Multiobjective ensemble surrogate-based optimization algorithm for groundwater optimization designs

•A novel surrogate-based algorithm is proposed for groundwater multiobjective designs.•The adaptive switching technique is proposed to dynamically build the best surrogate.•Three sampling criteria with a population filter improve the ability of the algorithm.•Benchmark and practical cases test the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 612; S. 128159
Hauptverfasser: Wu, Mengtian, Wang, Lingling, Xu, Jin, Wang, Zhe, Hu, Pengjie, Tang, Hongwu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2022
Schlagworte:
ISSN:0022-1694
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel surrogate-based algorithm is proposed for groundwater multiobjective designs.•The adaptive switching technique is proposed to dynamically build the best surrogate.•Three sampling criteria with a population filter improve the ability of the algorithm.•Benchmark and practical cases test the performance of the proposed algorithm. Simulation technique is an increasingly focused method for conveniently evaluating a solution or scenario in the field of groundwater. However, traditional evolutionary algorithms require at least thousands of simulation executions when addressing groundwater simulation-based optimization problems to find reasonable solutions. Intensive simulations usually yield a prohibitive computational burden if the simulation involved is time-consuming. To defeat the issue, this paper proposes a multiobjective ensemble surrogate-based optimization algorithm named MESOA for groundwater optimization designs. Surrogate models can reduce the continual usage of expensive-cost models in a way that approximates objective functions. Unlike existing surrogate-assisted evolutionary algorithms, MESOA employs surrogates with various basis functions (RBFs) and Kriging as available surrogates, and presents an adaptive switching technique to construct surrogate models in an online way. In addition, MESOA involves three sample infill criteria and a novel population filter. With the assistance of these techniques, MESOA can fully depict the outline of the true Pareto front, although the times of invoking simulation are limited. Some representative benchmark cases are provided to test the applicability and effectiveness of the proposed algorithm at first. Afterward, MESOA is applied to solve some practical groundwater multiobjective optimization designs, such as groundwater remediation and requirement optimization. All empirical results indicate that the proposed algorithm obtains more availability and effectiveness than other algorithms and has wide universality for groundwater optimization designs.
AbstractList •A novel surrogate-based algorithm is proposed for groundwater multiobjective designs.•The adaptive switching technique is proposed to dynamically build the best surrogate.•Three sampling criteria with a population filter improve the ability of the algorithm.•Benchmark and practical cases test the performance of the proposed algorithm. Simulation technique is an increasingly focused method for conveniently evaluating a solution or scenario in the field of groundwater. However, traditional evolutionary algorithms require at least thousands of simulation executions when addressing groundwater simulation-based optimization problems to find reasonable solutions. Intensive simulations usually yield a prohibitive computational burden if the simulation involved is time-consuming. To defeat the issue, this paper proposes a multiobjective ensemble surrogate-based optimization algorithm named MESOA for groundwater optimization designs. Surrogate models can reduce the continual usage of expensive-cost models in a way that approximates objective functions. Unlike existing surrogate-assisted evolutionary algorithms, MESOA employs surrogates with various basis functions (RBFs) and Kriging as available surrogates, and presents an adaptive switching technique to construct surrogate models in an online way. In addition, MESOA involves three sample infill criteria and a novel population filter. With the assistance of these techniques, MESOA can fully depict the outline of the true Pareto front, although the times of invoking simulation are limited. Some representative benchmark cases are provided to test the applicability and effectiveness of the proposed algorithm at first. Afterward, MESOA is applied to solve some practical groundwater multiobjective optimization designs, such as groundwater remediation and requirement optimization. All empirical results indicate that the proposed algorithm obtains more availability and effectiveness than other algorithms and has wide universality for groundwater optimization designs.
Simulation technique is an increasingly focused method for conveniently evaluating a solution or scenario in the field of groundwater. However, traditional evolutionary algorithms require at least thousands of simulation executions when addressing groundwater simulation-based optimization problems to find reasonable solutions. Intensive simulations usually yield a prohibitive computational burden if the simulation involved is time-consuming. To defeat the issue, this paper proposes a multiobjective ensemble surrogate-based optimization algorithm named MESOA for groundwater optimization designs. Surrogate models can reduce the continual usage of expensive-cost models in a way that approximates objective functions. Unlike existing surrogate-assisted evolutionary algorithms, MESOA employs surrogates with various basis functions (RBFs) and Kriging as available surrogates, and presents an adaptive switching technique to construct surrogate models in an online way. In addition, MESOA involves three sample infill criteria and a novel population filter. With the assistance of these techniques, MESOA can fully depict the outline of the true Pareto front, although the times of invoking simulation are limited. Some representative benchmark cases are provided to test the applicability and effectiveness of the proposed algorithm at first. Afterward, MESOA is applied to solve some practical groundwater multiobjective optimization designs, such as groundwater remediation and requirement optimization. All empirical results indicate that the proposed algorithm obtains more availability and effectiveness than other algorithms and has wide universality for groundwater optimization designs.
ArticleNumber 128159
Author Wang, Zhe
Hu, Pengjie
Xu, Jin
Tang, Hongwu
Wang, Lingling
Wu, Mengtian
Author_xml – sequence: 1
  givenname: Mengtian
  surname: Wu
  fullname: Wu, Mengtian
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 2
  givenname: Lingling
  surname: Wang
  fullname: Wang, Lingling
  email: wanglingling@hhu.edu.cn
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 3
  givenname: Jin
  surname: Xu
  fullname: Xu, Jin
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 4
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 5
  givenname: Pengjie
  surname: Hu
  fullname: Hu, Pengjie
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 6
  givenname: Hongwu
  surname: Tang
  fullname: Tang, Hongwu
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
BookMark eNqFkM9LwzAYhnOY4Db9E4QevbQm_V08iAx_wcSLnkOafO1S0mYm6WT-9WZ2F70sEML38bwv4Vmg2aAHQOiK4Ihgkt90UbfZC6NVFOM4jkhckqyaoTn2U0jyKj1HC2s77E-SpHPEX0flpK474E7uIIDBQl8rCOxojG6Zg7BmFkSgt0728pt5eAiYarWRbtMHjTZBa_Q4iC_Pmr-YACvbwV6gs4YpC5fHd4k-Hh_eV8_h-u3pZXW_DnmSxi7kVS5YkVQCp3nV8KxIiiQjrOQcE8JYURORQo7rAgjOcQx-KWoMeQYlJjXLkyW6nnq3Rn-OYB3tpeWgFBtAj5bGBSn9TXHs0dsJ5UZba6ChXLrfTzvDpKIE04NO2tGjTnrQSSedPp39S2-N7JnZn8zdTTnwFnYSDLVcwsBBSOP9U6HliYYfuSeZ3w
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129502
crossref_primary_10_1016_j_envres_2023_117268
crossref_primary_10_1016_j_jhydrol_2024_131714
crossref_primary_10_1016_j_scitotenv_2024_176999
crossref_primary_10_3390_mca29050078
crossref_primary_10_3390_w16050652
crossref_primary_10_3390_app131910707
crossref_primary_10_1016_j_jenvman_2024_120252
crossref_primary_10_1016_j_jhydrol_2024_132525
Cites_doi 10.1109/TEVC.2013.2281535
10.1080/0305215X.2013.858138
10.1016/j.swevo.2011.02.002
10.1016/j.apm.2019.09.053
10.1016/j.jhydrol.2009.07.014
10.5194/hess-19-2409-2015
10.1109/TEVC.2017.2697503
10.1016/j.jhydrol.2018.06.006
10.1016/0169-7722(95)00106-9
10.1029/2011WR011527
10.1111/gwat.12413
10.1016/j.jhydrol.2019.123994
10.1029/2011WR010763
10.1016/j.jhydrol.2014.01.071
10.1111/j.1745-6584.2007.00358.x
10.1016/j.envsoft.2011.09.010
10.1016/j.jconhyd.2018.11.005
10.1115/1.1897403
10.3133/tm6A57
10.1016/j.jhydrol.2019.03.020
10.1023/A:1008306431147
10.1016/j.advwatres.2020.103540
10.1007/s10040-015-1270-1
10.1002/2014WR016825
10.1002/2017WR021622
10.1109/TCYB.2020.2967553
10.1109/TEVC.2016.2622301
10.1109/TEVC.2009.2033671
10.1016/j.jhydrol.2007.05.027
10.1109/4235.996017
10.1109/4235.797969
10.1016/j.jhydrol.2012.10.050
10.1016/j.apm.2021.01.019
10.1002/2015WR016967
10.1029/2012WR011973
10.1016/j.jhydrol.2016.12.011
10.1016/j.knosys.2021.106919
10.1109/TEVC.2005.851274
10.1016/j.jhydrol.2021.126670
10.3133/tm6A16
10.1016/S0266-8920(97)00013-1
10.1007/s00500-017-2965-0
10.1016/j.jhydrol.2020.125726
10.1109/TEVC.2016.2519378
10.1016/j.jfoodeng.2005.11.024
10.1016/j.swevo.2011.05.001
10.1007/s10040-015-1260-3
10.1109/MCI.2017.2742868
10.1109/TEVC.2004.835247
10.1109/TEVC.2018.2828091
10.1007/s11269-019-02472-9
10.1162/106365600568202
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128159
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2022_128159
S0022169422007338
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-c96da739d0469fc5737351a8cc011aa7b1d4e60b7e10602e11adb0e65e801ba63
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860767000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 13:55:38 EST 2025
Sat Nov 29 03:08:00 EST 2025
Tue Nov 18 22:33:37 EST 2025
Sat Oct 26 15:44:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiobjective optimization problems
Surrogate-assisted evolutionary algorithm
Pumping and treatment optimization
Groundwater optimization designs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-c96da739d0469fc5737351a8cc011aa7b1d4e60b7e10602e11adb0e65e801ba63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718271402
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718271402
crossref_citationtrail_10_1016_j_jhydrol_2022_128159
crossref_primary_10_1016_j_jhydrol_2022_128159
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128159
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kourakos, G., Mantoglou, A., 2013. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. J. Hydrol. 479, 13–23. https://doi.org/10/f4n78c.
Zhan, Cheng, Liu (b0255) 2017; 21
Jin (b0150) 2011; 1
Chugh, Jin, Miettinen, Hakanen, Sindhya (b0045) 2016; 22
Gong, Duan, Li, Wang, Di, Dai, Ye, Miao (b0115) 2015; 19
Dong, Li, Wang, Song, Yu (b0105) 2021; 220
Razavi, S., Tolson, B.A., Burn, D.H., 2012a. Review of surrogate modeling in water resources. Water Resour. Res. 48, W07401. https://doi.org/10/gcx7kq.
Zitzler, Deb, Thiele (b0280) 2000; 8
Gorelick, Zheng (b0120) 2015; 51
Huntington, Lyrintzis (b0140) 1998; 13
Jones, Schonlau, Welch (b0155) 1998; 13
Zhang, Liu, Tsang, Virginas (b0265) 2009; 14
Bakker, Post, Langevin, Hughes, White, Starn, Fienen (b0015) 2016; 54
Kazemzadeh-Parsi, M.J., Daneshmand, F., Ahmadfard, M.A., Adamowski, J., Martel, R., 2015. Optimal groundwater remediation design of pump and treat systems via a simulation-optimization approach and firefly algorithm. Eng. Optimiz. 47, 1–17. https://doi.org/10/gnp6xv.
Deb, Roy, Hussein (b0085) 2021; 26
Chugh, Sindhya, Hakanen, Miettinen (b0050) 2019; 23
Broomhead, Lowe (b0025) 1988
Mo, S., Lu, D., Shi, X., Zhang, G., Ye, M., Wu, Jianfeng, Wu, Jichun, 2017. A taylor expansion‐based adaptive design strategy for global surrogate modeling with applications in groundwater modeling. Water Resour. Res. 53, 10802–10823. https://doi.org/10/gcxxdj.
Song, J., Yang, Y., Chen, G., Sun, X., Lin, J., Wu, Jianfeng, Wu, Jichun, 2019. Surrogate assisted multi-objective robust optimization for groundwater monitoring network design. J. Hydrol. 577, 123994. https://doi.org/10/gnp6xk.
Karterakis, S.M., Karatzas, G.P., Nikolos, I.K., Papadopoulou, M.P., 2007. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J. Hydrol. 342, 270–282. https://doi.org/10/c77kf3.
Zheng, C., Wang, P.P., 1999. MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide.
Derrac, García, Molina, Herrera (b0095) 2011; 1
Razavi, Tolson, Burn (b0215) 2012; 34
Xing, Z., Qu, R., Zhao, Y., Fu, Q., Ji, Y., Lu, W., 2019. Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model. J. Hydrol. 572, 501–516. https://doi.org/10/gnp6xm.
Regis, R.G., Shoemaker, C.A., 2004. Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans. Evol. Computat. 8, 490–505. https://doi.org/10/bfdcz9.
Delshad, Pope, Sepehrnoori (b0090) 1996; 23
Tian, Cheng, Zhang, Jin (b0235) 2017; 12
Zitzler, Thiele (b0285) 1999; 3
Majumder, P., Eldho, T.I., 2020. Artificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediation. Water Resour. Manage. 34, 763–783. https://doi.org/10/gjftmv.
Li, Cai, Gao, Shen (b0185) 2020; 51
Zhao, Qu, Xing, Lu (b0270) 2020; 138
Li, J., Lu, W., Luo, J., 2021. Groundwater contamination sources identification based on the Long-Short Term Memory network. J. Hydrol. 601, 126670. https://doi.org/10/gm3k3k.
Zhang, Wang, Zhu, Zeng (b0260) 2021; 94
Ayvaz, Elci (b0010) 2018; 563
Knowles (b0170) 2006; 10
Coello, Sierra (b0060) 2004
Trefry, Muffels (b0240) 2007; 45
Deb, Hussein, Roy, Toscano-Pulido (b0075) 2018; 23
Elci, A., Ayvaz, M.T., 2014. Differential-Evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. J. Hydrol. 511, 736–749. https://doi.org/10/f52kj6.
Yeh, W.W.-G., 2015. Review: Optimization methods for groundwater modeling and management. Hydrogeol. J. 23, 1051–1065. https://doi.org/10/f7pchn.
Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA.
Deb, Jain (b0080) 2013; 18
Chen, Izady, Abdalla (b0030) 2017; 544
Hughes, J.D., Langevin, C.D., Banta, E.R., 2017. Documentation for the MODFLOW 6 framework (USGS Numbered Series No. 6-A57), Documentation for the MODFLOW 6 framework, Techniques and Methods. U.S. Geological Survey, Reston, VA. https://doi.org/10.3133/tm6A57.
Jiang, X., Na, J., 2020. Online surrogate multiobjective optimization algorithm for contaminated groundwater remediation designs. Appl. Math. Modell. 78, 519–538. https://doi.org/10/gnp6xh.
Datta, Chakrabarty, Dhar (b0065) 2009; 376
Mitchell (b0200) 1997; 45
Bas, Boyaci (b0020) 2007; 78
Singh (b0225) 2015; 23
Asher, Croke, Jakeman, Peeters (b0005) 2015; 51
Guo, J., Lu, W., Yang, Q., Miao, T., 2019. The application of 0–1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source. J. Contam. Hydrol. 220, 18–25. https://doi.org/10/gnp6xj.
Chen, Liu, Huang, Chen, Hou, Zhou (b0035) 2021; 598
Leube, P.C., Nowak, W., Schneider, G., 2012. Temporal moments revisited: Why there is no better way for physically based model reduction in time. Water Resour. Res. 48, W11527. https://doi.org/10/gnp6xz.
Cheng, Jin, Olhofer, Sendhoff (b0040) 2016; 20
Doherty, Christensen (b0100) 2011; 47
Deb, Pratap, Agarwal, Meyarivan (b0070) 2002; 6
Clarke, S.M., Griebsch, J.H., Simpson, T.W., 2005. Analysis of support vector regression for approximation of complex engineering analyses. https://doi.org/10.1115/1.1897403.
Bas (10.1016/j.jhydrol.2022.128159_b0020) 2007; 78
Zhang (10.1016/j.jhydrol.2022.128159_b0260) 2021; 94
Jin (10.1016/j.jhydrol.2022.128159_b0150) 2011; 1
10.1016/j.jhydrol.2022.128159_b0205
Bakker (10.1016/j.jhydrol.2022.128159_b0015) 2016; 54
Dong (10.1016/j.jhydrol.2022.128159_b0105) 2021; 220
10.1016/j.jhydrol.2022.128159_b0165
Trefry (10.1016/j.jhydrol.2022.128159_b0240) 2007; 45
Singh (10.1016/j.jhydrol.2022.128159_b0225) 2015; 23
10.1016/j.jhydrol.2022.128159_b0245
10.1016/j.jhydrol.2022.128159_b0125
Coello (10.1016/j.jhydrol.2022.128159_b0060) 2004
Cheng (10.1016/j.jhydrol.2022.128159_b0040) 2016; 20
Zhang (10.1016/j.jhydrol.2022.128159_b0265) 2009; 14
10.1016/j.jhydrol.2022.128159_b0160
Derrac (10.1016/j.jhydrol.2022.128159_b0095) 2011; 1
Chugh (10.1016/j.jhydrol.2022.128159_b0045) 2016; 22
Doherty (10.1016/j.jhydrol.2022.128159_b0100) 2011; 47
Broomhead (10.1016/j.jhydrol.2022.128159_b0025) 1988
Deb (10.1016/j.jhydrol.2022.128159_b0075) 2018; 23
Delshad (10.1016/j.jhydrol.2022.128159_b0090) 1996; 23
Chen (10.1016/j.jhydrol.2022.128159_b0035) 2021; 598
Zhan (10.1016/j.jhydrol.2022.128159_b0255) 2017; 21
10.1016/j.jhydrol.2022.128159_b0230
10.1016/j.jhydrol.2022.128159_b0110
10.1016/j.jhydrol.2022.128159_b0275
Zhao (10.1016/j.jhydrol.2022.128159_b0270) 2020; 138
Chugh (10.1016/j.jhydrol.2022.128159_b0050) 2019; 23
Knowles (10.1016/j.jhydrol.2022.128159_b0170) 2006; 10
10.1016/j.jhydrol.2022.128159_b0190
10.1016/j.jhydrol.2022.128159_b0195
Li (10.1016/j.jhydrol.2022.128159_b0185) 2020; 51
Zitzler (10.1016/j.jhydrol.2022.128159_b0280) 2000; 8
Jones (10.1016/j.jhydrol.2022.128159_b0155) 1998; 13
Ayvaz (10.1016/j.jhydrol.2022.128159_b0010) 2018; 563
Chen (10.1016/j.jhydrol.2022.128159_b0030) 2017; 544
Huntington (10.1016/j.jhydrol.2022.128159_b0140) 1998; 13
10.1016/j.jhydrol.2022.128159_b0145
Deb (10.1016/j.jhydrol.2022.128159_b0085) 2021; 26
10.1016/j.jhydrol.2022.128159_b0220
10.1016/j.jhydrol.2022.128159_b0180
Deb (10.1016/j.jhydrol.2022.128159_b0080) 2013; 18
Mitchell (10.1016/j.jhydrol.2022.128159_b0200) 1997; 45
Razavi (10.1016/j.jhydrol.2022.128159_b0215) 2012; 34
Gorelick (10.1016/j.jhydrol.2022.128159_b0120) 2015; 51
10.1016/j.jhydrol.2022.128159_b0210
10.1016/j.jhydrol.2022.128159_b0175
10.1016/j.jhydrol.2022.128159_b0055
10.1016/j.jhydrol.2022.128159_b0135
Gong (10.1016/j.jhydrol.2022.128159_b0115) 2015; 19
Deb (10.1016/j.jhydrol.2022.128159_b0070) 2002; 6
Zitzler (10.1016/j.jhydrol.2022.128159_b0285) 1999; 3
10.1016/j.jhydrol.2022.128159_b0250
10.1016/j.jhydrol.2022.128159_b0130
Datta (10.1016/j.jhydrol.2022.128159_b0065) 2009; 376
Tian (10.1016/j.jhydrol.2022.128159_b0235) 2017; 12
Asher (10.1016/j.jhydrol.2022.128159_b0005) 2015; 51
References_xml – volume: 78
  start-page: 836
  year: 2007
  end-page: 845
  ident: b0020
  article-title: Modeling and optimization I: Usability of response surface methodology
  publication-title: J. Food Eng.
– reference: Elci, A., Ayvaz, M.T., 2014. Differential-Evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. J. Hydrol. 511, 736–749. https://doi.org/10/f52kj6.
– volume: 54
  start-page: 733
  year: 2016
  end-page: 739
  ident: b0015
  article-title: Scripting MODFLOW model development using python and FloPy
  publication-title: Groundwater
– volume: 13
  start-page: 245
  year: 1998
  end-page: 253
  ident: b0140
  article-title: Improvements to and limitations of Latin hypercube sampling
  publication-title: Probab. Eng. Eng. Mech.
– year: 1988
  ident: b0025
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
  publication-title: Royal Signals and Radar Establishment Malvern (United Kingdom)
– reference: Li, J., Lu, W., Luo, J., 2021. Groundwater contamination sources identification based on the Long-Short Term Memory network. J. Hydrol. 601, 126670. https://doi.org/10/gm3k3k.
– volume: 376
  start-page: 48
  year: 2009
  end-page: 57
  ident: b0065
  article-title: Simultaneous identification of unknown groundwater pollution sources and estimation of aquifer parameters
  publication-title: J. Hydrol.
– volume: 94
  start-page: 656
  year: 2021
  end-page: 675
  ident: b0260
  article-title: Pore-scale simulation of salt fingers in porous media using a coupled iterative source-correction immersed boundary-lattice Boltzmann solver
  publication-title: Appl. Math. Model.
– reference: Jiang, X., Na, J., 2020. Online surrogate multiobjective optimization algorithm for contaminated groundwater remediation designs. Appl. Math. Modell. 78, 519–538. https://doi.org/10/gnp6xh.
– volume: 21
  start-page: 956
  year: 2017
  end-page: 975
  ident: b0255
  article-title: Expected improvement matrix-based infill criteria for expensive multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Song, J., Yang, Y., Chen, G., Sun, X., Lin, J., Wu, Jianfeng, Wu, Jichun, 2019. Surrogate assisted multi-objective robust optimization for groundwater monitoring network design. J. Hydrol. 577, 123994. https://doi.org/10/gnp6xk.
– volume: 51
  start-page: 1390
  year: 2020
  end-page: 1402
  ident: b0185
  article-title: A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems
  publication-title: IEEE Trans. Cybern.
– reference: Regis, R.G., Shoemaker, C.A., 2004. Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans. Evol. Computat. 8, 490–505. https://doi.org/10/bfdcz9.
– reference: Majumder, P., Eldho, T.I., 2020. Artificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediation. Water Resour. Manage. 34, 763–783. https://doi.org/10/gjftmv.
– reference: Kourakos, G., Mantoglou, A., 2013. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. J. Hydrol. 479, 13–23. https://doi.org/10/f4n78c.
– volume: 14
  start-page: 456
  year: 2009
  end-page: 474
  ident: b0265
  article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model
  publication-title: IEEE Trans. Evol. Comput.
– volume: 220
  year: 2021
  ident: b0105
  article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy
  publication-title: Knowl. Based. Syst.
– volume: 138
  year: 2020
  ident: b0270
  article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms
  publication-title: Adv. Water Resour.
– volume: 51
  start-page: 5957
  year: 2015
  end-page: 5973
  ident: b0005
  article-title: A review of surrogate models and their application to groundwater modeling: surrogates of groundwater models
  publication-title: Water Resour. Res.
– volume: 47
  start-page: W12534
  year: 2011
  ident: b0100
  article-title: Use of paired simple and complex models to reduce predictive bias and quantify uncertainty
  publication-title: Water Resour. Res.
– volume: 563
  start-page: 1078
  year: 2018
  end-page: 1091
  ident: b0010
  article-title: Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach
  publication-title: J. Hydrol.
– volume: 22
  start-page: 129
  year: 2016
  end-page: 142
  ident: b0045
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Mo, S., Lu, D., Shi, X., Zhang, G., Ye, M., Wu, Jianfeng, Wu, Jichun, 2017. A taylor expansion‐based adaptive design strategy for global surrogate modeling with applications in groundwater modeling. Water Resour. Res. 53, 10802–10823. https://doi.org/10/gcxxdj.
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0280
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evol. Comput.
– volume: 1
  start-page: 61
  year: 2011
  end-page: 70
  ident: b0150
  article-title: Surrogate-assisted evolutionary computation: Recent advances and future challenges
  publication-title: Swarm Evol. Comput.
– reference: Guo, J., Lu, W., Yang, Q., Miao, T., 2019. The application of 0–1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source. J. Contam. Hydrol. 220, 18–25. https://doi.org/10/gnp6xj.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0040
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 2409
  year: 2015
  end-page: 2425
  ident: b0115
  article-title: Multi-objective parameter optimization of common land model using adaptive surrogate modeling
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Hughes, J.D., Langevin, C.D., Banta, E.R., 2017. Documentation for the MODFLOW 6 framework (USGS Numbered Series No. 6-A57), Documentation for the MODFLOW 6 framework, Techniques and Methods. U.S. Geological Survey, Reston, VA. https://doi.org/10.3133/tm6A57.
– volume: 544
  start-page: 591
  year: 2017
  end-page: 603
  ident: b0030
  article-title: An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model
  publication-title: J. Hydrol.
– reference: Kazemzadeh-Parsi, M.J., Daneshmand, F., Ahmadfard, M.A., Adamowski, J., Martel, R., 2015. Optimal groundwater remediation design of pump and treat systems via a simulation-optimization approach and firefly algorithm. Eng. Optimiz. 47, 1–17. https://doi.org/10/gnp6xv.
– reference: Clarke, S.M., Griebsch, J.H., Simpson, T.W., 2005. Analysis of support vector regression for approximation of complex engineering analyses. https://doi.org/10.1115/1.1897403.
– reference: Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA.
– volume: 26
  start-page: 5
  year: 2021
  ident: b0085
  article-title: Surrogate modeling approaches for multiobjective optimization: methods, taxonomy, and results
  publication-title: Mathem. Comput. Appl.
– volume: 45
  start-page: 81
  year: 1997
  end-page: 127
  ident: b0200
  article-title: Artificial neural networks
  publication-title: Machine Learn.
– volume: 598
  year: 2021
  ident: b0035
  article-title: Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis
  publication-title: J. Hydrol.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b0235
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 45
  start-page: 525
  year: 2007
  end-page: 528
  ident: b0240
  article-title: FEFLOW: A finite-element ground water flow and transport modeling tool
  publication-title: Groundwater
– reference: Razavi, S., Tolson, B.A., Burn, D.H., 2012a. Review of surrogate modeling in water resources. Water Resour. Res. 48, W07401. https://doi.org/10/gcx7kq.
– volume: 23
  start-page: 104
  year: 2018
  end-page: 116
  ident: b0075
  article-title: A taxonomy for metamodeling frameworks for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Xing, Z., Qu, R., Zhao, Y., Fu, Q., Ji, Y., Lu, W., 2019. Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model. J. Hydrol. 572, 501–516. https://doi.org/10/gnp6xm.
– volume: 34
  start-page: 67
  year: 2012
  end-page: 86
  ident: b0215
  article-title: Numerical assessment of metamodelling strategies in computationally intensive optimization
  publication-title: Environ. Modell. Softw.
– reference: Zheng, C., Wang, P.P., 1999. MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide.
– volume: 23
  start-page: 303
  year: 1996
  end-page: 327
  ident: b0090
  article-title: A compositional simulator for modeling surfactant enhanced aquifer remediation.1
  publication-title: Formulation. J. Contam. Hydrol.
– volume: 51
  start-page: 3031
  year: 2015
  end-page: 3051
  ident: b0120
  article-title: Global change and the groundwater management challenge
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: b0080
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evolut. Comput.
– reference: Yeh, W.W.-G., 2015. Review: Optimization methods for groundwater modeling and management. Hydrogeol. J. 23, 1051–1065. https://doi.org/10/f7pchn.
– volume: 23
  start-page: 1217
  year: 2015
  end-page: 1227
  ident: b0225
  article-title: Review: Computer-based models for managing the water-resource problems of irrigated agriculture
  publication-title: Hydrogeol. J.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b0155
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– volume: 10
  start-page: 50
  year: 2006
  end-page: 66
  ident: b0170
  article-title: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comp.
– reference: Leube, P.C., Nowak, W., Schneider, G., 2012. Temporal moments revisited: Why there is no better way for physically based model reduction in time. Water Resour. Res. 48, W11527. https://doi.org/10/gnp6xz.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0095
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 23
  start-page: 3137
  year: 2019
  end-page: 3166
  ident: b0050
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Computing
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0285
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 688
  year: 2004
  end-page: 697
  ident: b0060
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
  publication-title: Micai 2004: Advances in Artificial Intelligence
– reference: Karterakis, S.M., Karatzas, G.P., Nikolos, I.K., Papadopoulou, M.P., 2007. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J. Hydrol. 342, 270–282. https://doi.org/10/c77kf3.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0070
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128159_b0080
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2013.2281535
– ident: 10.1016/j.jhydrol.2022.128159_b0165
  doi: 10.1080/0305215X.2013.858138
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128159_b0095
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.jhydrol.2022.128159_b0145
  doi: 10.1016/j.apm.2019.09.053
– volume: 376
  start-page: 48
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128159_b0065
  article-title: Simultaneous identification of unknown groundwater pollution sources and estimation of aquifer parameters
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.07.014
– volume: 19
  start-page: 2409
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128159_b0115
  article-title: Multi-objective parameter optimization of common land model using adaptive surrogate modeling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-2409-2015
– volume: 21
  start-page: 956
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128159_b0255
  article-title: Expected improvement matrix-based infill criteria for expensive multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2697503
– year: 1988
  ident: 10.1016/j.jhydrol.2022.128159_b0025
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
– start-page: 688
  year: 2004
  ident: 10.1016/j.jhydrol.2022.128159_b0060
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
– volume: 563
  start-page: 1078
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128159_b0010
  article-title: Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.006
– volume: 23
  start-page: 303
  year: 1996
  ident: 10.1016/j.jhydrol.2022.128159_b0090
  article-title: A compositional simulator for modeling surfactant enhanced aquifer remediation.1
  publication-title: Formulation. J. Contam. Hydrol.
  doi: 10.1016/0169-7722(95)00106-9
– ident: 10.1016/j.jhydrol.2022.128159_b0210
  doi: 10.1029/2011WR011527
– volume: 54
  start-page: 733
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128159_b0015
  article-title: Scripting MODFLOW model development using python and FloPy
  publication-title: Groundwater
  doi: 10.1111/gwat.12413
– ident: 10.1016/j.jhydrol.2022.128159_b0230
  doi: 10.1016/j.jhydrol.2019.123994
– volume: 47
  start-page: W12534
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128159_b0100
  article-title: Use of paired simple and complex models to reduce predictive bias and quantify uncertainty
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010763
– ident: 10.1016/j.jhydrol.2022.128159_b0110
  doi: 10.1016/j.jhydrol.2014.01.071
– volume: 45
  start-page: 525
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128159_b0240
  article-title: FEFLOW: A finite-element ground water flow and transport modeling tool
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2007.00358.x
– volume: 34
  start-page: 67
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128159_b0215
  article-title: Numerical assessment of metamodelling strategies in computationally intensive optimization
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2011.09.010
– ident: 10.1016/j.jhydrol.2022.128159_b0125
  doi: 10.1016/j.jconhyd.2018.11.005
– ident: 10.1016/j.jhydrol.2022.128159_b0055
  doi: 10.1115/1.1897403
– ident: 10.1016/j.jhydrol.2022.128159_b0135
  doi: 10.3133/tm6A57
– ident: 10.1016/j.jhydrol.2022.128159_b0245
  doi: 10.1016/j.jhydrol.2019.03.020
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.jhydrol.2022.128159_b0155
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 138
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128159_b0270
  article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103540
– volume: 23
  start-page: 1217
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128159_b0225
  article-title: Review: Computer-based models for managing the water-resource problems of irrigated agriculture
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-015-1270-1
– volume: 51
  start-page: 3031
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128159_b0120
  article-title: Global change and the groundwater management challenge
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016825
– ident: 10.1016/j.jhydrol.2022.128159_b0275
– ident: 10.1016/j.jhydrol.2022.128159_b0205
  doi: 10.1002/2017WR021622
– volume: 51
  start-page: 1390
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128159_b0185
  article-title: A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2967553
– volume: 22
  start-page: 129
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128159_b0045
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2622301
– volume: 14
  start-page: 456
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128159_b0265
  article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033671
– ident: 10.1016/j.jhydrol.2022.128159_b0160
  doi: 10.1016/j.jhydrol.2007.05.027
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.jhydrol.2022.128159_b0070
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.jhydrol.2022.128159_b0285
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– ident: 10.1016/j.jhydrol.2022.128159_b0175
  doi: 10.1016/j.jhydrol.2012.10.050
– volume: 94
  start-page: 656
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128159_b0260
  article-title: Pore-scale simulation of salt fingers in porous media using a coupled iterative source-correction immersed boundary-lattice Boltzmann solver
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.01.019
– volume: 51
  start-page: 5957
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128159_b0005
  article-title: A review of surrogate models and their application to groundwater modeling: surrogates of groundwater models
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016967
– ident: 10.1016/j.jhydrol.2022.128159_b0180
  doi: 10.1029/2012WR011973
– volume: 544
  start-page: 591
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128159_b0030
  article-title: An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.12.011
– volume: 220
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128159_b0105
  article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2021.106919
– volume: 10
  start-page: 50
  year: 2006
  ident: 10.1016/j.jhydrol.2022.128159_b0170
  article-title: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comp.
  doi: 10.1109/TEVC.2005.851274
– ident: 10.1016/j.jhydrol.2022.128159_b0190
  doi: 10.1016/j.jhydrol.2021.126670
– ident: 10.1016/j.jhydrol.2022.128159_b0130
  doi: 10.3133/tm6A16
– volume: 13
  start-page: 245
  year: 1998
  ident: 10.1016/j.jhydrol.2022.128159_b0140
  article-title: Improvements to and limitations of Latin hypercube sampling
  publication-title: Probab. Eng. Eng. Mech.
  doi: 10.1016/S0266-8920(97)00013-1
– volume: 26
  start-page: 5
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128159_b0085
  article-title: Surrogate modeling approaches for multiobjective optimization: methods, taxonomy, and results
  publication-title: Mathem. Comput. Appl.
– volume: 23
  start-page: 3137
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128159_b0050
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2965-0
– volume: 598
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128159_b0035
  article-title: Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125726
– volume: 20
  start-page: 773
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128159_b0040
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 78
  start-page: 836
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128159_b0020
  article-title: Modeling and optimization I: Usability of response surface methodology
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2005.11.024
– volume: 1
  start-page: 61
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128159_b0150
  article-title: Surrogate-assisted evolutionary computation: Recent advances and future challenges
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.05.001
– ident: 10.1016/j.jhydrol.2022.128159_b0250
  doi: 10.1007/s10040-015-1260-3
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128159_b0235
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– ident: 10.1016/j.jhydrol.2022.128159_b0220
  doi: 10.1109/TEVC.2004.835247
– volume: 23
  start-page: 104
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128159_b0075
  article-title: A taxonomy for metamodeling frameworks for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2828091
– volume: 45
  start-page: 81
  year: 1997
  ident: 10.1016/j.jhydrol.2022.128159_b0200
  article-title: Artificial neural networks
  publication-title: Machine Learn.
– ident: 10.1016/j.jhydrol.2022.128159_b0195
  doi: 10.1007/s11269-019-02472-9
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.jhydrol.2022.128159_b0280
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
SSID ssj0000334
Score 2.447867
Snippet •A novel surrogate-based algorithm is proposed for groundwater multiobjective designs.•The adaptive switching technique is proposed to dynamically build the...
Simulation technique is an increasingly focused method for conveniently evaluating a solution or scenario in the field of groundwater. However, traditional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128159
SubjectTerms algorithms
groundwater
Groundwater optimization designs
kriging
Multiobjective optimization problems
Pumping and treatment optimization
remediation
Surrogate-assisted evolutionary algorithm
Title Multiobjective ensemble surrogate-based optimization algorithm for groundwater optimization designs
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128159
https://www.proquest.com/docview/2718271402
Volume 612
WOSCitedRecordID wos000860767000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000334
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLhJcEE-xvBQkblVKEztxcqzQ8lihFYeFrbhETuz0oTZZpemy_AL-NjOxnaZdlmUPXKLKGrtO5-u8PDMm5I0XC9DikroBuigsUrkrAqzkUiAT85wz0ZzofvvMj4-j8Tj-0uv9srUw5wteFNHFRXz2X1kNY8BsLJ29AbvbRWEAPgPT4Qlsh-c_Mb4pqS3TuZZkfXBT1RLLo1brqioxaOai5pL9EoTF0lRh9sViUlazerps0g6x1KOQPwQ2UNwik02-x-oKi3b6U1a6pROYraMltmCQiLc21nC6buKvqpjUHVSempA1uMWThdWkMD5uqI9mlwi_T1U3WAF-rs3G6hYPeKG-19gK4NAkUmsRikd7ukn4JemuAw3zwVy_zwC_YbCh3-6mvaPl2txDm9Y2T8wyCS6T6GVukX2fBzFI-P3Rp8Px0UapU8ps43nc_6YY7O0f93OVmbOj8Bsr5uQ-uWeY5Yw0bB6QnioekjsflGlc_ohk2_BxLHycHfg4XVw4LXwcgI_Tgc82mYHPY_L1_eHJu4-uuYjDzSjzazeLQyk4jSUGU_Is4JTTwBNRloF2EIKnnmQqHKZcecNw6CsYlOlQhYEC-ycVIX1C9oqyUE-JA963J0Gn4rUHLAxyPCVPwWtgXLGUivCAMPu7JZnpUo-XpSySv_LtgAzaaWe6Tct1EyLLlMTYmtqGTABs1019bZmYgCzGAzZRqHK9Snww9HzsgOk_u-l-npO7m__LC7JXV2v1ktzOzuvZqnpl0PgbVV-zcw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+ensemble+surrogate-based+optimization+algorithm+for+groundwater+optimization+designs&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wu%2C+Mengtian&rft.au=Wang%2C+Lingling&rft.au=Xu%2C+Jin&rft.au=Wang%2C+Zhe&rft.date=2022-09-01&rft.issn=0022-1694&rft.volume=612&rft.spage=128159&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128159&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2022_128159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon