VMDI-LSTM-ED: A novel enhanced decomposition ensemble model incorporating data integration for accurate non-stationary daily streamflow forecasting
•A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition ensemble model.•VMDI-LSTM-ED enhances predictions by integrating recent observations.•VMDI-LSTM-ED can effectively predict peak streamflow and captu...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 653; s. 132769 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2025
|
| Témata: | |
| ISSN: | 0022-1694 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition ensemble model.•VMDI-LSTM-ED enhances predictions by integrating recent observations.•VMDI-LSTM-ED can effectively predict peak streamflow and capture its changing trend.•VMDI-LSTM-ED outperforms other models in all six selected basins.
Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual streamflow poses a challenge to accurate forecasting. While decomposition ensemble models can address non-stationary nonlinear streamflow, they still suffer from low forecast accuracy when dealing with highly non-stationary streamflow. Recent studies have shown that incorporating lagged streamflow into long short-term memory (LSTM) networks, known as data integration (DI), represents an effective approach for streamflow forecasting. Nevertheless, existing decomposition ensemble models do not fully leverage the benefits of recent observations. To enhance the precision of non-stationary streamflow forecasting, we propose an improved decomposition ensemble model based on DI called VMDI-LSTM-ED, which utilizes recent observations to improve prediction while processing the subsignals of Variational mode decomposition (VMD) decomposition using LSTM with Encoder-Decoder framework (LSTM-ED). In order to evaluate the reliability and applicability of VMDI-LSTM-ED and demonstrate its superiority, we conducted model tests in six different basins in the United States and compared VMDI-LSTM-ED with VMD-LSTM, Transformer, and LSTM-ED. The results indicate that VMDI-LSTM-ED yields the best streamflow forecast result across all tested basins, with an average Nash-Sutcliffe Efficiency (NSE) of 0.880 for 1-day ahead forecasts over the six basins; whereas NSE values for VMD-LSTM, Transformer, and LSTM-ED are only 0.687, 0.556, and 0.368 respectively. In addition, VMDI-LSTM-ED is good not only for high-streamflow areas but also for low-streamflow areas, and the prediction effect of peak streamflow is the best. |
|---|---|
| AbstractList | Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual streamflow poses a challenge to accurate forecasting. While decomposition ensemble models can address non-stationary nonlinear streamflow, they still suffer from low forecast accuracy when dealing with highly non-stationary streamflow. Recent studies have shown that incorporating lagged streamflow into long short-term memory (LSTM) networks, known as data integration (DI), represents an effective approach for streamflow forecasting. Nevertheless, existing decomposition ensemble models do not fully leverage the benefits of recent observations. To enhance the precision of non-stationary streamflow forecasting, we propose an improved decomposition ensemble model based on DI called VMDI-LSTM-ED, which utilizes recent observations to improve prediction while processing the subsignals of Variational mode decomposition (VMD) decomposition using LSTM with Encoder-Decoder framework (LSTM-ED). In order to evaluate the reliability and applicability of VMDI-LSTM-ED and demonstrate its superiority, we conducted model tests in six different basins in the United States and compared VMDI-LSTM-ED with VMD-LSTM, Transformer, and LSTM-ED. The results indicate that VMDI-LSTM-ED yields the best streamflow forecast result across all tested basins, with an average Nash-Sutcliffe Efficiency (NSE) of 0.880 for 1-day ahead forecasts over the six basins; whereas NSE values for VMD-LSTM, Transformer, and LSTM-ED are only 0.687, 0.556, and 0.368 respectively. In addition, VMDI-LSTM-ED is good not only for high-streamflow areas but also for low-streamflow areas, and the prediction effect of peak streamflow is the best. •A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition ensemble model.•VMDI-LSTM-ED enhances predictions by integrating recent observations.•VMDI-LSTM-ED can effectively predict peak streamflow and capture its changing trend.•VMDI-LSTM-ED outperforms other models in all six selected basins. Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual streamflow poses a challenge to accurate forecasting. While decomposition ensemble models can address non-stationary nonlinear streamflow, they still suffer from low forecast accuracy when dealing with highly non-stationary streamflow. Recent studies have shown that incorporating lagged streamflow into long short-term memory (LSTM) networks, known as data integration (DI), represents an effective approach for streamflow forecasting. Nevertheless, existing decomposition ensemble models do not fully leverage the benefits of recent observations. To enhance the precision of non-stationary streamflow forecasting, we propose an improved decomposition ensemble model based on DI called VMDI-LSTM-ED, which utilizes recent observations to improve prediction while processing the subsignals of Variational mode decomposition (VMD) decomposition using LSTM with Encoder-Decoder framework (LSTM-ED). In order to evaluate the reliability and applicability of VMDI-LSTM-ED and demonstrate its superiority, we conducted model tests in six different basins in the United States and compared VMDI-LSTM-ED with VMD-LSTM, Transformer, and LSTM-ED. The results indicate that VMDI-LSTM-ED yields the best streamflow forecast result across all tested basins, with an average Nash-Sutcliffe Efficiency (NSE) of 0.880 for 1-day ahead forecasts over the six basins; whereas NSE values for VMD-LSTM, Transformer, and LSTM-ED are only 0.687, 0.556, and 0.368 respectively. In addition, VMDI-LSTM-ED is good not only for high-streamflow areas but also for low-streamflow areas, and the prediction effect of peak streamflow is the best. |
| ArticleNumber | 132769 |
| Author | Liu, Jiadong Lu, Chunhui Xu, Teng |
| Author_xml | – sequence: 1 givenname: Jiadong surname: Liu fullname: Liu, Jiadong organization: The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China – sequence: 2 givenname: Teng orcidid: 0000-0002-0207-9061 surname: Xu fullname: Xu, Teng email: teng.xu@hhu.edu.cn organization: The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China – sequence: 3 givenname: Chunhui surname: Lu fullname: Lu, Chunhui organization: The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China |
| BookMark | eNqFkc1u1DAUhb0oEm3hEZCyZJPBP5NxAgtUtQUqTcWCwtZyrm9ajxJ7sD2t5jl4YW5IV2zqjeVzzznS_XzGTkIMyNg7wVeCi82H3Wr3cHQpjivJZbMSSupNd8JOOZeyFptu_Zqd5bzjdJRan7I_v26vburtj7vb-vrqY3VRhfiIY4XhwQZAVzmEOO1j9sXHQHLGqR-xmqIjlw8Q0z4mW3y4r5wtlqSC97NA7iGmygIc6InUG-pc_g1sOpLZj8cql4R2Gsb4NJsRbJ6b3rBXgx0zvn2-z9nPL9d3l9_q7fevN5cX2xrUWpbata0DWkN3HFEPLW8E9J0C3TnegLS9tr2TorUDKMl1M1gtQLWNlkrbrnfqnL1fevcp_j5gLmbyGXAcbcB4yIZSxLBtO0XWT4sVUsw54WDAL8uURJsYwc2M3-zMM34z4zcLfko3_6X3yU-E4cXc5yWHROHRYzIZPM7_4glWMS76Fxr-AjnzqkA |
| CitedBy_id | crossref_primary_10_1007_s13201_025_02535_w crossref_primary_10_1016_j_jhydrol_2025_133949 crossref_primary_10_1016_j_eswa_2025_128658 crossref_primary_10_1016_j_envsoft_2025_106671 crossref_primary_10_1016_j_asej_2025_103683 |
| Cites_doi | 10.1016/j.jhydrol.2023.130380 10.1016/j.jhydrol.2015.11.011 10.1007/s12145-024-01354-y 10.1016/j.envres.2023.116365 10.1016/j.jenvman.2024.120404 10.1016/j.ymssp.2019.02.056 10.1029/2019WR025326 10.1016/j.jhydrol.2022.128599 10.1016/j.jhydrol.2024.132235 10.1016/j.jhydrol.2013.11.021 10.1016/0022-1694(70)90255-6 10.5194/hess-21-5293-2017 10.1016/j.jhydrol.2020.124776 10.1029/2022WR032404 10.1109/TSP.2013.2288675 10.1016/j.jhydrol.2024.131521 10.1016/j.advwatres.2023.104569 10.3390/w10111543 10.1016/j.jhydrol.2023.129269 10.1016/j.jhydrol.2018.10.031 10.1029/2018WR022606 10.1029/2019WR026793 10.1016/j.jhydrol.2023.129296 10.1016/j.jhydrol.2024.130862 10.1016/j.isatra.2018.11.010 10.1016/j.jhydrol.2018.01.015 10.1016/j.jhydrol.2020.124631 10.5194/hess-22-6005-2018 10.1111/j.1752-1688.2005.tb03740.x 10.1016/j.scitotenv.2024.172465 10.5194/hess-19-209-2015 10.1016/j.jhydrol.2018.04.032 10.1126/science.1151915 10.1016/j.jhydrol.2021.126378 10.1016/j.jhydrol.2024.131225 10.1016/j.scitotenv.2022.154722 10.1016/j.envdev.2013.03.007 10.1029/2021WR030263 10.3390/w11071387 10.1016/j.scitotenv.2022.153661 10.1007/s11269-019-2183-x 10.1016/j.jhydrol.2021.127255 10.3390/en14061596 10.1016/j.jhydrol.2015.09.047 10.4211/hs.17c896843cf940339c3c3496d0c1c077 10.1016/j.apm.2018.01.014 10.1016/j.jhydrol.2023.129199 10.1016/j.jhydrol.2018.04.036 10.1016/j.jhydrol.2023.129682 10.1016/j.jhydrol.2022.128577 10.1016/j.jhydrol.2012.01.011 10.1016/j.jhydrol.2024.131275 10.1016/j.jhydrol.2018.11.015 10.1016/j.jhydrol.2024.130993 10.1016/j.jenvman.2023.117309 10.1016/j.pce.2006.03.020 10.1016/j.envres.2023.115259 10.1016/j.envsoft.2022.105581 10.5194/hess-23-5089-2019 10.1016/j.jhydrol.2018.12.060 10.1016/j.jhydrol.2019.123915 10.3390/w11091808 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2025.132769 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| ExternalDocumentID | 10_1016_j_jhydrol_2025_132769 S0022169425001076 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSH SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAYXX ABUFD ACLOT CITATION EFKBS EFLBG K-O ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-d88dc003790ee7f8051cb93c79d05c2ab7abd218afc32075fa71c3857237a9bd3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001417051400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Fri Nov 14 18:41:02 EST 2025 Sat Nov 29 07:51:02 EST 2025 Tue Nov 18 21:09:13 EST 2025 Sat Jul 05 17:11:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Decomposition ensemble model Non-stationary streamflow Encoder-decoder framework Data integration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-d88dc003790ee7f8051cb93c79d05c2ab7abd218afc32075fa71c3857237a9bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0207-9061 |
| PQID | 3200258893 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3200258893 crossref_citationtrail_10_1016_j_jhydrol_2025_132769 crossref_primary_10_1016_j_jhydrol_2025_132769 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_132769 |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cai, He, Li, Shangguan, Li, Hu (b0035) 2024; 639 de la Fuente, Meruane, Meruane (b0055) 2019; 11 Hu, Wu, Li, Jian, Li, Lou (b0100) 2018; 10 Xie, Zhang, Hou, Xie, Lv, Liu (b0285) 2019; 577 Zhang, Peng, Zhang, Wang (b0315) 2015; 530 Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0150) 2019; 23 Newman, Clark, Sampson, Wood, Hay, Bock, Viger, Blodgett, Brekke, Arnold (b0210) 2015; 19 Yoon, Ahn (b0310) 2024; 632 Wei, Xia, He, Shoemaker (b0270) 2024; 634 Xu, Zhou, Li, Yan, Liu (b0300) 2019; 86 Malik, Feng, Shao, Abduljabbar (b0185) 2024; 17 Singh, Knapp, Arnold, Demissie (b0225) 2005; 41 Zhang, Ragettli, Molnar, Fink, Peleg (b0325) 2022; 614 Khatun, Sahoo, Chatterjee (b0125) 2023; 618 Zhou, Cui, Lin, Sheng, Chen, Guo, Xu (b0335) 2022; 604 Dragomiretskiy, Zosso (b0065) 2014; 62 Lee, Calvin, Dasgupta, Krinner, Mukherji, Thorne, Trisos, Romero, Aldunce, Barrett (b0165) 2023 Kingma, D.P., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Doi: 10.48550/arXiv.1412.6980. Jin, Zheng, Kong, Wang, Bai, Su, Lin (b0115) 2021; 14 Tran, Ivanov, Kim (b0255) 2023; 182 Loli, Mitoulis, Tsatsis, Manousakis, Kourkoulis, Zekkos (b0180) 2022; 822 Zubelzu, Ghalkha, Issaid, Zanella, Bennis (b0345) 2024; 354 Xiang, Yan, Demir (b0280) 2020; 56 Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0145) 2018; 22 Ahmed, Deo, Ghahramani, Feng, Raj, Yin, Yang (b0015) 2022; 831 Addor, Nearing, Prieto, Newman, Le Vine, Clark (b0010) 2018; 54 Milly, Betancourt, Falkenmark, Hirsch, Kundzewicz, Lettenmaier, Stouffer (b0195) 2008; 319 Niu, Hu, Sun, Liu (b0215) 2018; 57 Grenier, Boudreault, Raymond, Boudreault (b0085) 2024; 53 Feng, Fang, Shen (b0075) 2020; 56 Xu, Chen, Zhang, Xiong, Chen (b0290) 2022; 614 Zhang, Chen, Zheng, Cao (b0320) 2023; 221 Li, Yao, Wang, Zhang (b0170) 2019; 126 Khoshkalam, Rousseau, Rahmani, Shen, Abbasnezhadi (b0130) 2023; 622 Kling, Fuchs, Paulin (b0140) 2012; 424 Tan, Lei, Wang, Wang, Wen, Ji, Kang (b0245) 2018; 567 Zheng, Liu, Wan, Zhao, Xie (b0330) 2023; 331 Jahangir, You, Quilty (b0105) 2023; 619 Tao, Cui, He, Yang (b0250) 2024; 929 Castangia, Grajales, Aliberti, Rossi, Macii, Macii, Patti (b0045) 2023; 160 Cannas, Fanni, See, Sias (b0040) 2006; 31 Sabzipour, Arsenault, Troin, Martel, Brissette, Brunet, Mai (b0220) 2023; 627 Sun, Wen, Zhang, Singh, Sun, Li (b0235) 2018; 567 Yin, Zhang, Wang, Zhang, Xia, Jin (b0305) 2021; 598 Chen, Chen (b0050) 2013; 6 Meng, Huang, Huang, Fang, Wu, Wang (b0190) 2019; 568 Le, X.H., Ho, H.V., Lee, G., Jung, S., 2019. Application of long short-term memory (lstm) neural network for flood forecasting. Water 11, 1387. https://doi.org/10.3390/w11071387. LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444. Doi: 10.1038/nature14539. Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Doi: 10.48550/arXiv.1409.3215. 1409.3215. Zuo, Luo, Wang, Lian, He (b0350) 2020; 585 Addor, Newman, Mizukami, Clark (b0005) 2017; 21 Kao, Zhou, Chang, Chang (b0120) 2020; 583 Wen, Feng, Deo, Wu, Yin, Yang, Singh (b0275) 2019; 570 Feng, Liu, Lawson, Shen (b0080) 2022; 58 Janssen, Ameli (b0110) 2021; 57 Zhou, Wang, Jin, Shi, Liu (b0340) 2024; 645 He, Luo, Zuo, Xie (b0095) 2019; 33 Lohani, Goel, Bhatia (b0175) 2014; 509 Mohanty, Sahoo, Kale (b0200) 2024; 635 Hadi, Tombul (b0090) 2018; 561 Bai, Chen, Xie, Li (b0025) 2016; 532 Unnikrishnan, Jothiprakash (b0260) 2018; 561 Anshuman, Eldho (b0020) 2023; 619 Kratzert, F., 2019. Camels extended maurer forcing data, hydroshare . Nash, Sutcliffe (b0205) 1970; 10 Fang, Yang, Wen, Yu, Li, Adamowski, Barzegar (b0070) 2024; 636 Wang, Fan, Yang, Zhou (b0265) 2023; 232 Fang (10.1016/j.jhydrol.2025.132769_b0070) 2024; 636 Chen (10.1016/j.jhydrol.2025.132769_b0050) 2013; 6 Zheng (10.1016/j.jhydrol.2025.132769_b0330) 2023; 331 Zubelzu (10.1016/j.jhydrol.2025.132769_b0345) 2024; 354 Yin (10.1016/j.jhydrol.2025.132769_b0305) 2021; 598 Zhang (10.1016/j.jhydrol.2025.132769_b0315) 2015; 530 10.1016/j.jhydrol.2025.132769_b0240 Tran (10.1016/j.jhydrol.2025.132769_b0255) 2023; 182 Malik (10.1016/j.jhydrol.2025.132769_b0185) 2024; 17 Unnikrishnan (10.1016/j.jhydrol.2025.132769_b0260) 2018; 561 Wei (10.1016/j.jhydrol.2025.132769_b0270) 2024; 634 Yoon (10.1016/j.jhydrol.2025.132769_b0310) 2024; 632 Zhou (10.1016/j.jhydrol.2025.132769_b0335) 2022; 604 Feng (10.1016/j.jhydrol.2025.132769_b0080) 2022; 58 10.1016/j.jhydrol.2025.132769_b0160 Nash (10.1016/j.jhydrol.2025.132769_b0205) 1970; 10 He (10.1016/j.jhydrol.2025.132769_b0095) 2019; 33 Lohani (10.1016/j.jhydrol.2025.132769_b0175) 2014; 509 Newman (10.1016/j.jhydrol.2025.132769_b0210) 2015; 19 Kao (10.1016/j.jhydrol.2025.132769_b0120) 2020; 583 Janssen (10.1016/j.jhydrol.2025.132769_b0110) 2021; 57 Hu (10.1016/j.jhydrol.2025.132769_b0100) 2018; 10 Jahangir (10.1016/j.jhydrol.2025.132769_b0105) 2023; 619 Milly (10.1016/j.jhydrol.2025.132769_b0195) 2008; 319 Sun (10.1016/j.jhydrol.2025.132769_b0235) 2018; 567 Feng (10.1016/j.jhydrol.2025.132769_b0075) 2020; 56 Meng (10.1016/j.jhydrol.2025.132769_b0190) 2019; 568 Bai (10.1016/j.jhydrol.2025.132769_b0025) 2016; 532 Jin (10.1016/j.jhydrol.2025.132769_b0115) 2021; 14 10.1016/j.jhydrol.2025.132769_b0155 Zhou (10.1016/j.jhydrol.2025.132769_b0340) 2024; 645 Xu (10.1016/j.jhydrol.2025.132769_b0290) 2022; 614 Singh (10.1016/j.jhydrol.2025.132769_b0225) 2005; 41 Anshuman (10.1016/j.jhydrol.2025.132769_b0020) 2023; 619 Cannas (10.1016/j.jhydrol.2025.132769_b0040) 2006; 31 Addor (10.1016/j.jhydrol.2025.132769_b0010) 2018; 54 Li (10.1016/j.jhydrol.2025.132769_b0170) 2019; 126 Khatun (10.1016/j.jhydrol.2025.132769_b0125) 2023; 618 Xiang (10.1016/j.jhydrol.2025.132769_b0280) 2020; 56 Hadi (10.1016/j.jhydrol.2025.132769_b0090) 2018; 561 Niu (10.1016/j.jhydrol.2025.132769_b0215) 2018; 57 Zuo (10.1016/j.jhydrol.2025.132769_b0350) 2020; 585 de la Fuente (10.1016/j.jhydrol.2025.132769_b0055) 2019; 11 Kratzert (10.1016/j.jhydrol.2025.132769_b0145) 2018; 22 Cai (10.1016/j.jhydrol.2025.132769_b0035) 2024; 639 Khoshkalam (10.1016/j.jhydrol.2025.132769_b0130) 2023; 622 Ahmed (10.1016/j.jhydrol.2025.132769_b0015) 2022; 831 Grenier (10.1016/j.jhydrol.2025.132769_b0085) 2024; 53 Zhang (10.1016/j.jhydrol.2025.132769_b0320) 2023; 221 Wang (10.1016/j.jhydrol.2025.132769_b0265) 2023; 232 10.1016/j.jhydrol.2025.132769_b0135 Dragomiretskiy (10.1016/j.jhydrol.2025.132769_b0065) 2014; 62 Wen (10.1016/j.jhydrol.2025.132769_b0275) 2019; 570 Tan (10.1016/j.jhydrol.2025.132769_b0245) 2018; 567 Loli (10.1016/j.jhydrol.2025.132769_b0180) 2022; 822 Mohanty (10.1016/j.jhydrol.2025.132769_b0200) 2024; 635 Kling (10.1016/j.jhydrol.2025.132769_b0140) 2012; 424 Zhang (10.1016/j.jhydrol.2025.132769_b0325) 2022; 614 Sabzipour (10.1016/j.jhydrol.2025.132769_b0220) 2023; 627 Tao (10.1016/j.jhydrol.2025.132769_b0250) 2024; 929 Xie (10.1016/j.jhydrol.2025.132769_b0285) 2019; 577 Addor (10.1016/j.jhydrol.2025.132769_b0005) 2017; 21 Kratzert (10.1016/j.jhydrol.2025.132769_b0150) 2019; 23 Xu (10.1016/j.jhydrol.2025.132769_b0300) 2019; 86 Castangia (10.1016/j.jhydrol.2025.132769_b0045) 2023; 160 Lee (10.1016/j.jhydrol.2025.132769_b0165) 2023 |
| References_xml | – volume: 636 year: 2024 ident: b0070 article-title: Ensemble learning using multivariate variational mode decomposition based on the transformer for multi-step-ahead streamflow forecasting publication-title: J. Hydrol. – volume: 57 start-page: 163 year: 2018 end-page: 178 ident: b0215 article-title: A novel hybrid decomposition-ensemble model based on vmd and hgwo for container throughput forecasting publication-title: App. Math. Model. – volume: 31 start-page: 1164 year: 2006 end-page: 1171 ident: b0040 article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning publication-title: Phys. Chem. Earth, Parts a/b/c – volume: 86 start-page: 249 year: 2019 end-page: 265 ident: b0300 article-title: Early fault feature extraction of bearings based on teager energy operator and optimal vmd publication-title: ISA Trans. – volume: 6 start-page: 69 year: 2013 end-page: 79 ident: b0050 article-title: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010 publication-title: Environ. Dev. – volume: 19 start-page: 209 year: 2015 end-page: 223 ident: b0210 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. – volume: 56 year: 2020 ident: b0280 article-title: A rainfall-runoff model with lstm-based sequence-to-sequence learning publication-title: Water Resour. Res. – volume: 568 start-page: 462 year: 2019 end-page: 478 ident: b0190 article-title: A robust method for non-stationary streamflow prediction based on improved emd-svm model publication-title: J. Hydrol. – volume: 567 start-page: 767 year: 2018 end-page: 780 ident: b0245 article-title: An adaptive middle and long-term runoff forecast model using eemd-ann hybrid approach publication-title: J. Hydrol. – volume: 561 start-page: 609 year: 2018 end-page: 621 ident: b0260 article-title: Daily rainfall forecasting for one year in a single run using singular spectrum analysis publication-title: J. Hydrol. – volume: 54 start-page: 8792 year: 2018 end-page: 8812 ident: b0010 article-title: A ranking of hydrological signatures based on their predictability in space publication-title: Water Resour. Res. – volume: 635 year: 2024 ident: b0200 article-title: A hybrid model enhancing streamflow forecasts in paddy land use-dominated catchments with numerical weather prediction model-based meteorological forcings publication-title: J. Hydrol. – volume: 634 year: 2024 ident: b0270 article-title: Quick large-scale spatiotemporal flood inundation computation using integrated encoder-decoder lstm with time distributed spatial output models publication-title: J. Hydrol. – volume: 604 year: 2022 ident: b0335 article-title: Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques publication-title: J. Hydrol. – volume: 577 year: 2019 ident: b0285 article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the han river basin, china publication-title: J. Hydrol. – volume: 614 year: 2022 ident: b0290 article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model publication-title: J. Hydrol. – volume: 21 start-page: 5293 year: 2017 end-page: 5313 ident: b0005 article-title: The camels data set: catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. – volume: 509 start-page: 25 year: 2014 end-page: 41 ident: b0175 article-title: Improving real time flood forecasting using fuzzy inference system publication-title: J. Hydrol. – volume: 570 start-page: 167 year: 2019 end-page: 184 ident: b0275 article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems publication-title: J. Hydrol. – volume: 532 start-page: 193 year: 2016 end-page: 206 ident: b0025 article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models publication-title: J. Hydrol. – volume: 831 year: 2022 ident: b0015 article-title: New double decomposition deep learning methods for river water level forecasting publication-title: Sci. Total Environ. – volume: 182 year: 2023 ident: b0255 article-title: Data reformation–a novel data processing technique enhancing machine learning applicability for predicting streamflow extremes publication-title: Adv. Water Resour. – volume: 33 start-page: 1571 year: 2019 end-page: 1590 ident: b0095 article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks publication-title: Water Resour. Manag. – volume: 619 year: 2023 ident: b0105 article-title: A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting publication-title: J. Hydrol. – volume: 424 start-page: 264 year: 2012 end-page: 277 ident: b0140 article-title: Runoff conditions in the upper danube basin under an ensemble of climate change scenarios publication-title: J. Hydrol. – volume: 319 start-page: 573 year: 2008 end-page: 574 ident: b0195 article-title: Stationarity is dead: Whither water management? publication-title: Science – volume: 632 year: 2024 ident: b0310 article-title: Self-training approach to improve the predictability of data driven rainfall-runoff model in hydrological data-sparse regions publication-title: J. Hydrol. – volume: 822 year: 2022 ident: b0180 article-title: Flood characterization based on forensic analysis of bridge collapse using uav reconnaissance and cfd simulations publication-title: Sci. Total Environ. – volume: 160 year: 2023 ident: b0045 article-title: Transformer neural networks for interpretable flood forecasting publication-title: Environ. Model. Softw. – volume: 618 year: 2023 ident: b0125 article-title: Two novel error-updating model frameworks for short-to-medium range streamflow forecasting using bias-corrected rainfall inputs: Development and comparative assessment publication-title: J. Hydrol. – volume: 23 start-page: 5089 year: 2019 end-page: 5110 ident: b0150 article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets publication-title: Hydrol. Earth Syst. Sci. – reference: Le, X.H., Ho, H.V., Lee, G., Jung, S., 2019. Application of long short-term memory (lstm) neural network for flood forecasting. Water 11, 1387. https://doi.org/10.3390/w11071387. LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444. Doi: 10.1038/nature14539. – volume: 627 year: 2023 ident: b0220 article-title: Comparing a long short-term memory (lstm) neural network with a physically based hydrological model for streamflow forecasting over a Canadian catchment publication-title: J. Hydrol. – volume: 56 year: 2020 ident: b0075 article-title: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales publication-title: Water Resour. Res. – reference: Kratzert, F., 2019. Camels extended maurer forcing data, hydroshare . – volume: 929 year: 2024 ident: b0250 article-title: An explainable multiscale lstm model with wavelet transform and layer-wise relevance propagation for daily streamflow forecasting publication-title: Sci. Total Environ. – volume: 57 year: 2021 ident: b0110 article-title: A hydrologic functional approach for improving large sample hydrology performance in poorly gauged regions publication-title: Water Resour. Res. – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: b0205 article-title: River flow forecasting through conceptual models part i—a discussion of principles publication-title: J. Hydrol. – reference: Kingma, D.P., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Doi: 10.48550/arXiv.1412.6980. – volume: 639 year: 2024 ident: b0035 article-title: Meta-lstm in hydrology: Advancing runoff predictions through model-agnostic meta-learning publication-title: J. Hydrol. – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0065 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 645 year: 2024 ident: b0340 article-title: Interpretable multi-step hybrid deep learning model for karst spring discharge prediction: Integrating temporal fusion transformers with ensemble empirical mode decomposition publication-title: J. Hydrol. – reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Doi: 10.48550/arXiv.1409.3215. 1409.3215. – volume: 11 start-page: 1808 year: 2019 ident: b0055 article-title: Hydrological early warning system based on a deep learning runoff model coupled with a meteorological forecast publication-title: Water – volume: 10 start-page: 1543 year: 2018 ident: b0100 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water – volume: 585 year: 2020 ident: b0350 article-title: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting publication-title: J. Hydrol. – volume: 17 start-page: 3455 year: 2024 end-page: 3474 ident: b0185 article-title: Improving flood forecasting using time-distributed cnn-lstm model: a time-distributed spatiotemporal method publication-title: Earth Sci. Inf. – volume: 22 start-page: 6005 year: 2018 end-page: 6022 ident: b0145 article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks publication-title: Hydrol. Earth Syst. Sci. – year: 2023 ident: b0165 article-title: Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change – volume: 567 start-page: 393 year: 2018 end-page: 404 ident: b0235 article-title: Nonstationarity-based evaluation of flood frequency and flood risk in the huai river basin, china publication-title: J. Hydrol. – volume: 126 start-page: 568 year: 2019 end-page: 589 ident: b0170 article-title: Periodic impulses extraction based on improved adaptive vmd and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 598 year: 2021 ident: b0305 article-title: Rainfall-runoff modeling using lstm-based multi-state-vector sequence-to-sequence model publication-title: J. Hydrol. – volume: 614 year: 2022 ident: b0325 article-title: Generalization of an encoder-decoder lstm model for flood prediction in ungauged catchments publication-title: J. Hydrol. – volume: 58 year: 2022 ident: b0080 article-title: Differentiable, learnable, region alized process-based models with multiphysical outputs can approach state-of-the-art hydrologic prediction accuracy publication-title: Water Resour. Res. – volume: 622 year: 2023 ident: b0130 article-title: Applying transfer learning techniques to enhance the accuracy of streamflow prediction produced by long short-term memory networks with data integration publication-title: J. Hydrol. – volume: 331 year: 2023 ident: b0330 article-title: Large-scale prediction of stream water quality using an interpretable deep learning approach publication-title: J. Environ. Manage. – volume: 619 year: 2023 ident: b0020 article-title: A parallel workflow framework using encoder-decoder lstms for uncertainty quantification in contaminant source identification in groundwater publication-title: J. Hydrol. – volume: 41 start-page: 343 year: 2005 end-page: 360 ident: b0225 article-title: Hydrological modeling of the iroquois river watershed using hspf and swat 1 publication-title: JAWRA Journal of the American Water Resources Association – volume: 53 year: 2024 ident: b0085 article-title: Projected seasonal flooding in Canada under climate change with statistical and machine learning publication-title: J. Hydrol.: Reg. Stud. – volume: 583 year: 2020 ident: b0120 article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting publication-title: J. Hydrol. – volume: 530 start-page: 137 year: 2015 end-page: 152 ident: b0315 article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences publication-title: J. Hydrol. – volume: 561 start-page: 674 year: 2018 end-page: 687 ident: b0090 article-title: Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination publication-title: J. Hydrol. – volume: 354 year: 2024 ident: b0345 article-title: Coupling machine learning and physical modelling for predicting runoff at catchment scale publication-title: J. Environ. Manage. – volume: 221 year: 2023 ident: b0320 article-title: Improved prediction of chlorophylla concentrations in reservoirs by gru neural network based on particle swarm algorithm optimized variational modal decomposition publication-title: Environ. Res. – volume: 232 year: 2023 ident: b0265 article-title: An aqi decomposition ensemble model based on ssa-lstm using improved amssa-vmd decomposition reconstruction technique publication-title: Environ. Res. – volume: 14 start-page: 1596 year: 2021 ident: b0115 article-title: Deep learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization publication-title: Energies – volume: 627 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0220 article-title: Comparing a long short-term memory (lstm) neural network with a physically based hydrological model for streamflow forecasting over a Canadian catchment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130380 – volume: 532 start-page: 193 year: 2016 ident: 10.1016/j.jhydrol.2025.132769_b0025 article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.11.011 – volume: 17 start-page: 3455 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0185 article-title: Improving flood forecasting using time-distributed cnn-lstm model: a time-distributed spatiotemporal method publication-title: Earth Sci. Inf. doi: 10.1007/s12145-024-01354-y – volume: 232 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0265 article-title: An aqi decomposition ensemble model based on ssa-lstm using improved amssa-vmd decomposition reconstruction technique publication-title: Environ. Res. doi: 10.1016/j.envres.2023.116365 – volume: 354 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0345 article-title: Coupling machine learning and physical modelling for predicting runoff at catchment scale publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2024.120404 – volume: 126 start-page: 568 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0170 article-title: Periodic impulses extraction based on improved adaptive vmd and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.02.056 – volume: 56 year: 2020 ident: 10.1016/j.jhydrol.2025.132769_b0280 article-title: A rainfall-runoff model with lstm-based sequence-to-sequence learning publication-title: Water Resour. Res. doi: 10.1029/2019WR025326 – volume: 614 year: 2022 ident: 10.1016/j.jhydrol.2025.132769_b0290 article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128599 – volume: 645 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0340 article-title: Interpretable multi-step hybrid deep learning model for karst spring discharge prediction: Integrating temporal fusion transformers with ensemble empirical mode decomposition publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132235 – volume: 509 start-page: 25 year: 2014 ident: 10.1016/j.jhydrol.2025.132769_b0175 article-title: Improving real time flood forecasting using fuzzy inference system publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.11.021 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.jhydrol.2025.132769_b0205 article-title: River flow forecasting through conceptual models part i—a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 21 start-page: 5293 year: 2017 ident: 10.1016/j.jhydrol.2025.132769_b0005 article-title: The camels data set: catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-5293-2017 – volume: 585 year: 2020 ident: 10.1016/j.jhydrol.2025.132769_b0350 article-title: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124776 – volume: 58 year: 2022 ident: 10.1016/j.jhydrol.2025.132769_b0080 article-title: Differentiable, learnable, region alized process-based models with multiphysical outputs can approach state-of-the-art hydrologic prediction accuracy publication-title: Water Resour. Res. doi: 10.1029/2022WR032404 – year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0165 – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.jhydrol.2025.132769_b0065 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 639 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0035 article-title: Meta-lstm in hydrology: Advancing runoff predictions through model-agnostic meta-learning publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131521 – volume: 182 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0255 article-title: Data reformation–a novel data processing technique enhancing machine learning applicability for predicting streamflow extremes publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2023.104569 – volume: 10 start-page: 1543 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0100 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water doi: 10.3390/w10111543 – volume: 619 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0105 article-title: A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129269 – volume: 567 start-page: 393 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0235 article-title: Nonstationarity-based evaluation of flood frequency and flood risk in the huai river basin, china publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.10.031 – volume: 54 start-page: 8792 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0010 article-title: A ranking of hydrological signatures based on their predictability in space publication-title: Water Resour. Res. doi: 10.1029/2018WR022606 – volume: 56 year: 2020 ident: 10.1016/j.jhydrol.2025.132769_b0075 article-title: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales publication-title: Water Resour. Res. doi: 10.1029/2019WR026793 – volume: 619 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0020 article-title: A parallel workflow framework using encoder-decoder lstms for uncertainty quantification in contaminant source identification in groundwater publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129296 – volume: 632 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0310 article-title: Self-training approach to improve the predictability of data driven rainfall-runoff model in hydrological data-sparse regions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130862 – volume: 86 start-page: 249 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0300 article-title: Early fault feature extraction of bearings based on teager energy operator and optimal vmd publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.11.010 – ident: 10.1016/j.jhydrol.2025.132769_b0240 – volume: 567 start-page: 767 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0245 article-title: An adaptive middle and long-term runoff forecast model using eemd-ann hybrid approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.01.015 – ident: 10.1016/j.jhydrol.2025.132769_b0135 – volume: 583 year: 2020 ident: 10.1016/j.jhydrol.2025.132769_b0120 article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124631 – volume: 22 start-page: 6005 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0145 article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 41 start-page: 343 year: 2005 ident: 10.1016/j.jhydrol.2025.132769_b0225 article-title: Hydrological modeling of the iroquois river watershed using hspf and swat 1 publication-title: JAWRA Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.2005.tb03740.x – volume: 929 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0250 article-title: An explainable multiscale lstm model with wavelet transform and layer-wise relevance propagation for daily streamflow forecasting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.172465 – volume: 19 start-page: 209 year: 2015 ident: 10.1016/j.jhydrol.2025.132769_b0210 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-209-2015 – volume: 561 start-page: 609 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0260 article-title: Daily rainfall forecasting for one year in a single run using singular spectrum analysis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.032 – volume: 319 start-page: 573 year: 2008 ident: 10.1016/j.jhydrol.2025.132769_b0195 article-title: Stationarity is dead: Whither water management? publication-title: Science doi: 10.1126/science.1151915 – volume: 598 year: 2021 ident: 10.1016/j.jhydrol.2025.132769_b0305 article-title: Rainfall-runoff modeling using lstm-based multi-state-vector sequence-to-sequence model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126378 – volume: 53 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0085 article-title: Projected seasonal flooding in Canada under climate change with statistical and machine learning publication-title: J. Hydrol.: Reg. Stud. – volume: 635 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0200 article-title: A hybrid model enhancing streamflow forecasts in paddy land use-dominated catchments with numerical weather prediction model-based meteorological forcings publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131225 – volume: 831 year: 2022 ident: 10.1016/j.jhydrol.2025.132769_b0015 article-title: New double decomposition deep learning methods for river water level forecasting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154722 – volume: 6 start-page: 69 year: 2013 ident: 10.1016/j.jhydrol.2025.132769_b0050 article-title: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010 publication-title: Environ. Dev. doi: 10.1016/j.envdev.2013.03.007 – volume: 57 year: 2021 ident: 10.1016/j.jhydrol.2025.132769_b0110 article-title: A hydrologic functional approach for improving large sample hydrology performance in poorly gauged regions publication-title: Water Resour. Res. doi: 10.1029/2021WR030263 – ident: 10.1016/j.jhydrol.2025.132769_b0160 doi: 10.3390/w11071387 – volume: 822 year: 2022 ident: 10.1016/j.jhydrol.2025.132769_b0180 article-title: Flood characterization based on forensic analysis of bridge collapse using uav reconnaissance and cfd simulations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153661 – volume: 33 start-page: 1571 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0095 article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks publication-title: Water Resour. Manag. doi: 10.1007/s11269-019-2183-x – volume: 604 year: 2022 ident: 10.1016/j.jhydrol.2025.132769_b0335 article-title: Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127255 – volume: 14 start-page: 1596 year: 2021 ident: 10.1016/j.jhydrol.2025.132769_b0115 article-title: Deep learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization publication-title: Energies doi: 10.3390/en14061596 – volume: 530 start-page: 137 year: 2015 ident: 10.1016/j.jhydrol.2025.132769_b0315 article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.047 – ident: 10.1016/j.jhydrol.2025.132769_b0155 doi: 10.4211/hs.17c896843cf940339c3c3496d0c1c077 – volume: 57 start-page: 163 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0215 article-title: A novel hybrid decomposition-ensemble model based on vmd and hgwo for container throughput forecasting publication-title: App. Math. Model. doi: 10.1016/j.apm.2018.01.014 – volume: 618 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0125 article-title: Two novel error-updating model frameworks for short-to-medium range streamflow forecasting using bias-corrected rainfall inputs: Development and comparative assessment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129199 – volume: 561 start-page: 674 year: 2018 ident: 10.1016/j.jhydrol.2025.132769_b0090 article-title: Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.036 – volume: 622 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0130 article-title: Applying transfer learning techniques to enhance the accuracy of streamflow prediction produced by long short-term memory networks with data integration publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129682 – volume: 614 year: 2022 ident: 10.1016/j.jhydrol.2025.132769_b0325 article-title: Generalization of an encoder-decoder lstm model for flood prediction in ungauged catchments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128577 – volume: 424 start-page: 264 year: 2012 ident: 10.1016/j.jhydrol.2025.132769_b0140 article-title: Runoff conditions in the upper danube basin under an ensemble of climate change scenarios publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.01.011 – volume: 636 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0070 article-title: Ensemble learning using multivariate variational mode decomposition based on the transformer for multi-step-ahead streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131275 – volume: 568 start-page: 462 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0190 article-title: A robust method for non-stationary streamflow prediction based on improved emd-svm model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.015 – volume: 634 year: 2024 ident: 10.1016/j.jhydrol.2025.132769_b0270 article-title: Quick large-scale spatiotemporal flood inundation computation using integrated encoder-decoder lstm with time distributed spatial output models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130993 – volume: 331 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0330 article-title: Large-scale prediction of stream water quality using an interpretable deep learning approach publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2023.117309 – volume: 31 start-page: 1164 year: 2006 ident: 10.1016/j.jhydrol.2025.132769_b0040 article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning publication-title: Phys. Chem. Earth, Parts a/b/c doi: 10.1016/j.pce.2006.03.020 – volume: 221 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0320 article-title: Improved prediction of chlorophylla concentrations in reservoirs by gru neural network based on particle swarm algorithm optimized variational modal decomposition publication-title: Environ. Res. doi: 10.1016/j.envres.2023.115259 – volume: 160 year: 2023 ident: 10.1016/j.jhydrol.2025.132769_b0045 article-title: Transformer neural networks for interpretable flood forecasting publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2022.105581 – volume: 23 start-page: 5089 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0150 article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-5089-2019 – volume: 570 start-page: 167 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0275 article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.060 – volume: 577 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0285 article-title: Hybrid forecasting model for non-stationary daily runoff series: a case study in the han river basin, china publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123915 – volume: 11 start-page: 1808 year: 2019 ident: 10.1016/j.jhydrol.2025.132769_b0055 article-title: Hydrological early warning system based on a deep learning runoff model coupled with a meteorological forecast publication-title: Water doi: 10.3390/w11091808 |
| SSID | ssj0000334 |
| Score | 2.5426686 |
| Snippet | •A novel model, VMDI-LSTM-ED, is proposed for non-stationary streamflow forecasting.•Data integration (DI) is firstly employed to enhance decomposition... Accurate daily streamflow forecasting is crucial for effective flood control and water management. However, the non-stationary nonlinearity in actual... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 132769 |
| SubjectTerms | Data integration Decomposition ensemble model Deep learning Encoder-decoder framework flood control neural networks Non-stationary streamflow prediction stream flow |
| Title | VMDI-LSTM-ED: A novel enhanced decomposition ensemble model incorporating data integration for accurate non-stationary daily streamflow forecasting |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2025.132769 https://www.proquest.com/docview/3200258893 |
| Volume | 653 |
| WOSCitedRecordID | wos001417051400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000334 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKFwkuiE_t8iUjIS5VSho3icOtYruwqFuQ6KLeIsd21FZtWtqmLL-AH8AfZiaOmxYW7XLgEkWj2LUyr_aLPfOGkJctoVxXSd9hwg-dNoDGSSLlOUngpbAeuIpLXhSbCPt9PhxGn2q1HzYXZjMNs4xfXESL_-pqsIGzMXX2H9y97RQMcA9Ohyu4Ha7XcvyXs-NTp_d5cOZ0j03eeTbf6GlDZyNz2q80xpGXwVpgXukZpk8VNXEaKNZgtI1xDwHjR7eKEjYoUUiZo8AE9Js5K3OUj7F3SuBWCSafiFk6nX_Dh7UUq7VdHf_kwKPvamlEoIDodmYo2qAQodvdid44L3A2Fmpe9gLWYWEc6MrSy03sQJ6N8vHuTobnVxFXO5kFrcAUPbazc-CzxqIJ38xhEDmXzvlm-2HSnJgxN7HrskG1yNmD_f7H-OS814sH3eHg1eKrg-XH8Ji-rMVygxx4oR_xOjnonHaHH6pFnbG2FZ7HIVbJYK8v_eW_0ZzfFvyCxQzukjvlq6cdA5t7pKaz--TWO10Klz8gP3fh84Z2aAEeasFD98BDLXhoAR66Bx6K4KE74KGAB2rBQ_fBQwvw0Ao8dAc8D8n5SXfw9r1TFu5wJGt7a0dxriQqG0Wu1mHKYeKXScRkGCnXl55IQpEo4JYilcwDzpqKsCUZ90OPhSJKFHtE6jAKfUioyxV3k4QFvkrarQQIa6A00lZXpUC62BFp2_ccy1LVHourTGMbvjiJS_fE6J7YuOeINLfNFkbW5aoG3DoxLrmp4ZwxwPCqpi-s02OYu_FATmR6nq9ihhFSPodPhsfXeOYJuV39a56S-nqZ62fkptysx6vl8xKwvwDwHcFv |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VMDI-LSTM-ED%3A+A+novel+enhanced+decomposition+ensemble+model+incorporating+data+integration+for+accurate+non-stationary+daily+streamflow+forecasting&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Liu%2C+Jiadong&rft.au=Xu%2C+Teng&rft.au=Lu%2C+Chunhui&rft.date=2025-06-01&rft.issn=0022-1694&rft.volume=653+p.132769-&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.132769&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |