Refrigerant alternative and optimization under the constraint of the greenhouse gas emissions reduction target

Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and resea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cleaner production Ročník 296; s. 126580
Hlavní autoři: Wang, Huihui, Zhao, Linjia, Cao, Ruoxin, Zeng, Weihua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 10.05.2021
Témata:
ISSN:0959-6526, 1879-1786
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and research on comprehensive and systematic refrigerant alternative schemes, we propose a decision-making method system for optimizing room air conditioner refrigerant alternative schemes suitable for meeting future greenhouse gases emissions reduction target constraints by integrating the life cycle assessment method, the system dynamics method and the multi-objective programming method. In accordance with the requirements of the Montreal Protocol and other relevant fluorine-containing substance elimination plans, four scenarios for refrigerant alternative schemes were designed, which include Business as usual scenario, Convention Scenario, Design Scenario and Ideal Scenario, respectively. The Convention Scenario is based on the refrigerant phase-out plan stipulated by international conventions in China; the Ideal Scenario is based on the use of refrigerants with minimal environmental impact within the range of available predictable technologies; and the Design Scenario is designed according to the degree of strictness between the Convention Scenario and the Ideal Scenario and used to propose more reasonable and feasible refrigerant use planning schemes. The results show that the ozone depletion ability of refrigerants will be eliminated with the phase-out of hydrochlorofluorocarbon refrigerant HCFC-22. The total cost of refrigerant substitution work under different alternative scenarios will cost a total of $1.378 billion to $1.672 billion, which is worthwhile considering the considerable environmental benefits. The refrigerant dosage scheme under design scenario II, which is 50% faster than the conventional phase-out scheme, is the optimal scheme for future refrigerant replacement phase-out in the room air conditioner industry. Under this scenario, the total economic cost is $1.672 billion; additionally, compared with those under the business as usual scenario, the greenhouse effect intensity will decrease by 78.2%, the safety risk will decrease by 6.8%, the energy consumption will decrease by 60.4% and the ozone depletion ability will decrease by 99.8%. •We proposed a decision-making method system for optimizing room air conditioner refrigerant alternative schemes.•The economic cost of refrigerant replacement work is positively correlated with environmental benefits.•The refrigerant consumption planning roadmap for the future room air conditioner industry was obtained.•HC-290 is an important future alternative refrigerant that has better comprehensive performance than HCFC-22 and HFC-410A.
AbstractList Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and research on comprehensive and systematic refrigerant alternative schemes, we propose a decision-making method system for optimizing room air conditioner refrigerant alternative schemes suitable for meeting future greenhouse gases emissions reduction target constraints by integrating the life cycle assessment method, the system dynamics method and the multi-objective programming method. In accordance with the requirements of the Montreal Protocol and other relevant fluorine-containing substance elimination plans, four scenarios for refrigerant alternative schemes were designed, which include Business as usual scenario, Convention Scenario, Design Scenario and Ideal Scenario, respectively. The Convention Scenario is based on the refrigerant phase-out plan stipulated by international conventions in China; the Ideal Scenario is based on the use of refrigerants with minimal environmental impact within the range of available predictable technologies; and the Design Scenario is designed according to the degree of strictness between the Convention Scenario and the Ideal Scenario and used to propose more reasonable and feasible refrigerant use planning schemes. The results show that the ozone depletion ability of refrigerants will be eliminated with the phase-out of hydrochlorofluorocarbon refrigerant HCFC-22. The total cost of refrigerant substitution work under different alternative scenarios will cost a total of $1.378 billion to $1.672 billion, which is worthwhile considering the considerable environmental benefits. The refrigerant dosage scheme under design scenario II, which is 50% faster than the conventional phase-out scheme, is the optimal scheme for future refrigerant replacement phase-out in the room air conditioner industry. Under this scenario, the total economic cost is $1.672 billion; additionally, compared with those under the business as usual scenario, the greenhouse effect intensity will decrease by 78.2%, the safety risk will decrease by 6.8%, the energy consumption will decrease by 60.4% and the ozone depletion ability will decrease by 99.8%.
Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and research on comprehensive and systematic refrigerant alternative schemes, we propose a decision-making method system for optimizing room air conditioner refrigerant alternative schemes suitable for meeting future greenhouse gases emissions reduction target constraints by integrating the life cycle assessment method, the system dynamics method and the multi-objective programming method. In accordance with the requirements of the Montreal Protocol and other relevant fluorine-containing substance elimination plans, four scenarios for refrigerant alternative schemes were designed, which include Business as usual scenario, Convention Scenario, Design Scenario and Ideal Scenario, respectively. The Convention Scenario is based on the refrigerant phase-out plan stipulated by international conventions in China; the Ideal Scenario is based on the use of refrigerants with minimal environmental impact within the range of available predictable technologies; and the Design Scenario is designed according to the degree of strictness between the Convention Scenario and the Ideal Scenario and used to propose more reasonable and feasible refrigerant use planning schemes. The results show that the ozone depletion ability of refrigerants will be eliminated with the phase-out of hydrochlorofluorocarbon refrigerant HCFC-22. The total cost of refrigerant substitution work under different alternative scenarios will cost a total of $1.378 billion to $1.672 billion, which is worthwhile considering the considerable environmental benefits. The refrigerant dosage scheme under design scenario II, which is 50% faster than the conventional phase-out scheme, is the optimal scheme for future refrigerant replacement phase-out in the room air conditioner industry. Under this scenario, the total economic cost is $1.672 billion; additionally, compared with those under the business as usual scenario, the greenhouse effect intensity will decrease by 78.2%, the safety risk will decrease by 6.8%, the energy consumption will decrease by 60.4% and the ozone depletion ability will decrease by 99.8%. •We proposed a decision-making method system for optimizing room air conditioner refrigerant alternative schemes.•The economic cost of refrigerant replacement work is positively correlated with environmental benefits.•The refrigerant consumption planning roadmap for the future room air conditioner industry was obtained.•HC-290 is an important future alternative refrigerant that has better comprehensive performance than HCFC-22 and HFC-410A.
ArticleNumber 126580
Author Zhao, Linjia
Zeng, Weihua
Cao, Ruoxin
Wang, Huihui
Author_xml – sequence: 1
  givenname: Huihui
  orcidid: 0000-0001-9518-679X
  surname: Wang
  fullname: Wang, Huihui
  organization: School of Environment, Beijing Normal University, Beijing, 100875, China
– sequence: 2
  givenname: Linjia
  surname: Zhao
  fullname: Zhao, Linjia
  organization: School of Environment, Beijing Normal University, Beijing, 100875, China
– sequence: 3
  givenname: Ruoxin
  surname: Cao
  fullname: Cao, Ruoxin
  organization: School of Environment, Beijing Normal University, Beijing, 100875, China
– sequence: 4
  givenname: Weihua
  surname: Zeng
  fullname: Zeng, Weihua
  email: zengwh@bnu.edu.cn
  organization: School of Environment, Beijing Normal University, Beijing, 100875, China
BookMark eNqFkMtKQzEQhoMo2FYfQThLN6cmOZckuBAp3qAgiK5DmsxpU06TmqQFfXrTy8pNVzP8zDf8fEN07rwDhG4IHhNM2rvleKl7WAc_ppiSMaFtw_EZGhDOREkYb8_RAItGlG1D20s0jHGJMWGY1QPkPqALdg5BuVSoPkFwKtktFMqZwq-TXdnfHHhXbJyBUKQFFNq7mIKymfDdPpkHALfwm5hXFQtY2RgzE4sAZqP3eFJhDukKXXSqj3B9nCP09fz0OXktp-8vb5PHaamrmqbS1B1Tlel4VXEgbAYtIw2hRglFq9YIoWteG8wbVc2EIcLQWmEsMGNN12lSVSN0e_ibrXxvICaZK2noe-Ug15S0oTXlPOvLp83hVAcfY4BOroNdqfAjCZY7v3Ipj37lzq88-M3c_T9O27RXtXPTn6QfDjRkC1sLQUZtwWkwNoBO0nh74sMf9uqewg
CitedBy_id crossref_primary_10_1016_j_enbuild_2024_114908
crossref_primary_10_1038_s41598_023_27600_9
crossref_primary_10_1016_j_jclepro_2021_130119
crossref_primary_10_3390_su15097234
crossref_primary_10_1039_D5TA03354C
crossref_primary_10_1016_j_ijrefrig_2025_07_010
crossref_primary_10_1016_j_enconman_2021_114843
crossref_primary_10_1016_j_enconman_2021_114551
crossref_primary_10_1007_s10973_025_14362_x
crossref_primary_10_1002_advs_202308123
crossref_primary_10_1016_j_ijrefrig_2025_04_010
crossref_primary_10_1016_j_jclepro_2023_139589
crossref_primary_10_1007_s10098_024_03088_3
crossref_primary_10_1016_j_energy_2023_129533
crossref_primary_10_1038_s41598_022_18606_w
crossref_primary_10_3390_micro5020028
crossref_primary_10_1016_j_rser_2024_114533
crossref_primary_10_1016_j_energy_2022_124356
crossref_primary_10_1016_j_enbuild_2023_113561
crossref_primary_10_1016_j_applthermaleng_2024_125313
crossref_primary_10_1016_j_jclepro_2022_131612
crossref_primary_10_3390_en16041675
crossref_primary_10_1016_j_enconman_2021_114380
crossref_primary_10_1007_s10973_023_11989_6
crossref_primary_10_1016_j_crsus_2025_100431
crossref_primary_10_1016_j_applthermaleng_2025_128022
Cites_doi 10.1016/j.ijrefrig.2018.12.019
10.1142/S2010132519300015
10.1016/j.enconman.2019.112054
10.1007/s11869-018-00659-4
10.1038/nature17165
10.1016/j.jclepro.2017.12.101
10.1016/j.envres.2017.01.029
10.1016/j.jclepro.2015.03.063
10.1038/nclimate2923
10.1016/j.apr.2019.05.003
10.1016/j.jclepro.2016.08.125
10.28991/esj-2019-01184
10.1038/s41893-019-0339-6
10.1016/j.eiar.2019.106281
10.1038/s41893-019-0314-2
10.1007/s11367-019-01626-6
10.15244/pjoes/89508
10.1016/j.applthermaleng.2019.02.047
10.1016/j.jclepro.2013.04.045
10.1016/j.enconman.2007.05.021
10.1016/j.rser.2015.12.058
10.3390/app9051021
10.1016/j.applthermaleng.2018.02.072
10.1016/j.jpowsour.2019.04.118
10.1016/S0306-2619(02)00043-0
10.1016/j.rser.2018.03.099
10.1016/j.ijrefrig.2008.01.013
10.1016/j.jclepro.2018.02.264
10.1016/j.jclepro.2019.118930
10.1007/s00500-015-1644-2
10.1162/jiec.1997.1.4.71
10.1016/j.jclepro.2014.12.080
10.1016/j.scitotenv.2016.10.081
10.1016/j.jclepro.2017.01.059
10.1007/s10584-005-1146-9
10.1016/j.scitotenv.2017.02.145
10.1016/j.jclepro.2019.01.293
10.1016/j.applthermaleng.2018.04.031
10.1016/j.rser.2017.02.039
10.1016/j.jclepro.2014.02.044
10.1016/j.ecolind.2019.05.015
10.1016/j.apr.2018.12.001
10.1080/09638180.2016.1234402
10.1016/j.ijrefrig.2006.10.007
10.1016/j.solener.2019.04.027
10.1016/0140-7007(90)90008-K
10.1016/j.atmosenv.2015.10.071
10.1016/j.apenergy.2014.07.025
10.1016/j.ijrefrig.2018.08.021
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2021.126580
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2021_126580
S0959652621008003
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-d4f7a3df8338e17be671512da9a236d99c484d085a3b9d19d24a0090775ffc133
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672225100085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Thu Oct 02 05:33:30 EDT 2025
Sat Nov 29 07:06:29 EST 2025
Tue Nov 18 22:30:30 EST 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Life cycle assessment
Greenhouse gas emissions
Room air conditioners
Refrigerant
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-d4f7a3df8338e17be671512da9a236d99c484d085a3b9d19d24a0090775ffc133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9518-679X
PQID 2524288101
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524288101
crossref_primary_10_1016_j_jclepro_2021_126580
crossref_citationtrail_10_1016_j_jclepro_2021_126580
elsevier_sciencedirect_doi_10_1016_j_jclepro_2021_126580
PublicationCentury 2000
PublicationDate 2021-05-10
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pyle, Wuebbles, Solomon, Zvenigorodsky, Connell, Ko, Weisenstein (bib42) 1991
Zhao, Zeng, Zhang, Wang, Jiang (bib66) 2015; 3
Wallington, Schneider, Worsnop, Nielsen, Sehested, Debruyn, Shorter (bib54) 1994; 28
Ling-Chin, Heidrich, Roskilly (bib32) 2016; 59
Li, Gasser, Ciais, Piao, Tao, Balkanski (bib31) 2016; 531
Solís-Guzmán, Martínez-Rocamora, Marrero (bib47) 2014; vol. 1
Liu, Pei, Zhou, Du, Ma, Xie, Xu (bib34) 2018; 61
Mateu-Royo, Navarro-Esbrí, Mota-Babiloni, Amat-Albuixech, Molés (bib37) 2019; 152
Harby (bib21) 2017; 73
(bib50) 2014
Duarte, Paulino, Pabon, Sawalha, Machado (bib16) 2019; 184
Boot (bib6) 1990; 13
Hanaoka, Ishitani, Matsuhashi, Yoshida (bib20) 2002; 72
(bib52) 2010
(bib25) 2006
Sun, Wang, Dai, Wang, Xie (bib49) 2019; 100
Calm (bib8) 2008; 31
Ding, Zhu, Tam, Yi, Tran (bib15) 2018; 176
Liu, Li, Chen, Qin, Zhang (bib35) 2019; 429
Amienyo, Camilleri, Azapagic (bib2) 2014; 72
Xue, Kojima, Zhou, Machimura, Tokai (bib63) 2019; 217
Guo, Chen, Wang, Hu, Ying, Gao, Zhang (bib19) 2019; 10
Wu, Hu, Mo (bib59) 2013; 54
Wang, Lu, Deng, Sun, Nielsens, Li, Zhu, Bu, Bi, McElroy (bib56) 2019; 2
Dai, Huang, Peng, Yi, Zhou, Qin (bib13) 2019; 10
Striebig, Smitts, Morton (bib48) 2019; 3
Andersen, Brack, Depledge (bib3) 2014
Guo, Wang, Zhang (bib18) 2017; 154
Thinkstep (bib51) 2017
Horie, Kamiaka, Dang, Hihara, no Ha (bib22) 2010
Xu, Zhao, Liu, Kang (bib60) 2014; 132
Arenas-Parra, Bilbao-Terol, Jiménez (bib4) 2016; 20
Liu, Mao, Ren, Li, Guo, Zhang (bib33) 2015; 103
Xue, Kojima, Zhou, Machimura, Tokai (bib62) 2017; 145
Kumar, Rajagopal (bib29) 2007; 48
Rostamzadeh, Ghaebi, Vosoughi, Jannatkhah (bib44) 2018; 138
Chowdhury, Roy, Mandal (bib11) 2019; 27
Ji, Wang, Yu, Lu, Qian (bib26) 2019; 12
Zhao, Zeng, Yuan (bib65) 2015; 100
Park, Kim, Roh, Kim (bib41) 2019; 9
WHO (bib58) 2006
Xue, Kojima, Machimura, Tokai (bib61) 2017; 586
Wang, Xue, Brimblecombe, Lam, Li, Zhang (bib57) 2017; 575
(bib38) 2015
Barnes, Williamson, Lucas, Robinson, Madronich, Paul, Andrady (bib5) 2019; 2
Aprea, Greco, Maiorino (bib1) 2018; 141
Boyaghchi, Mahmoodnezhad, Sabeti (bib7) 2016; 139
Lu, Qin, Chen, Yu, Xiao, Cheng, Guan (bib36) 2019; 104
Chen, Liu, Yang, Chen (bib9) 2018; 96
Leão, do Nascimento, de Andrade, de Oliveira (bib30) 2020; 245
Salim, Kim (bib45) 2019; 199
Yu, Dong, Li (bib64) 2019; 28
Hwang, Jin, Radermacher (bib24) 2007; 30
Zhang, Yuan, Deng, Abu-Reesh, He, Yuan (bib68) 2019; 24
Papasavva, Moomaw (bib40) 1997; 1
Okazaki, Maeyama, Saito, Yamamoto (bib39) 2010
(bib17) 2014
Shine, Fuglestvedt, Hailemariam, Stuber (bib46) 2005; 68
Rosa, Terzi (bib43) 2018; 184
Dai, Kuang, Tang (bib14) 2018; 27
Kariyawasam, McGovern, Wilson (bib28) 2019; 78
Hu (bib23) 2009
Kalair, Kalair, Khan, Haider, Saleem (bib27) 2018; 90
Velders, Fahey, Daniel, Andersen, McFarland (bib53) 2015; 123
(bib69) 2015
Zhang, Tay (bib67) 2017; 10357
Clark, Shakun, Marcott, Mix, Eby, Kulp (bib12) 2016; 6
(10.1016/j.jclepro.2021.126580_bib50) 2014
Ji (10.1016/j.jclepro.2021.126580_bib26) 2019; 12
WHO (10.1016/j.jclepro.2021.126580_bib58) 2006
Wang (10.1016/j.jclepro.2021.126580_bib56) 2019; 2
Harby (10.1016/j.jclepro.2021.126580_bib21) 2017; 73
Guo (10.1016/j.jclepro.2021.126580_bib19) 2019; 10
(10.1016/j.jclepro.2021.126580_bib17) 2014
Hanaoka (10.1016/j.jclepro.2021.126580_bib20) 2002; 72
Boot (10.1016/j.jclepro.2021.126580_bib6) 1990; 13
Calm (10.1016/j.jclepro.2021.126580_bib8) 2008; 31
Rosa (10.1016/j.jclepro.2021.126580_bib43) 2018; 184
Xue (10.1016/j.jclepro.2021.126580_bib61) 2017; 586
Wu (10.1016/j.jclepro.2021.126580_bib59) 2013; 54
Arenas-Parra (10.1016/j.jclepro.2021.126580_bib4) 2016; 20
Lu (10.1016/j.jclepro.2021.126580_bib36) 2019; 104
Salim (10.1016/j.jclepro.2021.126580_bib45) 2019; 199
Kariyawasam (10.1016/j.jclepro.2021.126580_bib28) 2019; 78
Sun (10.1016/j.jclepro.2021.126580_bib49) 2019; 100
Ding (10.1016/j.jclepro.2021.126580_bib15) 2018; 176
Hu (10.1016/j.jclepro.2021.126580_bib23) 2009
Pyle (10.1016/j.jclepro.2021.126580_bib42) 1991
Li (10.1016/j.jclepro.2021.126580_bib31) 2016; 531
Leão (10.1016/j.jclepro.2021.126580_bib30) 2020; 245
(10.1016/j.jclepro.2021.126580_bib38) 2015
Shine (10.1016/j.jclepro.2021.126580_bib46) 2005; 68
Solís-Guzmán (10.1016/j.jclepro.2021.126580_bib47) 2014; vol. 1
Horie (10.1016/j.jclepro.2021.126580_bib22) 2010
Zhang (10.1016/j.jclepro.2021.126580_bib67) 2017; 10357
Chowdhury (10.1016/j.jclepro.2021.126580_bib11) 2019; 27
Guo (10.1016/j.jclepro.2021.126580_bib18) 2017; 154
(10.1016/j.jclepro.2021.126580_bib52) 2010
Kumar (10.1016/j.jclepro.2021.126580_bib29) 2007; 48
Papasavva (10.1016/j.jclepro.2021.126580_bib40) 1997; 1
Velders (10.1016/j.jclepro.2021.126580_bib53) 2015; 123
Ling-Chin (10.1016/j.jclepro.2021.126580_bib32) 2016; 59
Zhang (10.1016/j.jclepro.2021.126580_bib68) 2019; 24
Wang (10.1016/j.jclepro.2021.126580_bib57) 2017; 575
Park (10.1016/j.jclepro.2021.126580_bib41) 2019; 9
Striebig (10.1016/j.jclepro.2021.126580_bib48) 2019; 3
Xue (10.1016/j.jclepro.2021.126580_bib62) 2017; 145
Rostamzadeh (10.1016/j.jclepro.2021.126580_bib44) 2018; 138
Zhao (10.1016/j.jclepro.2021.126580_bib66) 2015; 3
Amienyo (10.1016/j.jclepro.2021.126580_bib2) 2014; 72
(10.1016/j.jclepro.2021.126580_bib69) 2015
Clark (10.1016/j.jclepro.2021.126580_bib12) 2016; 6
(10.1016/j.jclepro.2021.126580_bib25) 2006
Dai (10.1016/j.jclepro.2021.126580_bib14) 2018; 27
Xu (10.1016/j.jclepro.2021.126580_bib60) 2014; 132
Aprea (10.1016/j.jclepro.2021.126580_bib1) 2018; 141
Kalair (10.1016/j.jclepro.2021.126580_bib27) 2018; 90
Dai (10.1016/j.jclepro.2021.126580_bib13) 2019; 10
Andersen (10.1016/j.jclepro.2021.126580_bib3) 2014
Boyaghchi (10.1016/j.jclepro.2021.126580_bib7) 2016; 139
Hwang (10.1016/j.jclepro.2021.126580_bib24) 2007; 30
Yu (10.1016/j.jclepro.2021.126580_bib64) 2019; 28
Okazaki (10.1016/j.jclepro.2021.126580_bib39) 2010
Liu (10.1016/j.jclepro.2021.126580_bib35) 2019; 429
Wallington (10.1016/j.jclepro.2021.126580_bib54) 1994; 28
Chen (10.1016/j.jclepro.2021.126580_bib9) 2018; 96
Duarte (10.1016/j.jclepro.2021.126580_bib16) 2019; 184
Mateu-Royo (10.1016/j.jclepro.2021.126580_bib37) 2019; 152
Zhao (10.1016/j.jclepro.2021.126580_bib65) 2015; 100
Liu (10.1016/j.jclepro.2021.126580_bib33) 2015; 103
Thinkstep (10.1016/j.jclepro.2021.126580_bib51) 2017
Barnes (10.1016/j.jclepro.2021.126580_bib5) 2019; 2
Xue (10.1016/j.jclepro.2021.126580_bib63) 2019; 217
Liu (10.1016/j.jclepro.2021.126580_bib34) 2018; 61
References_xml – volume: 1
  start-page: 71
  year: 1997
  end-page: 91
  ident: bib40
  article-title: Life-cycle global warming impact of CFCs and CFC-substitutes for refrigeration
  publication-title: J. Ind. Ecol.
– volume: 10
  start-page: 739
  year: 2019
  end-page: 748
  ident: bib13
  article-title: Particulate pollution status and its characteristics during 2015–2016 in Hunan, China
  publication-title: Atmos. Pollut. Res.
– year: 2006
  ident: bib25
  article-title: ISO 14040:2006 Environmental Management-Life Cycle Assessment (LCA)-principles and Framework
– volume: 100
  start-page: 471
  year: 2019
  end-page: 483
  ident: bib49
  article-title: Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system
  publication-title: Int. J. Refrig.
– volume: 132
  start-page: 298
  year: 2014
  end-page: 307
  ident: bib60
  article-title: Changes of energy-related GHG emissions in China: an empirical analysis from sectoral perspective
  publication-title: Appl. Energy
– volume: 10357
  start-page: 258
  year: 2017
  end-page: 268
  ident: bib67
  article-title: An integrated approach using data mining and system dynamics to policy design: effects of electric vehicle adoption on CO
  publication-title: Adv. Data Min.: Appl. Theor. Aspects, Icdm
– volume: 61
  start-page: 302
  year: 2018
  end-page: 316
  ident: bib34
  article-title: A systems dynamic model of a coal-based city with multiple adaptive scenarios: a case study of Ordos, China.
  publication-title: Earth Sci.
– volume: 20
  start-page: 2341
  year: 2016
  end-page: 2352
  ident: bib4
  article-title: Standard goal programming with fuzzy hierarchies: a sequential approach
  publication-title: Soft. Comput.
– volume: 3
  start-page: 222
  year: 2019
  end-page: 234
  ident: bib48
  article-title: Impact of transportation on carbon dioxide emissions from locally vs. Non-locally sourced food
  publication-title: Emerg. Sci. J.
– volume: 72
  start-page: 110
  year: 2014
  end-page: 119
  ident: bib2
  article-title: Environmental impacts of consumption of Australian red wine in the UK
  publication-title: J. Clean. Prod.
– volume: 429
  start-page: 55
  year: 2019
  end-page: 66
  ident: bib35
  article-title: Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles
  publication-title: J. Power Sources
– volume: 586
  start-page: 1308
  year: 2017
  end-page: 1315
  ident: bib61
  article-title: Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector
  publication-title: Sci. Total Environ.
– volume: 100
  start-page: 262
  year: 2015
  end-page: 268
  ident: bib65
  article-title: Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis
  publication-title: J. Clean. Prod.
– year: 2014
  ident: bib50
  article-title: U.S.-China Joint Announcement on Climate Change
– volume: 48
  start-page: 3053
  year: 2007
  end-page: 3062
  ident: bib29
  article-title: Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12
  publication-title: Energy Convers. Manag.
– volume: 245
  start-page: 118930
  year: 2020
  ident: bib30
  article-title: Carbon accounting approaches and reporting gaps in urban emissions: an analysis of the greenhouse gas inventories and climate action plans in brazilian cities
  publication-title: J. Clean. Prod.
– volume: 104
  start-page: 549
  year: 2019
  end-page: 558
  ident: bib36
  article-title: Spatiotemporal differences in forest ecological security warning values in Beijing: using an integrated evaluation index system and system dynamics model
  publication-title: Ecol. Indicat.
– volume: 9
  start-page: 1021
  year: 2019
  ident: bib41
  article-title: Analysis of life cycle environmental impact of recycled aggregate
  publication-title: Appl. Sci-Basel.
– volume: 199
  start-page: 112054
  year: 2019
  ident: bib45
  article-title: Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle
  publication-title: Energy Convers. Manag.
– volume: 13
  start-page: 100
  year: 1990
  end-page: 105
  ident: bib6
  article-title: Overview of alternatives to CFCs for domestic refrigerators and freezers
  publication-title: Int. J. Refrig.
– start-page: 17
  year: 2010
  end-page: 19
  ident: bib22
  article-title: February). Study on cycle property and LCCP evaluation of heat pump using HFO-1234yf, HFC-32, and HFC-410A as refrigerant
  publication-title: 2010 International Symposium on Next-Generation Air Conditioning and Refrigeration Technology, Tokyo, Japan
– volume: 154
  start-page: 33
  year: 2017
  end-page: 344
  ident: bib18
  article-title: Characterization of criteria air pollutants in Beijing during 2014–2015
  publication-title: Environ. Res.
– year: 2010
  ident: bib52
  article-title: 2010 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee
– volume: 176
  start-page: 676
  year: 2018
  end-page: 692
  ident: bib15
  article-title: A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages
  publication-title: J. Clean. Prod.
– volume: 59
  start-page: 352
  year: 2016
  end-page: 378
  ident: bib32
  article-title: Life cycle assessment (LCA)–from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 20
  year: 1991
  ident: bib42
  article-title: Ozone Depletion and Chlorine Loading Potentials. NASA
– volume: 12
  start-page: 401
  year: 2019
  end-page: 410
  ident: bib26
  article-title: How have the characteristics of air quality in a typical large Chinese city changed between 2011 and 2017?
  publication-title: Air. Qual. Atmos. Hlth.
– volume: 24
  start-page: 1962
  year: 2019
  end-page: 1975
  ident: bib68
  article-title: Life cycle assessment of osmotic microbial fuel cells for simultaneous wastewater treatment and resource recovery
  publication-title: Int. J. Life Cycle Assess.
– volume: 28
  start-page: 1469
  year: 2019
  end-page: 1482
  ident: bib64
  article-title: A system dynamics approach to eco-industry system effects and trends
  publication-title: Pol. J. Environ. Stud.
– volume: 123
  start-page: 200
  year: 2015
  end-page: 209
  ident: bib53
  article-title: Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions
  publication-title: Atmos. Environ.
– volume: 72
  start-page: 705
  year: 2002
  end-page: 721
  ident: bib20
  article-title: Recovery of fluorocarbons in Japan as a measure for abating global warming
  publication-title: Appl. Energy
– year: 2006
  ident: bib58
  article-title: Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide
– volume: 139
  start-page: 970
  year: 2016
  end-page: 985
  ident: bib7
  article-title: Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid
  publication-title: J. Clean. Prod.
– volume: 575
  start-page: 1582
  year: 2017
  end-page: 1596
  ident: bib57
  article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects
  publication-title: Sci. Total Environ.
– volume: 531
  start-page: 357
  year: 2016
  end-page: 361
  ident: bib31
  article-title: The contribution of China’s emissions to global climate forcing
  publication-title: Nature
– volume: 54
  start-page: 115
  year: 2013
  end-page: 124
  ident: bib59
  article-title: Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems
  publication-title: J. Clean. Prod.
– volume: 145
  start-page: 172
  year: 2017
  end-page: 179
  ident: bib62
  article-title: Dynamic analysis of global warming impact of the household refrigerator sector in Japan from 1952 to 2030
  publication-title: J. Clean. Prod.
– volume: 73
  start-page: 1247
  year: 2017
  end-page: 1264
  ident: bib21
  article-title: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview
  publication-title: Renew. Sustain. Energy Rev.
– volume: 217
  start-page: 627
  year: 2019
  end-page: 632
  ident: bib63
  article-title: Trade-off analysis between global impact potential and local risk: a case study of refrigerants
  publication-title: J. Clean. Prod.
– volume: 27
  start-page: 1930001
  year: 2019
  ident: bib11
  article-title: A review on energy and exergy analysis of two-stage vapour compression refrigeration system
  publication-title: Int. J. Air-Cond. Refri.
– volume: 96
  start-page: 147
  year: 2018
  end-page: 154
  ident: bib9
  article-title: Experimental study on R-22, R-427A, R-161 and R-290 in air-source heat pump for space heating at low ambient temperatures
  publication-title: Int. J. Refrig.
– year: 2015
  ident: bib38
  article-title: China Statistical Yearbook
– volume: 28
  start-page: 320
  year: 1994
  end-page: 326
  ident: bib54
  article-title: The environmental impact of CFC replacements HFCs and HCFCs
  publication-title: Environ. Sci. Technol.
– year: 2015
  ident: bib69
  article-title: Joint Presidential Statement on Climate Change
– year: 2014
  ident: bib3
  article-title: A Global Response to HFCs through Fair and Effective Ozone and Climate Policies
– volume: 27
  start-page: 129
  year: 2018
  end-page: 148
  ident: bib14
  article-title: Differential weighting of objective versus subjective measures in performance evaluation: experimental evidence
  publication-title: Eur. Account. Rev.
– volume: 184
  start-page: 520
  year: 2018
  end-page: 536
  ident: bib43
  article-title: Improving end of life vehicle’s management practices: an economic assessment through system dynamics
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 360
  year: 2016
  end-page: 369
  ident: bib12
  article-title: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change
  publication-title: Nat. Clim. Change
– year: 2010
  ident: bib39
  article-title: Performance and reliability evaluation of a room air conditioner with low GWP refrigerant
  publication-title: 2010 International Symposium on Next-Generation Air Conditioning and Refrigeration Technology, Tokyo, Japan
– volume: 78
  start-page: 106281
  year: 2019
  ident: bib28
  article-title: Partial information and complex development decisions: illustrations from infrastructure projects
  publication-title: Environ. Impact. Asses.
– volume: 2
  start-page: 748
  year: 2019
  end-page: 754
  ident: bib56
  article-title: China’s CO
  publication-title: Nat. Sustain.
– year: 2009
  ident: bib23
  article-title: Integrated Municipal Solid Waste Management and Life Cycle 3E Assessment Decision - A Case Study of Chongqing
– volume: 10
  start-page: 1543
  year: 2019
  end-page: 1552
  ident: bib19
  article-title: Simulation of summer ozone and its sensitivity to emission changes in China
  publication-title: Atmos.
– volume: 184
  start-page: 527
  year: 2019
  end-page: 538
  ident: bib16
  article-title: Refrigerants selection for a direct expansion solar assisted heat pump for domestic hot water
  publication-title: Sol. Energy
– volume: 90
  start-page: 557
  year: 2018
  end-page: 569
  ident: bib27
  article-title: Natural and synthetic refrigerants, global warming: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2
  start-page: 569
  year: 2019
  end-page: 579
  ident: bib5
  article-title: Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future
  publication-title: Nat. Sustain.
– year: 2017
  ident: bib51
  article-title: GaBi Software System and Database for Life Cycle Engineering
– volume: 103
  start-page: 401
  year: 2015
  end-page: 410
  ident: bib33
  article-title: How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 1123
  year: 2008
  end-page: 1133
  ident: bib8
  article-title: The next generation of refrigerants–Historical review, considerations, and outlook
  publication-title: Int. J. Refrig.
– volume: 30
  start-page: 633
  year: 2007
  end-page: 641
  ident: bib24
  article-title: Comparison of R-290 and two HFC blends for walk-in refrigeration systems
  publication-title: Int. J. Refrig.
– volume: 152
  start-page: 762
  year: 2019
  end-page: 777
  ident: bib37
  article-title: Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd (Z), HCFO-1233zd (E) and HFO-1336mzz (Z)
  publication-title: Appl. Therm. Eng.
– volume: vol. 1
  start-page: 49
  year: 2014
  end-page: 83
  ident: bib47
  article-title: Methodology for determining the carbon footprint of the construction of residential buildings
  publication-title: Assessment of Carbon Footprint in Different Industrial Sectors
– year: 2014
  ident: bib17
  article-title: Joint Statement: Deepening the EU-China Comprehensive Strategic Partnership for Mutual Benefit
– volume: 3
  start-page: 285
  year: 2015
  end-page: 297
  ident: bib66
  article-title: Evaluation method for science and technology performance on energy conservation and emission reduction
  publication-title: J. Environ. Account. Manag.
– volume: 68
  start-page: 281
  year: 2005
  end-page: 302
  ident: bib46
  article-title: Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases
  publication-title: Climatic Change
– volume: 138
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib44
  article-title: Thermodynamic and thermoeconomic analysis and optimization of a novel dual-loop power/refrigeration cycle
  publication-title: Appl. Therm. Eng.
– volume: 141
  start-page: 226
  year: 2018
  end-page: 233
  ident: bib1
  article-title: HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: energy analysis and environmental impact assessment
  publication-title: Appl. Therm. Eng.
– volume: 100
  start-page: 471
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib49
  article-title: Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.12.019
– volume: 27
  start-page: 1930001
  issue: 2
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib11
  article-title: A review on energy and exergy analysis of two-stage vapour compression refrigeration system
  publication-title: Int. J. Air-Cond. Refri.
  doi: 10.1142/S2010132519300015
– volume: 199
  start-page: 112054
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib45
  article-title: Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112054
– volume: 12
  start-page: 401
  issue: 4
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib26
  article-title: How have the characteristics of air quality in a typical large Chinese city changed between 2011 and 2017?
  publication-title: Air. Qual. Atmos. Hlth.
  doi: 10.1007/s11869-018-00659-4
– year: 2010
  ident: 10.1016/j.jclepro.2021.126580_bib39
  article-title: Performance and reliability evaluation of a room air conditioner with low GWP refrigerant
– volume: 531
  start-page: 357
  year: 2016
  ident: 10.1016/j.jclepro.2021.126580_bib31
  article-title: The contribution of China’s emissions to global climate forcing
  publication-title: Nature
  doi: 10.1038/nature17165
– volume: 176
  start-page: 676
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib15
  article-title: A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.12.101
– volume: 10357
  start-page: 258
  year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib67
  article-title: An integrated approach using data mining and system dynamics to policy design: effects of electric vehicle adoption on CO2 emissions in Singapore
  publication-title: Adv. Data Min.: Appl. Theor. Aspects, Icdm
– volume: 154
  start-page: 33
  year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib18
  article-title: Characterization of criteria air pollutants in Beijing during 2014–2015
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.01.029
– volume: 28
  start-page: 320
  issue: 7
  year: 1994
  ident: 10.1016/j.jclepro.2021.126580_bib54
  article-title: The environmental impact of CFC replacements HFCs and HCFCs
  publication-title: Environ. Sci. Technol.
– year: 2014
  ident: 10.1016/j.jclepro.2021.126580_bib17
– volume: 100
  start-page: 262
  year: 2015
  ident: 10.1016/j.jclepro.2021.126580_bib65
  article-title: Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.03.063
– volume: 6
  start-page: 360
  year: 2016
  ident: 10.1016/j.jclepro.2021.126580_bib12
  article-title: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2923
– volume: 10
  start-page: 1543
  issue: 5
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib19
  article-title: Simulation of summer ozone and its sensitivity to emission changes in China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.05.003
– volume: 139
  start-page: 970
  year: 2016
  ident: 10.1016/j.jclepro.2021.126580_bib7
  article-title: Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.08.125
– volume: 3
  start-page: 222
  issue: 4
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib48
  article-title: Impact of transportation on carbon dioxide emissions from locally vs. Non-locally sourced food
  publication-title: Emerg. Sci. J.
  doi: 10.28991/esj-2019-01184
– volume: 2
  start-page: 748
  issue: 8
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib56
  article-title: China’s CO2 peak before 2030 implied from characteristics and growth of cities
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0339-6
– year: 2006
  ident: 10.1016/j.jclepro.2021.126580_bib58
– volume: 78
  start-page: 106281
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib28
  article-title: Partial information and complex development decisions: illustrations from infrastructure projects
  publication-title: Environ. Impact. Asses.
  doi: 10.1016/j.eiar.2019.106281
– volume: 2
  start-page: 569
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib5
  article-title: Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0314-2
– year: 2006
  ident: 10.1016/j.jclepro.2021.126580_bib25
– volume: 24
  start-page: 1962
  issue: 11
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib68
  article-title: Life cycle assessment of osmotic microbial fuel cells for simultaneous wastewater treatment and resource recovery
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-019-01626-6
– volume: 28
  start-page: 1469
  issue: 3
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib64
  article-title: A system dynamics approach to eco-industry system effects and trends
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/89508
– volume: 152
  start-page: 762
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib37
  article-title: Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd (Z), HCFO-1233zd (E) and HFO-1336mzz (Z)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.047
– start-page: 17
  year: 2010
  ident: 10.1016/j.jclepro.2021.126580_bib22
  article-title: February). Study on cycle property and LCCP evaluation of heat pump using HFO-1234yf, HFC-32, and HFC-410A as refrigerant
– volume: 54
  start-page: 115
  year: 2013
  ident: 10.1016/j.jclepro.2021.126580_bib59
  article-title: Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.04.045
– year: 2009
  ident: 10.1016/j.jclepro.2021.126580_bib23
– volume: 48
  start-page: 3053
  issue: 12
  year: 2007
  ident: 10.1016/j.jclepro.2021.126580_bib29
  article-title: Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.05.021
– volume: 59
  start-page: 352
  year: 2016
  ident: 10.1016/j.jclepro.2021.126580_bib32
  article-title: Life cycle assessment (LCA)–from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.058
– volume: 9
  start-page: 1021
  issue: 5
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib41
  article-title: Analysis of life cycle environmental impact of recycled aggregate
  publication-title: Appl. Sci-Basel.
  doi: 10.3390/app9051021
– volume: 141
  start-page: 226
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib1
  article-title: HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: energy analysis and environmental impact assessment
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.02.072
– volume: 429
  start-page: 55
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib35
  article-title: Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.118
– volume: 72
  start-page: 705
  issue: 3–4
  year: 2002
  ident: 10.1016/j.jclepro.2021.126580_bib20
  article-title: Recovery of fluorocarbons in Japan as a measure for abating global warming
  publication-title: Appl. Energy
  doi: 10.1016/S0306-2619(02)00043-0
– volume: 90
  start-page: 557
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib27
  article-title: Natural and synthetic refrigerants, global warming: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.099
– year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib51
– volume: 31
  start-page: 1123
  issue: 7
  year: 2008
  ident: 10.1016/j.jclepro.2021.126580_bib8
  article-title: The next generation of refrigerants–Historical review, considerations, and outlook
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2008.01.013
– year: 2014
  ident: 10.1016/j.jclepro.2021.126580_bib3
– volume: 184
  start-page: 520
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib43
  article-title: Improving end of life vehicle’s management practices: an economic assessment through system dynamics
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.02.264
– volume: 245
  start-page: 118930
  year: 2020
  ident: 10.1016/j.jclepro.2021.126580_bib30
  article-title: Carbon accounting approaches and reporting gaps in urban emissions: an analysis of the greenhouse gas inventories and climate action plans in brazilian cities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118930
– volume: 20
  start-page: 2341
  issue: 6
  year: 2016
  ident: 10.1016/j.jclepro.2021.126580_bib4
  article-title: Standard goal programming with fuzzy hierarchies: a sequential approach
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-015-1644-2
– year: 2014
  ident: 10.1016/j.jclepro.2021.126580_bib50
– volume: 1
  start-page: 71
  issue: 4
  year: 1997
  ident: 10.1016/j.jclepro.2021.126580_bib40
  article-title: Life-cycle global warming impact of CFCs and CFC-substitutes for refrigeration
  publication-title: J. Ind. Ecol.
  doi: 10.1162/jiec.1997.1.4.71
– volume: 103
  start-page: 401
  year: 2015
  ident: 10.1016/j.jclepro.2021.126580_bib33
  article-title: How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO2 emissions using the system dynamics model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.12.080
– volume: vol. 1
  start-page: 49
  year: 2014
  ident: 10.1016/j.jclepro.2021.126580_bib47
  article-title: Methodology for determining the carbon footprint of the construction of residential buildings
– volume: 575
  start-page: 1582
  year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib57
  article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.081
– volume: 145
  start-page: 172
  year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib62
  article-title: Dynamic analysis of global warming impact of the household refrigerator sector in Japan from 1952 to 2030
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.059
– volume: 68
  start-page: 281
  issue: 3
  year: 2005
  ident: 10.1016/j.jclepro.2021.126580_bib46
  article-title: Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases
  publication-title: Climatic Change
  doi: 10.1007/s10584-005-1146-9
– volume: 586
  start-page: 1308
  year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib61
  article-title: Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.02.145
– volume: 3
  start-page: 285
  issue: 3
  year: 2015
  ident: 10.1016/j.jclepro.2021.126580_bib66
  article-title: Evaluation method for science and technology performance on energy conservation and emission reduction
  publication-title: J. Environ. Account. Manag.
– volume: 217
  start-page: 627
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib63
  article-title: Trade-off analysis between global impact potential and local risk: a case study of refrigerants
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.293
– volume: 138
  start-page: 1
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib44
  article-title: Thermodynamic and thermoeconomic analysis and optimization of a novel dual-loop power/refrigeration cycle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.031
– year: 2015
  ident: 10.1016/j.jclepro.2021.126580_bib38
– volume: 61
  start-page: 302
  issue: 3
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib34
  article-title: A systems dynamic model of a coal-based city with multiple adaptive scenarios: a case study of Ordos, China. Sci. China
  publication-title: Earth Sci.
– volume: 73
  start-page: 1247
  year: 2017
  ident: 10.1016/j.jclepro.2021.126580_bib21
  article-title: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.039
– volume: 72
  start-page: 110
  year: 2014
  ident: 10.1016/j.jclepro.2021.126580_bib2
  article-title: Environmental impacts of consumption of Australian red wine in the UK
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.02.044
– volume: 104
  start-page: 549
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib36
  article-title: Spatiotemporal differences in forest ecological security warning values in Beijing: using an integrated evaluation index system and system dynamics model
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2019.05.015
– start-page: 20
  year: 1991
  ident: 10.1016/j.jclepro.2021.126580_bib42
– volume: 10
  start-page: 739
  issue: 3
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib13
  article-title: Particulate pollution status and its characteristics during 2015–2016 in Hunan, China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2018.12.001
– volume: 27
  start-page: 129
  issue: 1
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib14
  article-title: Differential weighting of objective versus subjective measures in performance evaluation: experimental evidence
  publication-title: Eur. Account. Rev.
  doi: 10.1080/09638180.2016.1234402
– year: 2010
  ident: 10.1016/j.jclepro.2021.126580_bib52
– volume: 30
  start-page: 633
  issue: 4
  year: 2007
  ident: 10.1016/j.jclepro.2021.126580_bib24
  article-title: Comparison of R-290 and two HFC blends for walk-in refrigeration systems
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2006.10.007
– volume: 184
  start-page: 527
  year: 2019
  ident: 10.1016/j.jclepro.2021.126580_bib16
  article-title: Refrigerants selection for a direct expansion solar assisted heat pump for domestic hot water
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.027
– year: 2015
  ident: 10.1016/j.jclepro.2021.126580_bib69
– volume: 13
  start-page: 100
  issue: 2
  year: 1990
  ident: 10.1016/j.jclepro.2021.126580_bib6
  article-title: Overview of alternatives to CFCs for domestic refrigerators and freezers
  publication-title: Int. J. Refrig.
  doi: 10.1016/0140-7007(90)90008-K
– volume: 123
  start-page: 200
  year: 2015
  ident: 10.1016/j.jclepro.2021.126580_bib53
  article-title: Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.10.071
– volume: 132
  start-page: 298
  year: 2014
  ident: 10.1016/j.jclepro.2021.126580_bib60
  article-title: Changes of energy-related GHG emissions in China: an empirical analysis from sectoral perspective
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.025
– volume: 96
  start-page: 147
  year: 2018
  ident: 10.1016/j.jclepro.2021.126580_bib9
  article-title: Experimental study on R-22, R-427A, R-161 and R-290 in air-source heat pump for space heating at low ambient temperatures
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.08.021
SSID ssj0017074
Score 2.4734173
Snippet Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126580
SubjectTerms air conditioning
carbon dioxide
China
decision making
economic costs
energy
environmental impact
greenhouse effect
Greenhouse gas emissions
greenhouse gases
greenhouses
industry
Life cycle assessment
ozone depletion
Refrigerant
risk
Room air conditioners
Title Refrigerant alternative and optimization under the constraint of the greenhouse gas emissions reduction target
URI https://dx.doi.org/10.1016/j.jclepro.2021.126580
https://www.proquest.com/docview/2524288101
Volume 296
WOSCitedRecordID wos000672225100085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivGQkbijLxnZi-1ihosKhQlVRV1wiJ3ZoViVZ7W5W-zP6kzuOnQerltIDlyiy4ont-WJ_Gc-MEfoQS2NEyFQQGsIDJtI4SOMoC0hOOQAm4lOtmsMm-PGxmM3k99Hoso2F2VzwshTbrVz8V1VDGSjbhs7eQd2dUCiAe1A6XEHtcP0nxZ-YHP64DaxB1prr7X0bt0tQwQTx20deNifgOhfDzJJEe1bEunUZ-GXdcc6regW3avXRHgq3alzmljbVa1Pd-ZDfQG6hTaoE6QuXUHaw2X_mDdRHdXFeFwO7deVNBPOidx5yhSd1tS06AT-NE3BmQIAaWi1IGDQJT3fMj3HkouXbmZjI4VwaEmBH02uneWdxmE_m0BvoyMS-YdI__2da7Z3lrnNCbP3b5okXk1gxiRNzD-0RHkkxRnsHXw9n37qdKT51mb3b9vdRYZ-ubc9NfGdn5W_ozOlj9MirCh84_DxBI1M-RQ8H2SmfoXKAJDxAEgYk4SGScIMkDLjBPZJwlTclPZIwIAl3SMIdkrBD0nP048vh6eejwB_PEWSUkXWgWc4V1bmgVJiQpybmlj5qJRWhsZYyY4JpoPSKplKHUhOmgNHbnIt5noWUvkDjsirNS4SpFGmU5lJpTpnJY5UZbozKVZppptNoH7F2EJPM5663nblI_qrEfTTpqi1c8pbbKohWQ4lnoI5ZJoC826q-bzWawEjabTf4zmB0ExIBDRY2kd6ru7bnNXrQfzxv0Hi9rM1bdD_brIvV8p2H5hV7fL18
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refrigerant+alternative+and+optimization+under+the+constraint+of+the+greenhouse+gas+emissions+reduction+target&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Huihui&rft.au=Zhao%2C+Linjia&rft.au=Cao%2C+Ruoxin&rft.au=Zeng%2C+Weihua&rft.date=2021-05-10&rft.issn=0959-6526&rft.volume=296&rft.spage=126580&rft_id=info:doi/10.1016%2Fj.jclepro.2021.126580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2021_126580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon