Refrigerant alternative and optimization under the constraint of the greenhouse gas emissions reduction target
Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and resea...
Uloženo v:
| Vydáno v: | Journal of cleaner production Ročník 296; s. 126580 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
10.05.2021
|
| Témata: | |
| ISSN: | 0959-6526, 1879-1786 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and research on comprehensive and systematic refrigerant alternative schemes, we propose a decision-making method system for optimizing room air conditioner refrigerant alternative schemes suitable for meeting future greenhouse gases emissions reduction target constraints by integrating the life cycle assessment method, the system dynamics method and the multi-objective programming method. In accordance with the requirements of the Montreal Protocol and other relevant fluorine-containing substance elimination plans, four scenarios for refrigerant alternative schemes were designed, which include Business as usual scenario, Convention Scenario, Design Scenario and Ideal Scenario, respectively. The Convention Scenario is based on the refrigerant phase-out plan stipulated by international conventions in China; the Ideal Scenario is based on the use of refrigerants with minimal environmental impact within the range of available predictable technologies; and the Design Scenario is designed according to the degree of strictness between the Convention Scenario and the Ideal Scenario and used to propose more reasonable and feasible refrigerant use planning schemes. The results show that the ozone depletion ability of refrigerants will be eliminated with the phase-out of hydrochlorofluorocarbon refrigerant HCFC-22. The total cost of refrigerant substitution work under different alternative scenarios will cost a total of $1.378 billion to $1.672 billion, which is worthwhile considering the considerable environmental benefits. The refrigerant dosage scheme under design scenario II, which is 50% faster than the conventional phase-out scheme, is the optimal scheme for future refrigerant replacement phase-out in the room air conditioner industry. Under this scenario, the total economic cost is $1.672 billion; additionally, compared with those under the business as usual scenario, the greenhouse effect intensity will decrease by 78.2%, the safety risk will decrease by 6.8%, the energy consumption will decrease by 60.4% and the ozone depletion ability will decrease by 99.8%.
•We proposed a decision-making method system for optimizing room air conditioner refrigerant alternative schemes.•The economic cost of refrigerant replacement work is positively correlated with environmental benefits.•The refrigerant consumption planning roadmap for the future room air conditioner industry was obtained.•HC-290 is an important future alternative refrigerant that has better comprehensive performance than HCFC-22 and HFC-410A. |
|---|---|
| AbstractList | Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and research on comprehensive and systematic refrigerant alternative schemes, we propose a decision-making method system for optimizing room air conditioner refrigerant alternative schemes suitable for meeting future greenhouse gases emissions reduction target constraints by integrating the life cycle assessment method, the system dynamics method and the multi-objective programming method. In accordance with the requirements of the Montreal Protocol and other relevant fluorine-containing substance elimination plans, four scenarios for refrigerant alternative schemes were designed, which include Business as usual scenario, Convention Scenario, Design Scenario and Ideal Scenario, respectively. The Convention Scenario is based on the refrigerant phase-out plan stipulated by international conventions in China; the Ideal Scenario is based on the use of refrigerants with minimal environmental impact within the range of available predictable technologies; and the Design Scenario is designed according to the degree of strictness between the Convention Scenario and the Ideal Scenario and used to propose more reasonable and feasible refrigerant use planning schemes. The results show that the ozone depletion ability of refrigerants will be eliminated with the phase-out of hydrochlorofluorocarbon refrigerant HCFC-22. The total cost of refrigerant substitution work under different alternative scenarios will cost a total of $1.378 billion to $1.672 billion, which is worthwhile considering the considerable environmental benefits. The refrigerant dosage scheme under design scenario II, which is 50% faster than the conventional phase-out scheme, is the optimal scheme for future refrigerant replacement phase-out in the room air conditioner industry. Under this scenario, the total economic cost is $1.672 billion; additionally, compared with those under the business as usual scenario, the greenhouse effect intensity will decrease by 78.2%, the safety risk will decrease by 6.8%, the energy consumption will decrease by 60.4% and the ozone depletion ability will decrease by 99.8%. Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases are widely used as room air conditioner refrigerants. In view of the current lack of well-equipped refrigerant replacement technology and research on comprehensive and systematic refrigerant alternative schemes, we propose a decision-making method system for optimizing room air conditioner refrigerant alternative schemes suitable for meeting future greenhouse gases emissions reduction target constraints by integrating the life cycle assessment method, the system dynamics method and the multi-objective programming method. In accordance with the requirements of the Montreal Protocol and other relevant fluorine-containing substance elimination plans, four scenarios for refrigerant alternative schemes were designed, which include Business as usual scenario, Convention Scenario, Design Scenario and Ideal Scenario, respectively. The Convention Scenario is based on the refrigerant phase-out plan stipulated by international conventions in China; the Ideal Scenario is based on the use of refrigerants with minimal environmental impact within the range of available predictable technologies; and the Design Scenario is designed according to the degree of strictness between the Convention Scenario and the Ideal Scenario and used to propose more reasonable and feasible refrigerant use planning schemes. The results show that the ozone depletion ability of refrigerants will be eliminated with the phase-out of hydrochlorofluorocarbon refrigerant HCFC-22. The total cost of refrigerant substitution work under different alternative scenarios will cost a total of $1.378 billion to $1.672 billion, which is worthwhile considering the considerable environmental benefits. The refrigerant dosage scheme under design scenario II, which is 50% faster than the conventional phase-out scheme, is the optimal scheme for future refrigerant replacement phase-out in the room air conditioner industry. Under this scenario, the total economic cost is $1.672 billion; additionally, compared with those under the business as usual scenario, the greenhouse effect intensity will decrease by 78.2%, the safety risk will decrease by 6.8%, the energy consumption will decrease by 60.4% and the ozone depletion ability will decrease by 99.8%. •We proposed a decision-making method system for optimizing room air conditioner refrigerant alternative schemes.•The economic cost of refrigerant replacement work is positively correlated with environmental benefits.•The refrigerant consumption planning roadmap for the future room air conditioner industry was obtained.•HC-290 is an important future alternative refrigerant that has better comprehensive performance than HCFC-22 and HFC-410A. |
| ArticleNumber | 126580 |
| Author | Zhao, Linjia Zeng, Weihua Cao, Ruoxin Wang, Huihui |
| Author_xml | – sequence: 1 givenname: Huihui orcidid: 0000-0001-9518-679X surname: Wang fullname: Wang, Huihui organization: School of Environment, Beijing Normal University, Beijing, 100875, China – sequence: 2 givenname: Linjia surname: Zhao fullname: Zhao, Linjia organization: School of Environment, Beijing Normal University, Beijing, 100875, China – sequence: 3 givenname: Ruoxin surname: Cao fullname: Cao, Ruoxin organization: School of Environment, Beijing Normal University, Beijing, 100875, China – sequence: 4 givenname: Weihua surname: Zeng fullname: Zeng, Weihua email: zengwh@bnu.edu.cn organization: School of Environment, Beijing Normal University, Beijing, 100875, China |
| BookMark | eNqFkMtKQzEQhoMo2FYfQThLN6cmOZckuBAp3qAgiK5DmsxpU06TmqQFfXrTy8pNVzP8zDf8fEN07rwDhG4IHhNM2rvleKl7WAc_ppiSMaFtw_EZGhDOREkYb8_RAItGlG1D20s0jHGJMWGY1QPkPqALdg5BuVSoPkFwKtktFMqZwq-TXdnfHHhXbJyBUKQFFNq7mIKymfDdPpkHALfwm5hXFQtY2RgzE4sAZqP3eFJhDukKXXSqj3B9nCP09fz0OXktp-8vb5PHaamrmqbS1B1Tlel4VXEgbAYtIw2hRglFq9YIoWteG8wbVc2EIcLQWmEsMGNN12lSVSN0e_ibrXxvICaZK2noe-Ug15S0oTXlPOvLp83hVAcfY4BOroNdqfAjCZY7v3Ipj37lzq88-M3c_T9O27RXtXPTn6QfDjRkC1sLQUZtwWkwNoBO0nh74sMf9uqewg |
| CitedBy_id | crossref_primary_10_1016_j_enbuild_2024_114908 crossref_primary_10_1038_s41598_023_27600_9 crossref_primary_10_1016_j_jclepro_2021_130119 crossref_primary_10_3390_su15097234 crossref_primary_10_1039_D5TA03354C crossref_primary_10_1016_j_ijrefrig_2025_07_010 crossref_primary_10_1016_j_enconman_2021_114843 crossref_primary_10_1016_j_enconman_2021_114551 crossref_primary_10_1007_s10973_025_14362_x crossref_primary_10_1002_advs_202308123 crossref_primary_10_1016_j_ijrefrig_2025_04_010 crossref_primary_10_1016_j_jclepro_2023_139589 crossref_primary_10_1007_s10098_024_03088_3 crossref_primary_10_1016_j_energy_2023_129533 crossref_primary_10_1038_s41598_022_18606_w crossref_primary_10_3390_micro5020028 crossref_primary_10_1016_j_rser_2024_114533 crossref_primary_10_1016_j_energy_2022_124356 crossref_primary_10_1016_j_enbuild_2023_113561 crossref_primary_10_1016_j_applthermaleng_2024_125313 crossref_primary_10_1016_j_jclepro_2022_131612 crossref_primary_10_3390_en16041675 crossref_primary_10_1016_j_enconman_2021_114380 crossref_primary_10_1007_s10973_023_11989_6 crossref_primary_10_1016_j_crsus_2025_100431 crossref_primary_10_1016_j_applthermaleng_2025_128022 |
| Cites_doi | 10.1016/j.ijrefrig.2018.12.019 10.1142/S2010132519300015 10.1016/j.enconman.2019.112054 10.1007/s11869-018-00659-4 10.1038/nature17165 10.1016/j.jclepro.2017.12.101 10.1016/j.envres.2017.01.029 10.1016/j.jclepro.2015.03.063 10.1038/nclimate2923 10.1016/j.apr.2019.05.003 10.1016/j.jclepro.2016.08.125 10.28991/esj-2019-01184 10.1038/s41893-019-0339-6 10.1016/j.eiar.2019.106281 10.1038/s41893-019-0314-2 10.1007/s11367-019-01626-6 10.15244/pjoes/89508 10.1016/j.applthermaleng.2019.02.047 10.1016/j.jclepro.2013.04.045 10.1016/j.enconman.2007.05.021 10.1016/j.rser.2015.12.058 10.3390/app9051021 10.1016/j.applthermaleng.2018.02.072 10.1016/j.jpowsour.2019.04.118 10.1016/S0306-2619(02)00043-0 10.1016/j.rser.2018.03.099 10.1016/j.ijrefrig.2008.01.013 10.1016/j.jclepro.2018.02.264 10.1016/j.jclepro.2019.118930 10.1007/s00500-015-1644-2 10.1162/jiec.1997.1.4.71 10.1016/j.jclepro.2014.12.080 10.1016/j.scitotenv.2016.10.081 10.1016/j.jclepro.2017.01.059 10.1007/s10584-005-1146-9 10.1016/j.scitotenv.2017.02.145 10.1016/j.jclepro.2019.01.293 10.1016/j.applthermaleng.2018.04.031 10.1016/j.rser.2017.02.039 10.1016/j.jclepro.2014.02.044 10.1016/j.ecolind.2019.05.015 10.1016/j.apr.2018.12.001 10.1080/09638180.2016.1234402 10.1016/j.ijrefrig.2006.10.007 10.1016/j.solener.2019.04.027 10.1016/0140-7007(90)90008-K 10.1016/j.atmosenv.2015.10.071 10.1016/j.apenergy.2014.07.025 10.1016/j.ijrefrig.2018.08.021 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2021.126580 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2021_126580 S0959652621008003 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-d4f7a3df8338e17be671512da9a236d99c484d085a3b9d19d24a0090775ffc133 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672225100085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Thu Oct 02 05:33:30 EDT 2025 Sat Nov 29 07:06:29 EST 2025 Tue Nov 18 22:30:30 EST 2025 Fri Feb 23 02:40:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Life cycle assessment Greenhouse gas emissions Room air conditioners Refrigerant |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-d4f7a3df8338e17be671512da9a236d99c484d085a3b9d19d24a0090775ffc133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9518-679X |
| PQID | 2524288101 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2524288101 crossref_primary_10_1016_j_jclepro_2021_126580 crossref_citationtrail_10_1016_j_jclepro_2021_126580 elsevier_sciencedirect_doi_10_1016_j_jclepro_2021_126580 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-10 |
| PublicationDateYYYYMMDD | 2021-05-10 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pyle, Wuebbles, Solomon, Zvenigorodsky, Connell, Ko, Weisenstein (bib42) 1991 Zhao, Zeng, Zhang, Wang, Jiang (bib66) 2015; 3 Wallington, Schneider, Worsnop, Nielsen, Sehested, Debruyn, Shorter (bib54) 1994; 28 Ling-Chin, Heidrich, Roskilly (bib32) 2016; 59 Li, Gasser, Ciais, Piao, Tao, Balkanski (bib31) 2016; 531 Solís-Guzmán, Martínez-Rocamora, Marrero (bib47) 2014; vol. 1 Liu, Pei, Zhou, Du, Ma, Xie, Xu (bib34) 2018; 61 Mateu-Royo, Navarro-Esbrí, Mota-Babiloni, Amat-Albuixech, Molés (bib37) 2019; 152 Harby (bib21) 2017; 73 (bib50) 2014 Duarte, Paulino, Pabon, Sawalha, Machado (bib16) 2019; 184 Boot (bib6) 1990; 13 Hanaoka, Ishitani, Matsuhashi, Yoshida (bib20) 2002; 72 (bib52) 2010 (bib25) 2006 Sun, Wang, Dai, Wang, Xie (bib49) 2019; 100 Calm (bib8) 2008; 31 Ding, Zhu, Tam, Yi, Tran (bib15) 2018; 176 Liu, Li, Chen, Qin, Zhang (bib35) 2019; 429 Amienyo, Camilleri, Azapagic (bib2) 2014; 72 Xue, Kojima, Zhou, Machimura, Tokai (bib63) 2019; 217 Guo, Chen, Wang, Hu, Ying, Gao, Zhang (bib19) 2019; 10 Wu, Hu, Mo (bib59) 2013; 54 Wang, Lu, Deng, Sun, Nielsens, Li, Zhu, Bu, Bi, McElroy (bib56) 2019; 2 Dai, Huang, Peng, Yi, Zhou, Qin (bib13) 2019; 10 Striebig, Smitts, Morton (bib48) 2019; 3 Andersen, Brack, Depledge (bib3) 2014 Guo, Wang, Zhang (bib18) 2017; 154 Thinkstep (bib51) 2017 Horie, Kamiaka, Dang, Hihara, no Ha (bib22) 2010 Xu, Zhao, Liu, Kang (bib60) 2014; 132 Arenas-Parra, Bilbao-Terol, Jiménez (bib4) 2016; 20 Liu, Mao, Ren, Li, Guo, Zhang (bib33) 2015; 103 Xue, Kojima, Zhou, Machimura, Tokai (bib62) 2017; 145 Kumar, Rajagopal (bib29) 2007; 48 Rostamzadeh, Ghaebi, Vosoughi, Jannatkhah (bib44) 2018; 138 Chowdhury, Roy, Mandal (bib11) 2019; 27 Ji, Wang, Yu, Lu, Qian (bib26) 2019; 12 Zhao, Zeng, Yuan (bib65) 2015; 100 Park, Kim, Roh, Kim (bib41) 2019; 9 WHO (bib58) 2006 Xue, Kojima, Machimura, Tokai (bib61) 2017; 586 Wang, Xue, Brimblecombe, Lam, Li, Zhang (bib57) 2017; 575 (bib38) 2015 Barnes, Williamson, Lucas, Robinson, Madronich, Paul, Andrady (bib5) 2019; 2 Aprea, Greco, Maiorino (bib1) 2018; 141 Boyaghchi, Mahmoodnezhad, Sabeti (bib7) 2016; 139 Lu, Qin, Chen, Yu, Xiao, Cheng, Guan (bib36) 2019; 104 Chen, Liu, Yang, Chen (bib9) 2018; 96 Leão, do Nascimento, de Andrade, de Oliveira (bib30) 2020; 245 Salim, Kim (bib45) 2019; 199 Yu, Dong, Li (bib64) 2019; 28 Hwang, Jin, Radermacher (bib24) 2007; 30 Zhang, Yuan, Deng, Abu-Reesh, He, Yuan (bib68) 2019; 24 Papasavva, Moomaw (bib40) 1997; 1 Okazaki, Maeyama, Saito, Yamamoto (bib39) 2010 (bib17) 2014 Shine, Fuglestvedt, Hailemariam, Stuber (bib46) 2005; 68 Rosa, Terzi (bib43) 2018; 184 Dai, Kuang, Tang (bib14) 2018; 27 Kariyawasam, McGovern, Wilson (bib28) 2019; 78 Hu (bib23) 2009 Kalair, Kalair, Khan, Haider, Saleem (bib27) 2018; 90 Velders, Fahey, Daniel, Andersen, McFarland (bib53) 2015; 123 (bib69) 2015 Zhang, Tay (bib67) 2017; 10357 Clark, Shakun, Marcott, Mix, Eby, Kulp (bib12) 2016; 6 (10.1016/j.jclepro.2021.126580_bib50) 2014 Ji (10.1016/j.jclepro.2021.126580_bib26) 2019; 12 WHO (10.1016/j.jclepro.2021.126580_bib58) 2006 Wang (10.1016/j.jclepro.2021.126580_bib56) 2019; 2 Harby (10.1016/j.jclepro.2021.126580_bib21) 2017; 73 Guo (10.1016/j.jclepro.2021.126580_bib19) 2019; 10 (10.1016/j.jclepro.2021.126580_bib17) 2014 Hanaoka (10.1016/j.jclepro.2021.126580_bib20) 2002; 72 Boot (10.1016/j.jclepro.2021.126580_bib6) 1990; 13 Calm (10.1016/j.jclepro.2021.126580_bib8) 2008; 31 Rosa (10.1016/j.jclepro.2021.126580_bib43) 2018; 184 Xue (10.1016/j.jclepro.2021.126580_bib61) 2017; 586 Wu (10.1016/j.jclepro.2021.126580_bib59) 2013; 54 Arenas-Parra (10.1016/j.jclepro.2021.126580_bib4) 2016; 20 Lu (10.1016/j.jclepro.2021.126580_bib36) 2019; 104 Salim (10.1016/j.jclepro.2021.126580_bib45) 2019; 199 Kariyawasam (10.1016/j.jclepro.2021.126580_bib28) 2019; 78 Sun (10.1016/j.jclepro.2021.126580_bib49) 2019; 100 Ding (10.1016/j.jclepro.2021.126580_bib15) 2018; 176 Hu (10.1016/j.jclepro.2021.126580_bib23) 2009 Pyle (10.1016/j.jclepro.2021.126580_bib42) 1991 Li (10.1016/j.jclepro.2021.126580_bib31) 2016; 531 Leão (10.1016/j.jclepro.2021.126580_bib30) 2020; 245 (10.1016/j.jclepro.2021.126580_bib38) 2015 Shine (10.1016/j.jclepro.2021.126580_bib46) 2005; 68 Solís-Guzmán (10.1016/j.jclepro.2021.126580_bib47) 2014; vol. 1 Horie (10.1016/j.jclepro.2021.126580_bib22) 2010 Zhang (10.1016/j.jclepro.2021.126580_bib67) 2017; 10357 Chowdhury (10.1016/j.jclepro.2021.126580_bib11) 2019; 27 Guo (10.1016/j.jclepro.2021.126580_bib18) 2017; 154 (10.1016/j.jclepro.2021.126580_bib52) 2010 Kumar (10.1016/j.jclepro.2021.126580_bib29) 2007; 48 Papasavva (10.1016/j.jclepro.2021.126580_bib40) 1997; 1 Velders (10.1016/j.jclepro.2021.126580_bib53) 2015; 123 Ling-Chin (10.1016/j.jclepro.2021.126580_bib32) 2016; 59 Zhang (10.1016/j.jclepro.2021.126580_bib68) 2019; 24 Wang (10.1016/j.jclepro.2021.126580_bib57) 2017; 575 Park (10.1016/j.jclepro.2021.126580_bib41) 2019; 9 Striebig (10.1016/j.jclepro.2021.126580_bib48) 2019; 3 Xue (10.1016/j.jclepro.2021.126580_bib62) 2017; 145 Rostamzadeh (10.1016/j.jclepro.2021.126580_bib44) 2018; 138 Zhao (10.1016/j.jclepro.2021.126580_bib66) 2015; 3 Amienyo (10.1016/j.jclepro.2021.126580_bib2) 2014; 72 (10.1016/j.jclepro.2021.126580_bib69) 2015 Clark (10.1016/j.jclepro.2021.126580_bib12) 2016; 6 (10.1016/j.jclepro.2021.126580_bib25) 2006 Dai (10.1016/j.jclepro.2021.126580_bib14) 2018; 27 Xu (10.1016/j.jclepro.2021.126580_bib60) 2014; 132 Aprea (10.1016/j.jclepro.2021.126580_bib1) 2018; 141 Kalair (10.1016/j.jclepro.2021.126580_bib27) 2018; 90 Dai (10.1016/j.jclepro.2021.126580_bib13) 2019; 10 Andersen (10.1016/j.jclepro.2021.126580_bib3) 2014 Boyaghchi (10.1016/j.jclepro.2021.126580_bib7) 2016; 139 Hwang (10.1016/j.jclepro.2021.126580_bib24) 2007; 30 Yu (10.1016/j.jclepro.2021.126580_bib64) 2019; 28 Okazaki (10.1016/j.jclepro.2021.126580_bib39) 2010 Liu (10.1016/j.jclepro.2021.126580_bib35) 2019; 429 Wallington (10.1016/j.jclepro.2021.126580_bib54) 1994; 28 Chen (10.1016/j.jclepro.2021.126580_bib9) 2018; 96 Duarte (10.1016/j.jclepro.2021.126580_bib16) 2019; 184 Mateu-Royo (10.1016/j.jclepro.2021.126580_bib37) 2019; 152 Zhao (10.1016/j.jclepro.2021.126580_bib65) 2015; 100 Liu (10.1016/j.jclepro.2021.126580_bib33) 2015; 103 Thinkstep (10.1016/j.jclepro.2021.126580_bib51) 2017 Barnes (10.1016/j.jclepro.2021.126580_bib5) 2019; 2 Xue (10.1016/j.jclepro.2021.126580_bib63) 2019; 217 Liu (10.1016/j.jclepro.2021.126580_bib34) 2018; 61 |
| References_xml | – volume: 1 start-page: 71 year: 1997 end-page: 91 ident: bib40 article-title: Life-cycle global warming impact of CFCs and CFC-substitutes for refrigeration publication-title: J. Ind. Ecol. – volume: 10 start-page: 739 year: 2019 end-page: 748 ident: bib13 article-title: Particulate pollution status and its characteristics during 2015–2016 in Hunan, China publication-title: Atmos. Pollut. Res. – year: 2006 ident: bib25 article-title: ISO 14040:2006 Environmental Management-Life Cycle Assessment (LCA)-principles and Framework – volume: 100 start-page: 471 year: 2019 end-page: 483 ident: bib49 article-title: Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system publication-title: Int. J. Refrig. – volume: 132 start-page: 298 year: 2014 end-page: 307 ident: bib60 article-title: Changes of energy-related GHG emissions in China: an empirical analysis from sectoral perspective publication-title: Appl. Energy – volume: 10357 start-page: 258 year: 2017 end-page: 268 ident: bib67 article-title: An integrated approach using data mining and system dynamics to policy design: effects of electric vehicle adoption on CO publication-title: Adv. Data Min.: Appl. Theor. Aspects, Icdm – volume: 61 start-page: 302 year: 2018 end-page: 316 ident: bib34 article-title: A systems dynamic model of a coal-based city with multiple adaptive scenarios: a case study of Ordos, China. publication-title: Earth Sci. – volume: 20 start-page: 2341 year: 2016 end-page: 2352 ident: bib4 article-title: Standard goal programming with fuzzy hierarchies: a sequential approach publication-title: Soft. Comput. – volume: 3 start-page: 222 year: 2019 end-page: 234 ident: bib48 article-title: Impact of transportation on carbon dioxide emissions from locally vs. Non-locally sourced food publication-title: Emerg. Sci. J. – volume: 72 start-page: 110 year: 2014 end-page: 119 ident: bib2 article-title: Environmental impacts of consumption of Australian red wine in the UK publication-title: J. Clean. Prod. – volume: 429 start-page: 55 year: 2019 end-page: 66 ident: bib35 article-title: Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles publication-title: J. Power Sources – volume: 586 start-page: 1308 year: 2017 end-page: 1315 ident: bib61 article-title: Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector publication-title: Sci. Total Environ. – volume: 100 start-page: 262 year: 2015 end-page: 268 ident: bib65 article-title: Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis publication-title: J. Clean. Prod. – year: 2014 ident: bib50 article-title: U.S.-China Joint Announcement on Climate Change – volume: 48 start-page: 3053 year: 2007 end-page: 3062 ident: bib29 article-title: Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12 publication-title: Energy Convers. Manag. – volume: 245 start-page: 118930 year: 2020 ident: bib30 article-title: Carbon accounting approaches and reporting gaps in urban emissions: an analysis of the greenhouse gas inventories and climate action plans in brazilian cities publication-title: J. Clean. Prod. – volume: 104 start-page: 549 year: 2019 end-page: 558 ident: bib36 article-title: Spatiotemporal differences in forest ecological security warning values in Beijing: using an integrated evaluation index system and system dynamics model publication-title: Ecol. Indicat. – volume: 9 start-page: 1021 year: 2019 ident: bib41 article-title: Analysis of life cycle environmental impact of recycled aggregate publication-title: Appl. Sci-Basel. – volume: 199 start-page: 112054 year: 2019 ident: bib45 article-title: Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle publication-title: Energy Convers. Manag. – volume: 13 start-page: 100 year: 1990 end-page: 105 ident: bib6 article-title: Overview of alternatives to CFCs for domestic refrigerators and freezers publication-title: Int. J. Refrig. – start-page: 17 year: 2010 end-page: 19 ident: bib22 article-title: February). Study on cycle property and LCCP evaluation of heat pump using HFO-1234yf, HFC-32, and HFC-410A as refrigerant publication-title: 2010 International Symposium on Next-Generation Air Conditioning and Refrigeration Technology, Tokyo, Japan – volume: 154 start-page: 33 year: 2017 end-page: 344 ident: bib18 article-title: Characterization of criteria air pollutants in Beijing during 2014–2015 publication-title: Environ. Res. – year: 2010 ident: bib52 article-title: 2010 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee – volume: 176 start-page: 676 year: 2018 end-page: 692 ident: bib15 article-title: A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages publication-title: J. Clean. Prod. – volume: 59 start-page: 352 year: 2016 end-page: 378 ident: bib32 article-title: Life cycle assessment (LCA)–from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems publication-title: Renew. Sustain. Energy Rev. – start-page: 20 year: 1991 ident: bib42 article-title: Ozone Depletion and Chlorine Loading Potentials. NASA – volume: 12 start-page: 401 year: 2019 end-page: 410 ident: bib26 article-title: How have the characteristics of air quality in a typical large Chinese city changed between 2011 and 2017? publication-title: Air. Qual. Atmos. Hlth. – volume: 24 start-page: 1962 year: 2019 end-page: 1975 ident: bib68 article-title: Life cycle assessment of osmotic microbial fuel cells for simultaneous wastewater treatment and resource recovery publication-title: Int. J. Life Cycle Assess. – volume: 28 start-page: 1469 year: 2019 end-page: 1482 ident: bib64 article-title: A system dynamics approach to eco-industry system effects and trends publication-title: Pol. J. Environ. Stud. – volume: 123 start-page: 200 year: 2015 end-page: 209 ident: bib53 article-title: Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions publication-title: Atmos. Environ. – volume: 72 start-page: 705 year: 2002 end-page: 721 ident: bib20 article-title: Recovery of fluorocarbons in Japan as a measure for abating global warming publication-title: Appl. Energy – year: 2006 ident: bib58 article-title: Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide – volume: 139 start-page: 970 year: 2016 end-page: 985 ident: bib7 article-title: Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid publication-title: J. Clean. Prod. – volume: 575 start-page: 1582 year: 2017 end-page: 1596 ident: bib57 article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects publication-title: Sci. Total Environ. – volume: 531 start-page: 357 year: 2016 end-page: 361 ident: bib31 article-title: The contribution of China’s emissions to global climate forcing publication-title: Nature – volume: 54 start-page: 115 year: 2013 end-page: 124 ident: bib59 article-title: Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems publication-title: J. Clean. Prod. – volume: 145 start-page: 172 year: 2017 end-page: 179 ident: bib62 article-title: Dynamic analysis of global warming impact of the household refrigerator sector in Japan from 1952 to 2030 publication-title: J. Clean. Prod. – volume: 73 start-page: 1247 year: 2017 end-page: 1264 ident: bib21 article-title: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview publication-title: Renew. Sustain. Energy Rev. – volume: 217 start-page: 627 year: 2019 end-page: 632 ident: bib63 article-title: Trade-off analysis between global impact potential and local risk: a case study of refrigerants publication-title: J. Clean. Prod. – volume: 27 start-page: 1930001 year: 2019 ident: bib11 article-title: A review on energy and exergy analysis of two-stage vapour compression refrigeration system publication-title: Int. J. Air-Cond. Refri. – volume: 96 start-page: 147 year: 2018 end-page: 154 ident: bib9 article-title: Experimental study on R-22, R-427A, R-161 and R-290 in air-source heat pump for space heating at low ambient temperatures publication-title: Int. J. Refrig. – year: 2015 ident: bib38 article-title: China Statistical Yearbook – volume: 28 start-page: 320 year: 1994 end-page: 326 ident: bib54 article-title: The environmental impact of CFC replacements HFCs and HCFCs publication-title: Environ. Sci. Technol. – year: 2015 ident: bib69 article-title: Joint Presidential Statement on Climate Change – year: 2014 ident: bib3 article-title: A Global Response to HFCs through Fair and Effective Ozone and Climate Policies – volume: 27 start-page: 129 year: 2018 end-page: 148 ident: bib14 article-title: Differential weighting of objective versus subjective measures in performance evaluation: experimental evidence publication-title: Eur. Account. Rev. – volume: 184 start-page: 520 year: 2018 end-page: 536 ident: bib43 article-title: Improving end of life vehicle’s management practices: an economic assessment through system dynamics publication-title: J. Clean. Prod. – volume: 6 start-page: 360 year: 2016 end-page: 369 ident: bib12 article-title: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change publication-title: Nat. Clim. Change – year: 2010 ident: bib39 article-title: Performance and reliability evaluation of a room air conditioner with low GWP refrigerant publication-title: 2010 International Symposium on Next-Generation Air Conditioning and Refrigeration Technology, Tokyo, Japan – volume: 78 start-page: 106281 year: 2019 ident: bib28 article-title: Partial information and complex development decisions: illustrations from infrastructure projects publication-title: Environ. Impact. Asses. – volume: 2 start-page: 748 year: 2019 end-page: 754 ident: bib56 article-title: China’s CO publication-title: Nat. Sustain. – year: 2009 ident: bib23 article-title: Integrated Municipal Solid Waste Management and Life Cycle 3E Assessment Decision - A Case Study of Chongqing – volume: 10 start-page: 1543 year: 2019 end-page: 1552 ident: bib19 article-title: Simulation of summer ozone and its sensitivity to emission changes in China publication-title: Atmos. – volume: 184 start-page: 527 year: 2019 end-page: 538 ident: bib16 article-title: Refrigerants selection for a direct expansion solar assisted heat pump for domestic hot water publication-title: Sol. Energy – volume: 90 start-page: 557 year: 2018 end-page: 569 ident: bib27 article-title: Natural and synthetic refrigerants, global warming: a review publication-title: Renew. Sustain. Energy Rev. – volume: 2 start-page: 569 year: 2019 end-page: 579 ident: bib5 article-title: Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future publication-title: Nat. Sustain. – year: 2017 ident: bib51 article-title: GaBi Software System and Database for Life Cycle Engineering – volume: 103 start-page: 401 year: 2015 end-page: 410 ident: bib33 article-title: How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO publication-title: J. Clean. Prod. – volume: 31 start-page: 1123 year: 2008 end-page: 1133 ident: bib8 article-title: The next generation of refrigerants–Historical review, considerations, and outlook publication-title: Int. J. Refrig. – volume: 30 start-page: 633 year: 2007 end-page: 641 ident: bib24 article-title: Comparison of R-290 and two HFC blends for walk-in refrigeration systems publication-title: Int. J. Refrig. – volume: 152 start-page: 762 year: 2019 end-page: 777 ident: bib37 article-title: Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd (Z), HCFO-1233zd (E) and HFO-1336mzz (Z) publication-title: Appl. Therm. Eng. – volume: vol. 1 start-page: 49 year: 2014 end-page: 83 ident: bib47 article-title: Methodology for determining the carbon footprint of the construction of residential buildings publication-title: Assessment of Carbon Footprint in Different Industrial Sectors – year: 2014 ident: bib17 article-title: Joint Statement: Deepening the EU-China Comprehensive Strategic Partnership for Mutual Benefit – volume: 3 start-page: 285 year: 2015 end-page: 297 ident: bib66 article-title: Evaluation method for science and technology performance on energy conservation and emission reduction publication-title: J. Environ. Account. Manag. – volume: 68 start-page: 281 year: 2005 end-page: 302 ident: bib46 article-title: Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases publication-title: Climatic Change – volume: 138 start-page: 1 year: 2018 end-page: 17 ident: bib44 article-title: Thermodynamic and thermoeconomic analysis and optimization of a novel dual-loop power/refrigeration cycle publication-title: Appl. Therm. Eng. – volume: 141 start-page: 226 year: 2018 end-page: 233 ident: bib1 article-title: HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: energy analysis and environmental impact assessment publication-title: Appl. Therm. Eng. – volume: 100 start-page: 471 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib49 article-title: Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.12.019 – volume: 27 start-page: 1930001 issue: 2 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib11 article-title: A review on energy and exergy analysis of two-stage vapour compression refrigeration system publication-title: Int. J. Air-Cond. Refri. doi: 10.1142/S2010132519300015 – volume: 199 start-page: 112054 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib45 article-title: Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112054 – volume: 12 start-page: 401 issue: 4 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib26 article-title: How have the characteristics of air quality in a typical large Chinese city changed between 2011 and 2017? publication-title: Air. Qual. Atmos. Hlth. doi: 10.1007/s11869-018-00659-4 – year: 2010 ident: 10.1016/j.jclepro.2021.126580_bib39 article-title: Performance and reliability evaluation of a room air conditioner with low GWP refrigerant – volume: 531 start-page: 357 year: 2016 ident: 10.1016/j.jclepro.2021.126580_bib31 article-title: The contribution of China’s emissions to global climate forcing publication-title: Nature doi: 10.1038/nature17165 – volume: 176 start-page: 676 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib15 article-title: A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.12.101 – volume: 10357 start-page: 258 year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib67 article-title: An integrated approach using data mining and system dynamics to policy design: effects of electric vehicle adoption on CO2 emissions in Singapore publication-title: Adv. Data Min.: Appl. Theor. Aspects, Icdm – volume: 154 start-page: 33 year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib18 article-title: Characterization of criteria air pollutants in Beijing during 2014–2015 publication-title: Environ. Res. doi: 10.1016/j.envres.2017.01.029 – volume: 28 start-page: 320 issue: 7 year: 1994 ident: 10.1016/j.jclepro.2021.126580_bib54 article-title: The environmental impact of CFC replacements HFCs and HCFCs publication-title: Environ. Sci. Technol. – year: 2014 ident: 10.1016/j.jclepro.2021.126580_bib17 – volume: 100 start-page: 262 year: 2015 ident: 10.1016/j.jclepro.2021.126580_bib65 article-title: Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.03.063 – volume: 6 start-page: 360 year: 2016 ident: 10.1016/j.jclepro.2021.126580_bib12 article-title: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change publication-title: Nat. Clim. Change doi: 10.1038/nclimate2923 – volume: 10 start-page: 1543 issue: 5 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib19 article-title: Simulation of summer ozone and its sensitivity to emission changes in China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.05.003 – volume: 139 start-page: 970 year: 2016 ident: 10.1016/j.jclepro.2021.126580_bib7 article-title: Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.08.125 – volume: 3 start-page: 222 issue: 4 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib48 article-title: Impact of transportation on carbon dioxide emissions from locally vs. Non-locally sourced food publication-title: Emerg. Sci. J. doi: 10.28991/esj-2019-01184 – volume: 2 start-page: 748 issue: 8 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib56 article-title: China’s CO2 peak before 2030 implied from characteristics and growth of cities publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0339-6 – year: 2006 ident: 10.1016/j.jclepro.2021.126580_bib58 – volume: 78 start-page: 106281 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib28 article-title: Partial information and complex development decisions: illustrations from infrastructure projects publication-title: Environ. Impact. Asses. doi: 10.1016/j.eiar.2019.106281 – volume: 2 start-page: 569 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib5 article-title: Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0314-2 – year: 2006 ident: 10.1016/j.jclepro.2021.126580_bib25 – volume: 24 start-page: 1962 issue: 11 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib68 article-title: Life cycle assessment of osmotic microbial fuel cells for simultaneous wastewater treatment and resource recovery publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-019-01626-6 – volume: 28 start-page: 1469 issue: 3 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib64 article-title: A system dynamics approach to eco-industry system effects and trends publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/89508 – volume: 152 start-page: 762 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib37 article-title: Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd (Z), HCFO-1233zd (E) and HFO-1336mzz (Z) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.047 – start-page: 17 year: 2010 ident: 10.1016/j.jclepro.2021.126580_bib22 article-title: February). Study on cycle property and LCCP evaluation of heat pump using HFO-1234yf, HFC-32, and HFC-410A as refrigerant – volume: 54 start-page: 115 year: 2013 ident: 10.1016/j.jclepro.2021.126580_bib59 article-title: Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.04.045 – year: 2009 ident: 10.1016/j.jclepro.2021.126580_bib23 – volume: 48 start-page: 3053 issue: 12 year: 2007 ident: 10.1016/j.jclepro.2021.126580_bib29 article-title: Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.05.021 – volume: 59 start-page: 352 year: 2016 ident: 10.1016/j.jclepro.2021.126580_bib32 article-title: Life cycle assessment (LCA)–from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.058 – volume: 9 start-page: 1021 issue: 5 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib41 article-title: Analysis of life cycle environmental impact of recycled aggregate publication-title: Appl. Sci-Basel. doi: 10.3390/app9051021 – volume: 141 start-page: 226 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib1 article-title: HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: energy analysis and environmental impact assessment publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.02.072 – volume: 429 start-page: 55 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib35 article-title: Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.118 – volume: 72 start-page: 705 issue: 3–4 year: 2002 ident: 10.1016/j.jclepro.2021.126580_bib20 article-title: Recovery of fluorocarbons in Japan as a measure for abating global warming publication-title: Appl. Energy doi: 10.1016/S0306-2619(02)00043-0 – volume: 90 start-page: 557 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib27 article-title: Natural and synthetic refrigerants, global warming: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.099 – year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib51 – volume: 31 start-page: 1123 issue: 7 year: 2008 ident: 10.1016/j.jclepro.2021.126580_bib8 article-title: The next generation of refrigerants–Historical review, considerations, and outlook publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2008.01.013 – year: 2014 ident: 10.1016/j.jclepro.2021.126580_bib3 – volume: 184 start-page: 520 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib43 article-title: Improving end of life vehicle’s management practices: an economic assessment through system dynamics publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.02.264 – volume: 245 start-page: 118930 year: 2020 ident: 10.1016/j.jclepro.2021.126580_bib30 article-title: Carbon accounting approaches and reporting gaps in urban emissions: an analysis of the greenhouse gas inventories and climate action plans in brazilian cities publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118930 – volume: 20 start-page: 2341 issue: 6 year: 2016 ident: 10.1016/j.jclepro.2021.126580_bib4 article-title: Standard goal programming with fuzzy hierarchies: a sequential approach publication-title: Soft. Comput. doi: 10.1007/s00500-015-1644-2 – year: 2014 ident: 10.1016/j.jclepro.2021.126580_bib50 – volume: 1 start-page: 71 issue: 4 year: 1997 ident: 10.1016/j.jclepro.2021.126580_bib40 article-title: Life-cycle global warming impact of CFCs and CFC-substitutes for refrigeration publication-title: J. Ind. Ecol. doi: 10.1162/jiec.1997.1.4.71 – volume: 103 start-page: 401 year: 2015 ident: 10.1016/j.jclepro.2021.126580_bib33 article-title: How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO2 emissions using the system dynamics model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.12.080 – volume: vol. 1 start-page: 49 year: 2014 ident: 10.1016/j.jclepro.2021.126580_bib47 article-title: Methodology for determining the carbon footprint of the construction of residential buildings – volume: 575 start-page: 1582 year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib57 article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.081 – volume: 145 start-page: 172 year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib62 article-title: Dynamic analysis of global warming impact of the household refrigerator sector in Japan from 1952 to 2030 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.059 – volume: 68 start-page: 281 issue: 3 year: 2005 ident: 10.1016/j.jclepro.2021.126580_bib46 article-title: Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases publication-title: Climatic Change doi: 10.1007/s10584-005-1146-9 – volume: 586 start-page: 1308 year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib61 article-title: Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.145 – volume: 3 start-page: 285 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2021.126580_bib66 article-title: Evaluation method for science and technology performance on energy conservation and emission reduction publication-title: J. Environ. Account. Manag. – volume: 217 start-page: 627 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib63 article-title: Trade-off analysis between global impact potential and local risk: a case study of refrigerants publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.293 – volume: 138 start-page: 1 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib44 article-title: Thermodynamic and thermoeconomic analysis and optimization of a novel dual-loop power/refrigeration cycle publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.031 – year: 2015 ident: 10.1016/j.jclepro.2021.126580_bib38 – volume: 61 start-page: 302 issue: 3 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib34 article-title: A systems dynamic model of a coal-based city with multiple adaptive scenarios: a case study of Ordos, China. Sci. China publication-title: Earth Sci. – volume: 73 start-page: 1247 year: 2017 ident: 10.1016/j.jclepro.2021.126580_bib21 article-title: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.02.039 – volume: 72 start-page: 110 year: 2014 ident: 10.1016/j.jclepro.2021.126580_bib2 article-title: Environmental impacts of consumption of Australian red wine in the UK publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.02.044 – volume: 104 start-page: 549 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib36 article-title: Spatiotemporal differences in forest ecological security warning values in Beijing: using an integrated evaluation index system and system dynamics model publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2019.05.015 – start-page: 20 year: 1991 ident: 10.1016/j.jclepro.2021.126580_bib42 – volume: 10 start-page: 739 issue: 3 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib13 article-title: Particulate pollution status and its characteristics during 2015–2016 in Hunan, China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2018.12.001 – volume: 27 start-page: 129 issue: 1 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib14 article-title: Differential weighting of objective versus subjective measures in performance evaluation: experimental evidence publication-title: Eur. Account. Rev. doi: 10.1080/09638180.2016.1234402 – year: 2010 ident: 10.1016/j.jclepro.2021.126580_bib52 – volume: 30 start-page: 633 issue: 4 year: 2007 ident: 10.1016/j.jclepro.2021.126580_bib24 article-title: Comparison of R-290 and two HFC blends for walk-in refrigeration systems publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.10.007 – volume: 184 start-page: 527 year: 2019 ident: 10.1016/j.jclepro.2021.126580_bib16 article-title: Refrigerants selection for a direct expansion solar assisted heat pump for domestic hot water publication-title: Sol. Energy doi: 10.1016/j.solener.2019.04.027 – year: 2015 ident: 10.1016/j.jclepro.2021.126580_bib69 – volume: 13 start-page: 100 issue: 2 year: 1990 ident: 10.1016/j.jclepro.2021.126580_bib6 article-title: Overview of alternatives to CFCs for domestic refrigerators and freezers publication-title: Int. J. Refrig. doi: 10.1016/0140-7007(90)90008-K – volume: 123 start-page: 200 year: 2015 ident: 10.1016/j.jclepro.2021.126580_bib53 article-title: Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.10.071 – volume: 132 start-page: 298 year: 2014 ident: 10.1016/j.jclepro.2021.126580_bib60 article-title: Changes of energy-related GHG emissions in China: an empirical analysis from sectoral perspective publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.025 – volume: 96 start-page: 147 year: 2018 ident: 10.1016/j.jclepro.2021.126580_bib9 article-title: Experimental study on R-22, R-427A, R-161 and R-290 in air-source heat pump for space heating at low ambient temperatures publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.08.021 |
| SSID | ssj0017074 |
| Score | 2.4734173 |
| Snippet | Fluorinated gases are considered greenhouse gases and have a global warming effect up to 22,800 times greater than that of carbon dioxide. Fluorinated gases... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126580 |
| SubjectTerms | air conditioning carbon dioxide China decision making economic costs energy environmental impact greenhouse effect Greenhouse gas emissions greenhouse gases greenhouses industry Life cycle assessment ozone depletion Refrigerant risk Room air conditioners |
| Title | Refrigerant alternative and optimization under the constraint of the greenhouse gas emissions reduction target |
| URI | https://dx.doi.org/10.1016/j.jclepro.2021.126580 https://www.proquest.com/docview/2524288101 |
| Volume | 296 |
| WOSCitedRecordID | wos000672225100085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivGQkbijLxnZi-1ihosKhQlVRV1wiJ3ZoViVZ7W5W-zP6kzuOnQerltIDlyiy4ont-WJ_Gc-MEfoQS2NEyFQQGsIDJtI4SOMoC0hOOQAm4lOtmsMm-PGxmM3k99Hoso2F2VzwshTbrVz8V1VDGSjbhs7eQd2dUCiAe1A6XEHtcP0nxZ-YHP64DaxB1prr7X0bt0tQwQTx20deNifgOhfDzJJEe1bEunUZ-GXdcc6regW3avXRHgq3alzmljbVa1Pd-ZDfQG6hTaoE6QuXUHaw2X_mDdRHdXFeFwO7deVNBPOidx5yhSd1tS06AT-NE3BmQIAaWi1IGDQJT3fMj3HkouXbmZjI4VwaEmBH02uneWdxmE_m0BvoyMS-YdI__2da7Z3lrnNCbP3b5okXk1gxiRNzD-0RHkkxRnsHXw9n37qdKT51mb3b9vdRYZ-ubc9NfGdn5W_ozOlj9MirCh84_DxBI1M-RQ8H2SmfoXKAJDxAEgYk4SGScIMkDLjBPZJwlTclPZIwIAl3SMIdkrBD0nP048vh6eejwB_PEWSUkXWgWc4V1bmgVJiQpybmlj5qJRWhsZYyY4JpoPSKplKHUhOmgNHbnIt5noWUvkDjsirNS4SpFGmU5lJpTpnJY5UZbozKVZppptNoH7F2EJPM5663nblI_qrEfTTpqi1c8pbbKohWQ4lnoI5ZJoC826q-bzWawEjabTf4zmB0ExIBDRY2kd6ru7bnNXrQfzxv0Hi9rM1bdD_brIvV8p2H5hV7fL18 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refrigerant+alternative+and+optimization+under+the+constraint+of+the+greenhouse+gas+emissions+reduction+target&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Huihui&rft.au=Zhao%2C+Linjia&rft.au=Cao%2C+Ruoxin&rft.au=Zeng%2C+Weihua&rft.date=2021-05-10&rft.issn=0959-6526&rft.volume=296&rft.spage=126580&rft_id=info:doi/10.1016%2Fj.jclepro.2021.126580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2021_126580 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |