1007_s13201_025_02535_w
crossref_primary_10_1016_j_jhydrol_2025_133949
crossref_primary_10_1016_j_eswa_2025_128658
crossref_primary_10_1016_j_envsoft_2025_106671
crossref_primary_10_1016_j_asej_2025_103683
Cites_doi 10.1016/j.jhydrol.2023.130380
10.1016/j.jhydrol.2015.11.011
10.1007/s12145-024-01354-y
10.1016/j.envres.2023.116365
10.1016/j.jenvman.2024.120404
10.1016/j.ymssp.2019.02.056
10.1029/2019WR025326
10.1016/j.jhydrol.2022.128599
10.1016/j.jhydrol.2024.132235
10.1016/j.jhydrol.2013.11.021
10.1016/0022-1694(70)90255-6
10.5194/hess-21-5293-2017
10.1016/j.jhydrol.2020.124776
10.1029/2022WR032404
10.1109/TSP.2013.2288675
10.1016/j.jhydrol.2024.131521
10.1016/j.advwatres.2023.104569
10.3390/w10111543
10.1016/j.jhydrol.2023.129269
10.1016/j.jhydrol.2018.10.031
10.1029/2018WR022606
10.1029/2019WR026793
10.1016/j.jhydrol.2023.129296
10.1016/j.jhydrol.2024.130862
10.1016/j.isatra.2018.11.010
10.1016/j.jhydrol.2018.01.015
10.1016/j.jhydrol.2020.124631
10.5194/hess-22-6005-2018
10.1111/j.1752-1688.2005.tb03740.x
10.1016/j.scitotenv.2024.172465
10.5194/hess-19-209-2015
10.1016/j.jhydrol.2018.04.032
10.1126/science.1151915
10.1016/j.jhydrol.2021.126378
10.1016/j.jhydrol.2024.131225
10.1016/j.scitotenv.2022.154722
10.1016/j.envdev.2013.03.007
10.1029/2021WR030263
10.3390/w11071387
10.1016/j.scitotenv.2022.153661
10.1007/s11269-019-2183-x
10.1016/j.jhydrol.2021.127255
10.3390/en14061596
10.1016/j.jhydrol.2015.09.047
10.4211/hs.17c896843cf940339c3c3496d0c1c077
10.1016/j.apm.2018.01.014
10.1016/j.jhydrol.2023.129199
10.1016/j.jhydrol.2018.04.036
10.1016/j.jhydrol.2023.129682
10.1016/j.jhydrol.2022.128577
10.1016/j.jhydrol.2012.01.011
10.1016/j.jhydrol.2024.131275
10.1016/j.jhydrol.2018.11.015
10.1016/j.jhydrol.2024.130993
10.1016/j.jenvman.2023.117309
10.1016/j.pce.2006.03.020
10.1016/j.envres.2023.115259
10.1016/j.envsoft.2022.105581
10.5194/hess-23-5089-2019
10.1016/j.jhydrol.2018.12.060
10.1016/j.jhydrol.2019.123915
10.3390/w11091808
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2025.132769
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2025_132769
S0022169425001076
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSH
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAYXX
ABUFD
ACLOT
CITATION
EFKBS
EFLBG
K-O
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-d88dc003790ee7f8051cb93c79d05c2ab7abd218afc32075fa71c3857237a9bd3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001417051400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Fri Nov 14 18:41:02 EST 2025
Sat Nov 29 07:51:02 EST 2025
Tue Nov 18 21:09:13 EST 2025
Sat Jul 05 17:11:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Decomposition ensemble model
Non-stationary streamflow
Encoder-decoder framework
Data integration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-d88dc003790ee7f8051cb93c79d05c2ab7abd218afc32075fa71c3857237a9bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0207-9061
PQID 3200258893
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200258893
crossref_citationtrail_10_1016_j_jhydrol_2025_132769
crossref_primary_10_1016_j_jhydrol_2025_132769
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_132769
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cai, He, Li, Shangguan, Li, Hu (b0035) 2024; 639
de la Fuente, Meruane, Meruane (b0055) 2019; 11
Hu, Wu, Li, Jian, Li, Lou (b0100) 2018; 10
Xie, Zhang, Hou, Xie, Lv, Liu (b0285) 2019; 577
Zhang, Peng, Zhang, Wang (b0315) 2015; 530
Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0150) 2019; 23
Newman, Clark, Sampson, Wood, Hay, Bock, Viger, Blodgett, Brekke, Arnold (b0210) 2015; 19
Yoon, Ahn (b0310) 2024; 632
Wei, Xia, He, Shoemaker (b0270) 2024; 634
Xu, Zhou, Li, Yan, Liu (b0300) 2019; 86
Malik, Feng, Shao, Abduljabbar (b0185) 2024; 17
Singh, Knapp, Arnold, Demissie (b0225) 2005; 41
Zhang, Ragettli, Molnar, Fink, Peleg (b0325) 2022; 614
Khatun, Sahoo, Chatterjee (b0125) 2023; 618
Zhou, Cui, Lin, Sheng, Chen, Guo, Xu (b0335) 2022; 604
Dragomiretskiy, Zosso (b0065) 2014; 62
Lee, Calvin, Dasgupta, Krinner, Mukherji, Thorne, Trisos, Romero, Aldunce, Barrett (b0165) 2023
Kingma, D.P., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Doi: 10.48550/arXiv.1412.6980.
Jin, Zheng, Kong, Wang, Bai, Su, Lin (b0115) 2021; 14
Tran, Ivanov, Kim (b0255) 2023; 182
Loli, Mitoulis, Tsatsis, Manousakis, Kourkoulis, Zekkos (b0180) 2022; 822
Zubelzu, Ghalkha, Issaid, Zanella, Bennis (b0345) 2024; 354
Xiang, Yan, Demir (b0280) 2020; 56
Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0145) 2018; 22
Ahmed, Deo, Ghahramani, Feng, Raj, Yin, Yang (b0015) 2022; 831
Addor, Nearing, Prieto, Newman, Le Vine, Clark (b0010) 2018; 54
Milly, Betancourt, Falkenmark, Hirsch, Kundzewicz, Lettenmaier, Stouffer (b0195) 2008; 319
Niu, Hu, Sun, Liu (b0215) 2018; 57
Grenier, Boudreault, Raymond, Boudreault (b0085) 2024; 53
Feng, Fang, Shen (b0075) 2020; 56
Xu, Chen, Zhang, Xiong, Chen (b0290) 2022; 614
Zhang, Chen, Zheng, Cao (b0320) 2023; 221
Li, Yao, Wang, Zhang (b0170) 2019; 126
Khoshkalam, Rousseau, Rahmani, Shen, Abbasnezhadi (b0130) 2023; 622
Kling, Fuchs, Paulin (b0140) 2012; 424
Tan, Lei, Wang, Wang, Wen, Ji, Kang (b0245) 2018; 567
Zheng, Liu, Wan, Zhao, Xie (b0330) 2023; 331
Jahangir, You, Quilty (b0105) 2023; 619
Tao, Cui, He, Yang (b0250) 2024; 929
Castangia, Grajales, Aliberti, Rossi, Macii, Macii, Patti (b0045) 2023; 160
Cannas, Fanni, See, Sias (b0040) 2006; 31
Sabzipour, Arsenault, Troin, Martel, Brissette, Brunet, Mai (b0220) 2023; 627
Sun, Wen, Zhang, Singh, Sun, Li (b0235) 2018; 567
Yin, Zhang, Wang, Zhang, Xia, Jin (b0305) 2021; 598
Chen, Chen (b0050) 2013; 6
Meng, Huang, Huang, Fang, Wu, Wang (b0190) 2019; 568
Le, X.H., Ho, H.V., Lee, G., Jung, S., 2019. Application of long short-term memory (lstm) neural network for flood forecasting. Water 11, 1387. https://doi.org/10.3390/w11071387. LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444. Doi: 10.1038/nature14539.
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Doi: 10.48550/arXiv.1409.3215. 1409.3215.
Zuo, Luo, Wang, Lian, He (b0350) 2020; 585
Addor, Newman, Mizukami, Clark (b0005) 2017; 21
Kao, Zhou, Chang, Chang (b0120) 2020; 583
Wen, Feng, Deo, Wu, Yin, Yang, Singh (b0275) 2019; 570
Feng, Liu, Lawson, Shen (b0080) 2022; 58
Janssen, Ameli (b0110) 2021; 57
Zhou, Wang, Jin, Shi, Liu (b0340) 2024; 645
He, Luo, Zuo, Xie (b0095) 2019; 33
Lohani, Goel, Bhatia (b0175) 2014; 509
Mohanty, Sahoo, Kale (b0200) 2024; 635
Hadi, Tombul (b0090) 2018; 561
Bai, Chen, Xie, Li (b0025) 2016; 532
Unnikrishnan, Jothiprakash (b0260) 2018; 561
Anshuman, Eldho (b0020) 2023; 619
Kratzert, F., 2019. Camels extended maurer forcing data, hydroshare .
Nash, Sutcliffe (b0205) 1970; 10
Fang, Yang, Wen, Yu, Li, Adamowski, Barzegar (b0070) 2024; 636
Wang, Fan, Yang, Zhou (b0265) 2023; 232
Fang (10.1016/j.jhydrol.2025.132769_b0070) 2024; 636
Chen (10.1016/j.jhydrol.2025.132769_b0050) 2013; 6
Zheng (10.1016/j.jhydrol.2025.132769_b0330) 2023; 331
Zubelzu (10.1016/j.jhydrol.2025.132769_b0345) 2024; 354
Yin (10.1016/j.jhydrol.2025.132769_b0305) 2021; 598
Zhang (10.1016/j.jhydrol.2025.132769_b0315) 2015; 530
10.1016/j.jhydrol.2025.132769_b0240
Tran (10.1016/j.jhydrol.2025.132769_b0255) 2023; 182
Malik (10.1016/j.jhydrol.2025.132769_b0185) 2024; 17
Unnikrishnan (10.1016/j.jhydrol.2025.132769_b0260) 2018; 561
Wei (10.1016/j.jhydrol.2025.132769_b0270) 2024; 634
Yoon (10.1016/j.jhydrol.2025.132769_b0310) 2024; 632
Zhou (10.1016/j.jhydrol.2025.132769_b0335) 2022; 604
Feng (10.1016/j.jhydrol.2025.132769_b0080) 2022; 58
10.1016/j.jhydrol.2025.132769_b0160
Nash (10.1016/j.jhydrol.2025.132769_b0205) 1970; 10
He (10.1016/j.jhydrol.2025.132769_b0095) 2019; 33
Lohani (10.1016/j.jhydrol.2025.132769_b0175) 2014; 509
Newman (10.1016/j.jhydrol.2025.132769_b0210) 2015; 19
Kao (10.1016/j.jhydrol.2025.132769_b0120) 2020; 583
Janssen (10.1016/j.jhydrol.2025.132769_b0110) 2021; 57
Hu (10.1016/j.jhydrol.2025.132769_b0100) 2018; 10
Jahangir (10.1016/j.jhydrol.2025.132769_b0105) 2023; 619
Milly (10.1016/j.jhydrol.2025.132769_b0195) 2008; 319
Sun (10.1016/j.jhydrol.2025.132769_b0235) 2018; 567
Feng (10.1016/j.jhydrol.2025.132769_b0075) 2020; 56
Meng (10.1016/j.jhydrol.2025.132769_b0190) 2019; 568
Bai (10.1016/j.jhydrol.2025.132769_b0025) 2016; 532
Jin (10.1016/j.jhydrol.2025.132769_b0115) 2021; 14
10.1016/j.jhydrol.2025.132769_b0155
Zhou (10.1016/j.jhydrol.2025.132769_b0340) 2024; 645
Xu (10.1016/j.jhydrol.2025.132769_b0290) 2022; 614
Singh (10.1016/j.jhydrol.2025.132769_b0225) 2005; 41
Anshuman (10.1016/j.jhydrol.2025.132769_b0020) 2023; 619
Cannas (10.1016/j.jhydrol.2025.132769_b0040) 2006; 31
Addor (10.1016/j.jhydrol.2025.132769_b0010) 2018; 54
Li (10.1016/j.jhydrol.2025.132769_b0170) 2019; 126
Khatun (10.1016/j.jhydrol.2025.132769_b0125) 2023; 618
Xiang (10.1016/j.jhydrol.2025.132769_b0280) 2020; 56
Hadi (10.1016/j.jhydrol.2025.132769_b0090) 2018; 561
Niu (10.1016/j.jhydrol.2025.132769_b0215) 2018; 57
Zuo (10.1016/j.jhydrol.2025.132769_b0350) 2020; 585
de la Fuente (10.1016/j.jhydrol.2025.132769_b0055) 2019; 11
Kratzert (10.1016/j.jhydrol.2025.132769_b0145) 2018; 22
Cai (10.1016/j.jhydrol.2025.132769_b0035) 2024; 639
Khoshkalam (10.1016/j.jhydrol.2025.132769_b0130) 2023; 622
Ahmed (10.1016/j.jhydrol.2025.132769_b0015) 2022; 831
Grenier (10.1016/j.jhydrol.2025.132769_b0085) 2024; 53
Zhang (10.1016/j.jhydrol.2025.132769_b0320) 2023; 221
Wang (10.1016/j.jhydrol.2025.132769_b0265) 2023; 232
10.1016/j.jhydrol.2025.132769_b0135
Dragomiretskiy (10.1016/j.jhydrol.2025.132769_b0065) 2014; 62
Wen (10.1016/j.jhydrol.2025.132769_b0275) 2019; 570
Tan (10.1016/j.jhydrol.2025.132769_b0245) 2018; 567
Loli (10.1016/j.jhydrol.2025.132769_b0180) 2022; 822
Mohanty (10.1016/j.jhydrol.2025.132769_b0200) 2024; 635
Kling (10.1016/j.jhydrol.2025.132769_b0140) 2012; 424
Zhang (10.1016/j.jhydrol.2025.132769_b0325) 2022; 614
Sabzipour (10.1016/j.jhydrol.2025.132769_b0220) 2023; 627
Tao (10.1016/j.jhydrol.2025.132769_b0250) 2024; 929
Xie (10.1016/j.jhydrol.2025.132769_b0285) 2019; 577
Addor (10.1016/j.jhydrol.2025.132769_b0005) 2017; 21
Kratzert (10.1016/j.jhydrol.2025.132769_b0150) 2019; 23
Xu (10.1016/j.jhydrol.2025.132769_b0300) 2019; 86
Castangia (10.1016/j.jhydrol.2025.132769_b0045) 2023; 160
Lee (10.1016/j.jhydrol.2025.132769_b0165) 2023
References_xml – volume: 636
  year: 2024
  ident: b0070
  article-title: Ensemble learning using multivariate variational mode decomposition based on the transformer for multi-step-ahead streamflow forecasting
  publication-title: J. Hydrol.
– volume: 57
  start-page: 163
  year: 2018
  end-page: 178
  ident: b0215
  article-title: A novel hybrid decomposition-ensemble model based on vmd and hgwo for container throughput forecasting
  publication-title: App. Math. Model.
– volume: 31
  start-page: 1164
  year: 2006
  end-page: 1171
  ident: b0040
  article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
  publication-title: Phys. Chem. Earth, Parts a/b/c
– volume: 86
  start-page: 249
  year: 2019
  end-page: 265
  ident: b0300
  article-title: Early fault feature extraction of bearings based on teager energy operator and optimal vmd
  publication-title: ISA Trans.
– volume: 6
  start-page: 69
  year: 2013
  end-page: 79
  ident: b0050
  article-title: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010
  publication-title: Environ. Dev.
– volume: 19
  start-page: 209
  year: 2015
  end-page: 223
  ident: b0210
  article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 56
  year: 2020
  ident: b0280
  article-title: A rainfall-runoff model with lstm-based sequence-to-sequence learning
  publication-title: Water Resour. Res.
– volume: 568
  start-page: 462
  year: 2019
  end-page: 478
  ident: b0190
  article-title: A robust method for non-stationary streamflow prediction based on improved emd-svm model
  publication-title: J. Hydrol.
– volume: 567
  start-page: 767
  year: 2018
  end-page: 780
  ident: b0245
  article-title: An adaptive middle and long-term runoff forecast model using eemd-ann hybrid approach
  publication-title: J. Hydrol.
– volume: 561
  start-page: 609
  year: 2018
  end-page: 621
  ident: b0260
  article-title: Daily rainfall forecasting for one year in a single run using singular spectrum analysis
  publication-title: J. Hydrol.
– volume: 54
  start-page: 8792
  year: 2018
  end-page: 8812
  ident: b0010
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
– volume: 635
  year: 2024
  ident: b0200
  article-title: A hybrid model enhancing streamflow forecasts in paddy land use-dominated catchments with numerical weather prediction model-based meteorological forcings
  publication-title: J. Hydrol.
– volume: 634
  year: 2024
  ident: b0270
  article-title: Quick large-scale spatiotemporal flood inundation computation using integrated encoder-decoder lstm with time distributed spatial output models
  publication-title: J. Hydrol.
– volume: 604
  year: 2022
  ident: b0335
  article-title: Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques
  publication-title: J. Hydrol.
– volume: 577
  year: 2019
  ident: b0285
  article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the han river basin, china
  publication-title: J. Hydrol.
– volume: 614
  year: 2022
  ident: b0290
  article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model
  publication-title: J. Hydrol.
– volume: 21
  start-page: 5293
  year: 2017
  end-page: 5313
  ident: b0005
  article-title: The camels data set: catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 509
  start-page: 25
  year: 2014
  end-page: 41
  ident: b0175
  article-title: Improving real time flood forecasting using fuzzy inference system
  publication-title: J. Hydrol.
– volume: 570
  start-page: 167
  year: 2019
  end-page: 184
  ident: b0275
  article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems
  publication-title: J. Hydrol.
– volume: 532
  start-page: 193
  year: 2016
  end-page: 206
  ident: b0025
  article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
  publication-title: J. Hydrol.
– volume: 831
  year: 2022
  ident: b0015
  article-title: New double decomposition deep learning methods for river water level forecasting
  publication-title: Sci. Total Environ.
– volume: 182
  year: 2023
  ident: b0255
  article-title: Data reformation–a novel data processing technique enhancing machine learning applicability for predicting streamflow extremes
  publication-title: Adv. Water Resour.
– volume: 33
  start-page: 1571
  year: 2019
  end-page: 1590
  ident: b0095
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour. Manag.
– volume: 619
  year: 2023
  ident: b0105
  article-title: A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting
  publication-title: J. Hydrol.
– volume: 424
  start-page: 264
  year: 2012
  end-page: 277
  ident: b0140
  article-title: Runoff conditions in the upper danube basin under an ensemble of climate change scenarios
  publication-title: J. Hydrol.
– volume: 319
  start-page: 573
  year: 2008
  end-page: 574
  ident: b0195
  article-title: Stationarity is dead: Whither water management?
  publication-title: Science
– volume: 632
  year: 2024
  ident: b0310
  article-title: Self-training approach to improve the predictability of data driven rainfall-runoff model in hydrological data-sparse regions
  publication-title: J. Hydrol.
– volume: 822
  year: 2022
  ident: b0180
  article-title: Flood characterization based on forensic analysis of bridge collapse using uav reconnaissance and cfd simulations
  publication-title: Sci. Total Environ.
– volume: 160
  year: 2023
  ident: b0045
  article-title: Transformer neural networks for interpretable flood forecasting
  publication-title: Environ. Model. Softw.
– volume: 618
  year: 2023
  ident: b0125
  article-title: Two novel error-updating model frameworks for short-to-medium range streamflow forecasting using bias-corrected rainfall inputs: Development and comparative assessment
  publication-title: J. Hydrol.
– volume: 23
  start-page: 5089
  year: 2019
  end-page: 5110
  ident: b0150
  article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Le, X.H., Ho, H.V., Lee, G., Jung, S., 2019. Application of long short-term memory (lstm) neural network for flood forecasting. Water 11, 1387. https://doi.org/10.3390/w11071387. LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444. Doi: 10.1038/nature14539.
– volume: 627
  year: 2023
  ident: b0220
  article-title: Comparing a long short-term memory (lstm) neural network with a physically based hydrological model for streamflow forecasting over a Canadian catchment
  publication-title: J. Hydrol.
– volume: 56
  year: 2020
  ident: b0075
  article-title: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales
  publication-title: Water Resour. Res.
– reference: Kratzert, F., 2019. Camels extended maurer forcing data, hydroshare .
– volume: 929
  year: 2024
  ident: b0250
  article-title: An explainable multiscale lstm model with wavelet transform and layer-wise relevance propagation for daily streamflow forecasting
  publication-title: Sci. Total Environ.
– volume: 57
  year: 2021
  ident: b0110
  article-title: A hydrologic functional approach for improving large sample hydrology performance in poorly gauged regions
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0205
  article-title: River flow forecasting through conceptual models part i—a discussion of principles
  publication-title: J. Hydrol.
– reference: Kingma, D.P., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Doi: 10.48550/arXiv.1412.6980.
– volume: 639
  year: 2024
  ident: b0035
  article-title: Meta-lstm in hydrology: Advancing runoff predictions through model-agnostic meta-learning
  publication-title: J. Hydrol.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0065
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 645
  year: 2024
  ident: b0340
  article-title: Interpretable multi-step hybrid deep learning model for karst spring discharge prediction: Integrating temporal fusion transformers with ensemble empirical mode decomposition
  publication-title: J. Hydrol.
– reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Doi: 10.48550/arXiv.1409.3215. 1409.3215.
– volume: 11
  start-page: 1808
  year: 2019
  ident: b0055
  article-title: Hydrological early warning system based on a deep learning runoff model coupled with a meteorological forecast
  publication-title: Water
– volume: 10
  start-page: 1543
  year: 2018
  ident: b0100
  article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation
  publication-title: Water
– volume: 585
  year: 2020
  ident: b0350
  article-title: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting
  publication-title: J. Hydrol.
– volume: 17
  start-page: 3455
  year: 2024
  end-page: 3474
  ident: b0185
  article-title: Improving flood forecasting using time-distributed cnn-lstm model: a time-distributed spatiotemporal method
  publication-title: Earth Sci. Inf.
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: b0145
  article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2023
  ident: b0165
  article-title: Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change
– volume: 567
  start-page: 393
  year: 2018
  end-page: 404
  ident: b0235
  article-title: Nonstationarity-based evaluation of flood frequency and flood risk in the huai river basin, china
  publication-title: J. Hydrol.
– volume: 126
  start-page: 568
  year: 2019
  end-page: 589
  ident: b0170
  article-title: Periodic impulses extraction based on improved adaptive vmd and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 598
  year: 2021
  ident: b0305
  article-title: Rainfall-runoff modeling using lstm-based multi-state-vector sequence-to-sequence model
  publication-title: J. Hydrol.
– volume: 614
  year: 2022
  ident: b0325
  article-title: Generalization of an encoder-decoder lstm model for flood prediction in ungauged catchments
  publication-title: J. Hydrol.
– volume: 58
  year: 2022
  ident: b0080
  article-title: Differentiable, learnable, region alized process-based models with multiphysical outputs can approach state-of-the-art hydrologic prediction accuracy
  publication-title: Water Resour. Res.
– volume: 622
  year: 2023
  ident: b0130
  article-title: Applying transfer learning techniques to enhance the accuracy of streamflow prediction produced by long short-term memory networks with data integration
  publication-title: J. Hydrol.
– volume: 331
  year: 2023
  ident: b0330
  article-title: Large-scale prediction of stream water quality using an interpretable deep learning approach
  publication-title: J. Environ. Manage.
– volume: 619
  year: 2023
  ident: b0020
  article-title: A parallel workflow framework using encoder-decoder lstms for uncertainty quantification in contaminant source identification in groundwater
  publication-title: J. Hydrol.
– volume: 41
  start-page: 343
  year: 2005
  end-page: 360
  ident: b0225
  article-title: Hydrological modeling of the iroquois river watershed using hspf and swat 1
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 53
  year: 2024
  ident: b0085
  article-title: Projected seasonal flooding in Canada under climate change with statistical and machine learning
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 583
  year: 2020
  ident: b0120
  article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
– volume: 530
  start-page: 137
  year: 2015
  end-page: 152
  ident: b0315
  article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences
  publication-title: J. Hydrol.
– volume: 561
  start-page: 674
  year: 2018
  end-page: 687
  ident: b0090
  article-title: Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination
  publication-title: J. Hydrol.
– volume: 354
  year: 2024
  ident: b0345
  article-title: Coupling machine learning and physical modelling for predicting runoff at catchment scale
  publication-title: J. Environ. Manage.
– volume: 221
  year: 2023
  ident: b0320
  article-title: Improved prediction of chlorophylla concentrations in reservoirs by gru neural network based on particle swarm algorithm optimized variational modal decomposition
  publication-title: Environ. Res.
– volume: 232
  year: 2023
  ident: b0265
  article-title: An aqi decomposition ensemble model based on ssa-lstm using improved amssa-vmd decomposition reconstruction technique
  publication-title: Environ. Res.
– volume: 14
  start-page: 1596
  year: 2021
  ident: b0115
  article-title: Deep learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization
  publication-title: Energies
– volume: 627
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0220
  article-title: Comparing a long short-term memory (lstm) neural network with a physically based hydrological model for streamflow forecasting over a Canadian catchment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130380
– volume: 532
  start-page: 193
  year: 2016
  ident: 10.1016/j.jhydrol.2025.132769_b0025
  article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.11.011
– volume: 17
  start-page: 3455
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0185
  article-title: Improving flood forecasting using time-distributed cnn-lstm model: a time-distributed spatiotemporal method
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-024-01354-y
– volume: 232
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0265
  article-title: An aqi decomposition ensemble model based on ssa-lstm using improved amssa-vmd decomposition reconstruction technique
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.116365
– volume: 354
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0345
  article-title: Coupling machine learning and physical modelling for predicting runoff at catchment scale
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2024.120404
– volume: 126
  start-page: 568
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0170
  article-title: Periodic impulses extraction based on improved adaptive vmd and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.02.056
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2025.132769_b0280
  article-title: A rainfall-runoff model with lstm-based sequence-to-sequence learning
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025326
– volume: 614
  year: 2022
  ident: 10.1016/j.jhydrol.2025.132769_b0290
  article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128599
– volume: 645
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0340
  article-title: Interpretable multi-step hybrid deep learning model for karst spring discharge prediction: Integrating temporal fusion transformers with ensemble empirical mode decomposition
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132235
– volume: 509
  start-page: 25
  year: 2014
  ident: 10.1016/j.jhydrol.2025.132769_b0175
  article-title: Improving real time flood forecasting using fuzzy inference system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.021
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.jhydrol.2025.132769_b0205
  article-title: River flow forecasting through conceptual models part i—a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 21
  start-page: 5293
  year: 2017
  ident: 10.1016/j.jhydrol.2025.132769_b0005
  article-title: The camels data set: catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-5293-2017
– volume: 585
  year: 2020
  ident: 10.1016/j.jhydrol.2025.132769_b0350
  article-title: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124776
– volume: 58
  year: 2022
  ident: 10.1016/j.jhydrol.2025.132769_b0080
  article-title: Differentiable, learnable, region alized process-based models with multiphysical outputs can approach state-of-the-art hydrologic prediction accuracy
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR032404
– year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0165
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.jhydrol.2025.132769_b0065
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 639
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0035
  article-title: Meta-lstm in hydrology: Advancing runoff predictions through model-agnostic meta-learning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131521
– volume: 182
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0255
  article-title: Data reformation–a novel data processing technique enhancing machine learning applicability for predicting streamflow extremes
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2023.104569
– volume: 10
  start-page: 1543
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0100
  article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation
  publication-title: Water
  doi: 10.3390/w10111543
– volume: 619
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0105
  article-title: A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129269
– volume: 567
  start-page: 393
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0235
  article-title: Nonstationarity-based evaluation of flood frequency and flood risk in the huai river basin, china
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.031
– volume: 54
  start-page: 8792
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0010
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022606
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2025.132769_b0075
  article-title: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026793
– volume: 619
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0020
  article-title: A parallel workflow framework using encoder-decoder lstms for uncertainty quantification in contaminant source identification in groundwater
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129296
– volume: 632
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0310
  article-title: Self-training approach to improve the predictability of data driven rainfall-runoff model in hydrological data-sparse regions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130862
– volume: 86
  start-page: 249
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0300
  article-title: Early fault feature extraction of bearings based on teager energy operator and optimal vmd
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.11.010
– ident: 10.1016/j.jhydrol.2025.132769_b0240
– volume: 567
  start-page: 767
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0245
  article-title: An adaptive middle and long-term runoff forecast model using eemd-ann hybrid approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.015
– ident: 10.1016/j.jhydrol.2025.132769_b0135
– volume: 583
  year: 2020
  ident: 10.1016/j.jhydrol.2025.132769_b0120
  article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124631
– volume: 22
  start-page: 6005
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0145
  article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 41
  start-page: 343
  year: 2005
  ident: 10.1016/j.jhydrol.2025.132769_b0225
  article-title: Hydrological modeling of the iroquois river watershed using hspf and swat 1
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.1111/j.1752-1688.2005.tb03740.x
– volume: 929
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0250
  article-title: An explainable multiscale lstm model with wavelet transform and layer-wise relevance propagation for daily streamflow forecasting
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.172465
– volume: 19
  start-page: 209
  year: 2015
  ident: 10.1016/j.jhydrol.2025.132769_b0210
  article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-209-2015
– volume: 561
  start-page: 609
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0260
  article-title: Daily rainfall forecasting for one year in a single run using singular spectrum analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.032
– volume: 319
  start-page: 573
  year: 2008
  ident: 10.1016/j.jhydrol.2025.132769_b0195
  article-title: Stationarity is dead: Whither water management?
  publication-title: Science
  doi: 10.1126/science.1151915
– volume: 598
  year: 2021
  ident: 10.1016/j.jhydrol.2025.132769_b0305
  article-title: Rainfall-runoff modeling using lstm-based multi-state-vector sequence-to-sequence model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126378
– volume: 53
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0085
  article-title: Projected seasonal flooding in Canada under climate change with statistical and machine learning
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 635
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0200
  article-title: A hybrid model enhancing streamflow forecasts in paddy land use-dominated catchments with numerical weather prediction model-based meteorological forcings
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131225
– volume: 831
  year: 2022
  ident: 10.1016/j.jhydrol.2025.132769_b0015
  article-title: New double decomposition deep learning methods for river water level forecasting
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154722
– volume: 6
  start-page: 69
  year: 2013
  ident: 10.1016/j.jhydrol.2025.132769_b0050
  article-title: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010
  publication-title: Environ. Dev.
  doi: 10.1016/j.envdev.2013.03.007
– volume: 57
  year: 2021
  ident: 10.1016/j.jhydrol.2025.132769_b0110
  article-title: A hydrologic functional approach for improving large sample hydrology performance in poorly gauged regions
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR030263
– ident: 10.1016/j.jhydrol.2025.132769_b0160
  doi: 10.3390/w11071387
– volume: 822
  year: 2022
  ident: 10.1016/j.jhydrol.2025.132769_b0180
  article-title: Flood characterization based on forensic analysis of bridge collapse using uav reconnaissance and cfd simulations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153661
– volume: 33
  start-page: 1571
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0095
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-2183-x
– volume: 604
  year: 2022
  ident: 10.1016/j.jhydrol.2025.132769_b0335
  article-title: Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127255
– volume: 14
  start-page: 1596
  year: 2021
  ident: 10.1016/j.jhydrol.2025.132769_b0115
  article-title: Deep learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization
  publication-title: Energies
  doi: 10.3390/en14061596
– volume: 530
  start-page: 137
  year: 2015
  ident: 10.1016/j.jhydrol.2025.132769_b0315
  article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.047
– ident: 10.1016/j.jhydrol.2025.132769_b0155
  doi: 10.4211/hs.17c896843cf940339c3c3496d0c1c077
– volume: 57
  start-page: 163
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0215
  article-title: A novel hybrid decomposition-ensemble model based on vmd and hgwo for container throughput forecasting
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2018.01.014
– volume: 618
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0125
  article-title: Two novel error-updating model frameworks for short-to-medium range streamflow forecasting using bias-corrected rainfall inputs: Development and comparative assessment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129199
– volume: 561
  start-page: 674
  year: 2018
  ident: 10.1016/j.jhydrol.2025.132769_b0090
  article-title: Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.036
– volume: 622
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0130
  article-title: Applying transfer learning techniques to enhance the accuracy of streamflow prediction produced by long short-term memory networks with data integration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129682
– volume: 614
  year: 2022
  ident: 10.1016/j.jhydrol.2025.132769_b0325
  article-title: Generalization of an encoder-decoder lstm model for flood prediction in ungauged catchments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128577
– volume: 424
  start-page: 264
  year: 2012
  ident: 10.1016/j.jhydrol.2025.132769_b0140
  article-title: Runoff conditions in the upper danube basin under an ensemble of climate change scenarios
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.011
– volume: 636
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0070
  article-title: Ensemble learning using multivariate variational mode decomposition based on the transformer for multi-step-ahead streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131275
– volume: 568
  start-page: 462
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0190
  article-title: A robust method for non-stationary streamflow prediction based on improved emd-svm model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.015
– volume: 634
  year: 2024
  ident: 10.1016/j.jhydrol.2025.132769_b0270
  article-title: Quick large-scale spatiotemporal flood inundation computation using integrated encoder-decoder lstm with time distributed spatial output models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130993
– volume: 331
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0330
  article-title: Large-scale prediction of stream water quality using an interpretable deep learning approach
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2023.117309
– volume: 31
  start-page: 1164
  year: 2006
  ident: 10.1016/j.jhydrol.2025.132769_b0040
  article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
  publication-title: Phys. Chem. Earth, Parts a/b/c
  doi: 10.1016/j.pce.2006.03.020
– volume: 221
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0320
  article-title: Improved prediction of chlorophylla concentrations in reservoirs by gru neural network based on particle swarm algorithm optimized variational modal decomposition
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.115259
– volume: 160
  year: 2023
  ident: 10.1016/j.jhydrol.2025.132769_b0045
  article-title: Transformer neural networks for interpretable flood forecasting
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2022.105581
– volume: 23
  start-page: 5089
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0150
  article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-5089-2019
– volume: 570
  start-page: 167
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0275
  article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.060
– volume: 577
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0285
  article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the han river basin, china
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123915
– volume: 11
  start-page: 1808
  year: 2019
  ident: 10.1016/j.jhydrol.2025.132769_b0055
  article-title: Hydrological early warning system based on a deep learning runoff model coupled with a meteorological forecast
  publication-title: Water
  doi: 10.3390/w11091808
SSID ssj0000334
Score 2.5427353
Snippet •A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition...
Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132769
SubjectTerms Data integration
Decomposition ensemble model
Deep learning
Encoder-decoder framework
flood control
neural networks
Non-stationary streamflow
prediction
stream flow
Title VMDI-LSTM-ED: A novel enhanced decomposition ensemble model incorporating data integration for accurate non-stationary daily streamflow forecasting
URI https://dx.doi.org/10.1016/j.jhydrol.2025.132769
https://www.proquest.com/docview/3200258893
Volume 653
WOSCitedRecordID wos001417051400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000334
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELVKFwleEFftcpOReFulpLnUDm8VW2BRd4VEQX2LfIvaqk1XbVOWD-AL-GFm4rhpt6AFJF6iahRPosypPR7PnCHkJfcTKQSPPK07wosUF14iw8zLTKxYJ_JVm2dlswl2fs6Hw-Rjo_Hd1cKspyzP-eVlcvFfTQ0yMDaWzv6FuTdKQQC_wehwBbPD9Y8M_-Xs5NTrfxqceb0TW3eez9dmemzykT3t1wbzyKtkLRAvzQzLp8qeOMdI1mC5jTGGgPmjG0YJl5QolCqQYAL05t7SHuVj7p0WGCrB4hMxy6bzr3izUWK5cqvjvg88-qYXlgQKHN3uDEkbNCJ0E53oj4sSZ2Oh55UWkA5L4cDUkn5hcweKfFSMtyMZQVxnXNnw2l6JzabcoN2xnZDdlN2xBMN707-NRExaE_v6LXxKC_bbzLaDucKsjQfVAaoGNxC2paxzgxwELE54kxx0T3vDD_WSHoaRo53HAXUp2KtfPux3Ts6V5b70YQZ3yZ3qw9OuBc090jD5fXLrnaloyx-QH9vgeU27tIQOddChO9ChDjq0hA7dgQ5F6NAt6FBAA3XQobvQoSV0aA0dugWdh-Tz297gzXuvatvhqTAKVp7mXCvkNUp8Y1jGYdpXMgkVS7Qfq0BIJqQGz1JkKgzAY80Ea6uQxywImUikDh-RJryFOSQ0UrGWfsyFL7OoY2KZ-LGUkscwlQhYqY5I5L5zqipOe2ytMk1d8uIkrcyTonlSa54j0toMu7CkLtcN4M6IaeWZWo8zBeRdN_SFM3oKMzcex4nczItlGmJ-VMxhw_D439U_Ibfrv9JT0lwtCvOM3FTr1Xi5eF7h-CeEJ8jN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VMDI-LSTM-ED%3A+A+novel+enhanced+decomposition+ensemble+model+incorporating+data+integration+for+accurate+non-stationary+daily+streamflow+forecasting&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Liu%2C+Jiadong&rft.au=Xu%2C+Teng&rft.au=Lu%2C+Chunhui&rft.date=2025-06-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=653&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.132769&rft.externalDocID=S0022169425001076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon