dbscan : Fast Density-Based Clustering with R

This article describes the implementation and use of the R package dbscan, which provides complete and fast implementations of the popular density-based clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS. Package dbscan uses advanced open-source spatial indexing data structures...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical software Ročník 91; číslo 1; s. 1 - 30
Hlavní autoři: Hahsler, Michael, Piekenbrock, Matthew, Doran, Derek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Foundation for Open Access Statistics 01.10.2019
Témata:
ISSN:1548-7660, 1548-7660
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article describes the implementation and use of the R package dbscan, which provides complete and fast implementations of the popular density-based clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS. Package dbscan uses advanced open-source spatial indexing data structures implemented in C++ to speed up computation. An important advantage of this implementation is that it is up-to-date with several improvements that have been added since the original algorithms were publications (e.g., artifact corrections and dendrogram extraction methods for OPTICS). We provide a consistent presentation of the DBSCAN and OPTICS algorithms, and compare dbscan's implementation with other popular libraries such as the R package fpc, ELKI, WEKA, PyClustering, SciKit-Learn, and SPMF in terms of available features and using an experimental comparison.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v091.i01