dbscan : Fast Density-Based Clustering with R
This article describes the implementation and use of the R package dbscan, which provides complete and fast implementations of the popular density-based clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS. Package dbscan uses advanced open-source spatial indexing data structures...
Uloženo v:
| Vydáno v: | Journal of statistical software Ročník 91; číslo 1; s. 1 - 30 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Foundation for Open Access Statistics
01.10.2019
|
| Témata: | |
| ISSN: | 1548-7660, 1548-7660 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article describes the implementation and use of the R package dbscan, which provides complete and fast implementations of the popular density-based clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS. Package dbscan uses advanced open-source spatial indexing data structures implemented in C++ to speed up computation. An important advantage of this implementation is that it is up-to-date with several improvements that have been added since the original algorithms were publications (e.g., artifact corrections and dendrogram extraction methods for OPTICS). We provide a consistent presentation of the DBSCAN and OPTICS algorithms, and compare dbscan's implementation with other popular libraries such as the R package fpc, ELKI, WEKA, PyClustering, SciKit-Learn, and SPMF in terms of available features and using an experimental comparison. |
|---|---|
| ISSN: | 1548-7660 1548-7660 |
| DOI: | 10.18637/jss.v091.i01 |