Evaluating low flow patterns, drivers and trends in the Delaware River Basin

•Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface properties.•Low flows have mainly increased in recent decades along with precipitation.•However, changes in reservoir storage and water use modified climat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 598; s. 126246
Hlavní autoři: Hammond, John C., Fleming, Brandon J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2021
Témata:
ISSN:0022-1694, 1879-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface properties.•Low flows have mainly increased in recent decades along with precipitation.•However, changes in reservoir storage and water use modified climate-based trends.•Future departures from recent, wetter conditions may complicate low flow management. In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan for future flows. Using a sample of 325 U.S. Geological Survey gages, we evaluated spatial patterns in several low flow metrics, the biophysical and climatic drivers of these metrics, and trends in low flows for two periods: 1950–2018 and 1980–2018. We calculated the annual 7-day low flow and date, low flow deficit as the departure below a long-term daily flow threshold and the number of discrete low flow periods below this threshold. We also aggregated several climate metrics to watershed scale and used existing watershed properties quantifying land cover, topography, soils, geology, and human activity. Random forest models were used to assess the hierarchy of variable importance in explaining mean-annual low flow variability for each low flow metric using all gages. We find muted regional patterns in mean-annual low flow and low flow variability, likely due to the myriad of anthropogenic, landscape, and flow modifications that obscure flow regimes from their natural characteristics. In contrast, individual years show markedly different spatial patterns in low flow magnitude and severity. Coincident with increases in precipitation, 7-day low flows have generally increased and low flow deficits decreased for both 1950–2018 and 1980–2018 periods. However, 7-day low flows have decreased in the Coastal Plain physiographic province where water use and impervious area have increased in recent decades, highlighting the effects of land and water management on low flows. With continued change expected in the DRB, additional research needs are highlighted to enable estimation of future low flows and to plan for periods of prolonged low flow.
AbstractList In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan for future flows. Using a sample of 325 U.S. Geological Survey gages, we evaluated spatial patterns in several low flow metrics, the biophysical and climatic drivers of these metrics, and trends in low flows for two periods: 1950–2018 and 1980–2018. We calculated the annual 7-day low flow and date, low flow deficit as the departure below a long-term daily flow threshold and the number of discrete low flow periods below this threshold. We also aggregated several climate metrics to watershed scale and used existing watershed properties quantifying land cover, topography, soils, geology, and human activity. Random forest models were used to assess the hierarchy of variable importance in explaining mean-annual low flow variability for each low flow metric using all gages. We find muted regional patterns in mean-annual low flow and low flow variability, likely due to the myriad of anthropogenic, landscape, and flow modifications that obscure flow regimes from their natural characteristics. In contrast, individual years show markedly different spatial patterns in low flow magnitude and severity. Coincident with increases in precipitation, 7-day low flows have generally increased and low flow deficits decreased for both 1950–2018 and 1980–2018 periods. However, 7-day low flows have decreased in the Coastal Plain physiographic province where water use and impervious area have increased in recent decades, highlighting the effects of land and water management on low flows. With continued change expected in the DRB, additional research needs are highlighted to enable estimation of future low flows and to plan for periods of prolonged low flow.
•Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface properties.•Low flows have mainly increased in recent decades along with precipitation.•However, changes in reservoir storage and water use modified climate-based trends.•Future departures from recent, wetter conditions may complicate low flow management. In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan for future flows. Using a sample of 325 U.S. Geological Survey gages, we evaluated spatial patterns in several low flow metrics, the biophysical and climatic drivers of these metrics, and trends in low flows for two periods: 1950–2018 and 1980–2018. We calculated the annual 7-day low flow and date, low flow deficit as the departure below a long-term daily flow threshold and the number of discrete low flow periods below this threshold. We also aggregated several climate metrics to watershed scale and used existing watershed properties quantifying land cover, topography, soils, geology, and human activity. Random forest models were used to assess the hierarchy of variable importance in explaining mean-annual low flow variability for each low flow metric using all gages. We find muted regional patterns in mean-annual low flow and low flow variability, likely due to the myriad of anthropogenic, landscape, and flow modifications that obscure flow regimes from their natural characteristics. In contrast, individual years show markedly different spatial patterns in low flow magnitude and severity. Coincident with increases in precipitation, 7-day low flows have generally increased and low flow deficits decreased for both 1950–2018 and 1980–2018 periods. However, 7-day low flows have decreased in the Coastal Plain physiographic province where water use and impervious area have increased in recent decades, highlighting the effects of land and water management on low flows. With continued change expected in the DRB, additional research needs are highlighted to enable estimation of future low flows and to plan for periods of prolonged low flow.
ArticleNumber 126246
Author Hammond, John C.
Fleming, Brandon J.
Author_xml – sequence: 1
  givenname: John C.
  surname: Hammond
  fullname: Hammond, John C.
  email: jhammond@usgs.gov
  organization: U.S. Geological Survey MD‐DE‐DC Water Science Center, Baltimore, MD, USA
– sequence: 2
  givenname: Brandon J.
  surname: Fleming
  fullname: Fleming, Brandon J.
  organization: U.S. Geological Survey Pennsylvania Water Science Center, New Cumberland, PA, USA
BookMark eNqFkDtPwzAUhS1UJNrCT0DyyECK7TgvMSAo5SFVQkIwW7fODXWUOsV2W_XfkyqdWHqHc5fzneEbkYFtLRJyzdmEM57e1ZN6uS9d20wEE3zCRSpkekaGPM-KSGQsG5AhY0JEPC3kBRl5X7Pu4lgOyXy2hWYDwdgf2rQ7Wh1iDSGgs_6Wls5s0XkKtqTBoS09NZaGJdJnbGAHDunnoUGfwBt7Sc4raDxeHf-YfL_MvqZv0fzj9X36OI90LEWIdCFlqXMpWMoyZAIkFxySaqEXWQ6ZZlUWLzRPMtBFkaY6yatEJMCxhFzEHOMxuel316793aAPamW8xqYBi-3GK5EIGbOCx7KrJn1Vu9Z7h5VaO7MCt1ecqYM9VaujPXWwp3p7HXf_j9MmdJpaGxyY5iT90NPYWdgadMprg1ZjaRzqoMrWnFj4AzlRkJo
CitedBy_id crossref_primary_10_2166_wcc_2023_284
crossref_primary_10_1061_JHYEFF_HEENG_6030
crossref_primary_10_1016_j_envsoft_2024_106185
crossref_primary_10_1016_j_jhydrol_2021_126697
crossref_primary_10_1016_j_jhydrol_2025_132908
crossref_primary_10_1016_j_scitotenv_2024_172685
crossref_primary_10_1029_2024WR039500
crossref_primary_10_1029_2022WR031930
crossref_primary_10_1088_2515_7620_ade36f
crossref_primary_10_3390_w13243487
crossref_primary_10_1080_02626667_2024_2369639
crossref_primary_10_1016_j_scitotenv_2022_159691
crossref_primary_10_1029_2021WR030618
crossref_primary_10_5194_hess_29_3629_2025
crossref_primary_10_1002_hyp_14877
crossref_primary_10_2166_wcc_2025_648
crossref_primary_10_1002_hyp_14832
crossref_primary_10_1016_j_jhydrol_2022_127447
crossref_primary_10_3390_w14010011
crossref_primary_10_1080_02626667_2024_2390925
Cites_doi 10.1016/S0022-1694(97)00125-X
10.5194/hess-20-3967-2016
10.3133/sir20175019
10.1080/15730620500386529
10.1029/2010WR009340
10.1080/1747423X.2019.1590473
10.1371/journal.pone.0169748
10.5194/hess-20-633-2016
10.1016/j.advwatres.2013.12.002
10.1175/JCLI-D-12-00244.1
10.1029/2018WR024620
10.5194/hess-12-1111-2008
10.2307/1313099
10.3133/fs20123047
10.1016/j.geomorph.2004.08.017
10.3133/tm4A10
10.3133/sir20135079
10.1016/j.jhydrol.2007.11.009
10.1080/01621459.1968.10480934
10.1016/j.jhydrol.2014.10.047
10.1016/S0022-1694(00)00336-X
10.1002/2015WR018125
10.1029/2018WR022913
10.1038/s41558-020-0709-0
10.2307/1907187
10.1016/j.jhydrol.2014.06.030
10.1029/2018WR023087
10.1002/rra.1247
10.1002/2013WR014618
10.1086/685084
10.1016/S0022-1694(00)00340-1
10.3133/sir20175083
10.3133/sir20145004
10.1016/j.jhydrol.2019.03.102
10.3133/sir20125151
10.3133/sir20065130
10.1007/s10584-015-1574-0
10.1029/1998GL900291
10.1029/2010WR009109
10.1002/joc.3413
10.1061/(ASCE)1084-0699(2004)9:2(116)
10.1002/2014GL061980
10.1016/j.jhydrol.2004.12.008
10.1016/j.jhydrol.2014.07.058
10.3133/sir20155142
10.1111/1752-1688.12777
10.1002/2014WR016367
10.3133/cir1376
10.1029/2017WR022412
10.1002/2014GL059856
10.1029/2005GL024476
10.1127/fal/2015/0611
10.1002/rra.3025
10.1111/j.1752-1688.2007.00003.x
10.1002/2016GL069121
10.2747/0272-3646.26.6.489
10.5194/hess-21-2863-2017
10.3133/cir1227
10.1038/nclimate2067
10.1111/1752-1688.12875
10.1029/2018WR022606
10.1029/2009WR008821
10.1111/j.1752-1688.2005.tb03806.x
10.1073/pnas.1222473110
10.1007/s10584-016-1782-2
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2021.126246
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126246
S0022169421002936
GeographicLocations Delaware River
GeographicLocations_xml – name: Delaware River
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-c944dc8420607e02a4121a5fbcb78a7c0f73bc157ac9966c58f525a1eda8231e3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661813200081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 10:54:03 EDT 2025
Sat Nov 29 06:59:47 EST 2025
Tue Nov 18 21:25:49 EST 2025
Fri Feb 23 02:42:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water use
Trends
Drought
Climate variability
Delaware River Basin
Low flows
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-c944dc8420607e02a4121a5fbcb78a7c0f73bc157ac9966c58f525a1eda8231e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524309134
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524309134
crossref_primary_10_1016_j_jhydrol_2021_126246
crossref_citationtrail_10_1016_j_jhydrol_2021_126246
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126246
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sen (b0395) 1968; 63
Schreffler, C.L.,1996, Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 1997–4113, 6 p., https://pubs.er.usgs.gov/publication/wri974113.
Prudhomme, Giuntoli, Robinson, Clark, Arnell, Dankers, Fekete, Franssen, Gerten, Gosling, Hagemann, Hannah, Kim, Masaki, Satoh, Stacke, Wada, Wisser (b0360) 2014; 111
Tijdeman, Barker, Svoboda, Stahl (b0430) 2018; 54
Baston, D. (2020). exactextractr: Fast Extraction from Raster Datasets using Polygons. R package version 0.2.0. https://CRAN.R-project.org/package=exactextractr.
Williamson, Nystrom, Milly (b0470) 2016; 139
Patterson, Lutz, Doyle (b0340) 2013; 49
Rice, K. C., and Hirsch, R.M., 2012, Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed: U.S. Geological Survey Scientific Investigations Report 2012-5151, 56 p.
Winter (b0465) 2007; 43
Endreny, Kwon, Williamson, Evans (b0100) 2019; 55
Randall, A.D., and Freehafer, D.A., 2017, Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems: U.S. Geological Survey Scientific Investigations Report 2017–5019, 42 p., 10.3133/sir20175019.
Blodgett (b0040) 2020
Lins, H. F. (2012). USGS hydro-climatic data network 2009 (HCDN-2009). US Geological Survey Fact Sheet, 3047(4).
Knoben, Woods, Freer (b0235) 2018; 54
Falcone, J.A., (2017). U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release, 10.5066/F7HQ3XS4.
Hirsch, R.M., and DeCicco, L.A., 2015. User guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R packages for hydrologic data (version 2.0, February 2015): U.S. Geological Survey Techniques and Methods book 4, chap. A10,93 p., doi: 10.3133/tm4A10.
Lins, Slack (b0290) 2005; 26
Carlisle, Falcone, Wolock, Meador, Norris (b0050) 2010; 26
Falcone, Murphy, Sprague (b0110) 2018; 13
Hamed, Ramachandra Rao (b0175) 1998; 204
Brandes, Cavallo, Nilson (b0045) 2005; 41
McCabe, Wolock (b0315) 2015; 41
Wanders, Wada (b0455) 2015; 526
Bhaskar, Beesley, Burns, Fletcher, Hamel, Oldham, Roy (b0035) 2016; 35
Ficklin, Robeson, Knouft (b0135) 2016; 43
Therneau, T. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart.
Poff, Allan, Bain, Karr, Prestegaard, Richter, Sparks, Stromberg (b0350) 1997; 47
Kauffman, Vonck (b0230) 2011; 47
Hutson, S.S., Linsey, K.S., Ludlow, R.A., Reyes, Betzaida, and Shourds, J.L., 2016, Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010: U.S. Geological Survey Scientific Investigations Report 2015–5142, 76 p., http://dx.doi.org/10.3133/sir20155142.
Fleming, Archfield, Hirsch, Kaing, Wolock (b0145) 2020
Abatzoglou (b0005) 2013; 33
Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p. (Also available at http://pubs.usgs.gov/circ/1376/.).
U.S. Environmental Protection Agency, 2018. Low flow statistics tools – A how-to handbook for NPDES permit writers: USEPA Document Number EPA-833-B-18-001, 39 p., https://www.epa.gov/sites/production/files/2018-11/documents/low_flow_stats_tools_handbook.pdf.
Hodgkins, G. A., and Dudley, R. W., 2011, Historical summer baseflow and stormflow trends for New England rivers: Water Resources Research, V. 47, W07528, doi:10.1029/2010WR009109.
Groemping, U. and Matthias, L. (2013) zyp: Zhang + Yue-Pilon trends package, R package version 2.2.0.
World Meteorological Organization (WMO), (2008). Manual on low-flow estimation and prediction. Operational hydrology report No. 50. WMO-No. 1029. Geneva, Switzerland.
Dudley, Hirsch, Archfield, Blum, Renard (b0090) 2019; 580
Avril, Barten (b0015) 2007
Maloney, Talbert, Cole, Galbraith, Blakeslee, Hanson, Holmquist-Johnson (b0305) 2015; 186
Kormos, Luce, Wenger, Berghuijs (b0250) 2016; 52
Daly (b0070) 2013
Falcone, J. A. (2011). GAGES-II: Geospatial attributes of gages for evaluating streamflow (Digit. Spat. Data set). Reston, VA: U.S. Geological Survey.
de Graaf, van Beek, Wada, Bierkens (b0075) 2014; 64
Dudley, R.W., Hirsch, R.M., Archfield, S.A., Blum, A.G., and Renard, B., 2018. Low streamflow trends and basin characteristics for 2,482 U.S. Geological Survey stream gages in the conterminous U.S.: U.S. Geological Survey data release, doi: 10. 5066/P9LO24MG.
Theil, H. (1950). A rank-invariant method of linear and polynominal regression analysis (Parts 1-3). In Ned. Akad. Wetensch. Proc. Ser. A (Vol. 53, pp. 1397-1412).
Kuentz, Arheimer, Hundecha, Wagener (b0265) 2017; 21
McLeod (b0325) 2011; 2
Konikow, L.F., 2013, Groundwater depletion in the United States (1900−2008): U.S. Geological Survey Scientific Investigations Report 2013−5079, 63 p., http://pubs.usgs.gov/sir/2013/5079.
Liaw (b0280) 2018; 4
Dierauer, Whitfield, Allen (b0080) 2018; 54
Hansler, Goodell (b0185) 1983
Hodgkins, Dudley, Archfield, Renard (b0205) 2019; 573
Addor, Nearing, Prieto, Newman, Le Vine, Clark (b0010) 2018; 54
Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić, A., ... & Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2).
Magilligan, Nislow (b0300) 2005; 71
Konapala, Mishra (b0240) 2020
Cohn, Lins (b0060) 2005; 32
Fenneman, D.W., Johnson, N.M. (1946) “Physiographic divisions of the conterminous US.” US Geol. Surv., http://water. usgs. gov/lookup/getspatial.
Krakauer, Fung (b0255) 2008; 12
Carpenter, Hayes (b0055) 1996; 94
Kam, Sheffield (b0225) 2015; 135
Price, Jackson, Parker, Reitan, Dowd, Cyterski (b0355) 2011; 47
Pendergrass, Meehl, Pulwarty, Hobbins, Hoell, AghaKouchak, Bonfils, Gallant, Hoerling, Hoffmann, Kaatz, Lehner, Llewellyn, Mote, Neale, Overpeck, Sheffield, Stahl, Svoboda, Wheeler, Wood, Woodhouse (b0345) 2020; 10
U.S. Geological Survey, 2014, Agreement of the parties to the 1954 U.S. Supreme Court Decree effective June 1, 2014, accessed June 5, 2014, at http://water.usgs.gov/osw/ odrm/documents/FFMP_2014_Agreement.pdf.
Falcone (b0115) 2018
Ledford, Zimmer, Payan (b0275) 2020; e2020WR027098
Fischer, J. M., Riva-Murray, K., Hickman, R. E., Chichester, D. C., Brightbill, R. A., Romanok, K., & Bilger, M. D. (2004). Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1999-2001 (Vol. 1227). US Geological Survey.
Shuster, Bonta, Thurston, Warnemuende, Smith (b0400) 2005; 2
Watson, K.M., and McHugh, A.R., 2014, Regional regression equations for the estimation of selected monthly lowflow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p., http://dx.doi.org/10.3133/sir20145004.
Gleeson, Moosdorf, Hartmann, van Beek (b0160) 2014; 41
Garcia-Fresca, Sharp (b0155) 2005; 16
R Core Team (b0370) 2018
Laaha, Parajka, Viglione, Koffler, Haslinger, Schöner, Zehetgruber, Blöschl (b0270) 2016; 20
Barr, J. K. 2017. 2017. “Chapter 2 - Water Quantity” in the Technical Report for the Delaware Estuary and Basin. Partnership for the Delaware Estuary. PDE Report No. 17-07, pp. 77-95.
McCabe, Wolock (b0320) 2020; 56
Rice, Emanuel, Vose, Nelson (b0375) 2015; 51
U.S. Geological Survey, 2019, National Water Information System, USGS water data for the Nation, accessed September 1, 2019, at http://nwis.waterdata.usgs.gov/nwis.
Singh, Archfield, Wagener (b0405) 2014; 517
Smakhtin (b0410) 2001; 240
Feaster, T.D., and Lee, K.G., (2017). Low-flow frequency and flow-duration characteristics of selected streams in Alabama through March 2014: U.S. Geological Survey Scientific Investigations Report 2017–5083, 371 p., 10.3133/sir20175083.
Cole, Maloney, Schmid, McKenna (b0065) 2014; 519
Sadri, Kam, Sheffield (b0385) 2016; 20
Mann (b0310) 1945; 13
Kroll, Luz, Allen, Vogel (b0260) 2004; 9
Lins, Slack (b0295) 1999; 26
Milborrow, S. (2019). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. R package version 3.0.8. ://CRAN.R-project.org/package=rpart.plot.
Kam, Sheffield, Yuan, Wood (b0220) 2013; 26
Hammond, J.C., 2020, Annual low flow, climate and watershed properties for 325 USGS gages in and near the Delaware River Basin: U.S. Geological Survey data release, 10.5066/P92UYECV.
Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.
Huh, Dickey, Meador, Ruhl (b0210) 2005; 310
Hamed (b0170) 2008; 349
Douglas, Vogel, Kroll (b0085) 2000; 240
Galbraith, Blakeslee, Cole, Talbert, Maloney (b0150) 2016; 32
Trenberth, Dai, van der Schrier, Jones, Barichivich, Briffa, Sheffield (b0435) 2014; 4
New Jersey Department of Environmental Protection, 2017, New Jersey Water Supply Plan 2017-2022: 484p, http://www.nj.gov/dep/watersupply/wsp.html.
Avril (10.1016/j.jhydrol.2021.126246_b0015) 2007
Kormos (10.1016/j.jhydrol.2021.126246_b0250) 2016; 52
Ledford (10.1016/j.jhydrol.2021.126246_b0275) 2020; e2020WR027098
Poff (10.1016/j.jhydrol.2021.126246_b0350) 1997; 47
Singh (10.1016/j.jhydrol.2021.126246_b0405) 2014; 517
Fleming (10.1016/j.jhydrol.2021.126246_b0145) 2020
10.1016/j.jhydrol.2021.126246_b0425
Price (10.1016/j.jhydrol.2021.126246_b0355) 2011; 47
10.1016/j.jhydrol.2021.126246_b0105
Krakauer (10.1016/j.jhydrol.2021.126246_b0255) 2008; 12
Bhaskar (10.1016/j.jhydrol.2021.126246_b0035) 2016; 35
10.1016/j.jhydrol.2021.126246_b0140
10.1016/j.jhydrol.2021.126246_b0020
10.1016/j.jhydrol.2021.126246_b0460
10.1016/j.jhydrol.2021.126246_b0025
Hodgkins (10.1016/j.jhydrol.2021.126246_b0205) 2019; 573
Sadri (10.1016/j.jhydrol.2021.126246_b0385) 2016; 20
Maloney (10.1016/j.jhydrol.2021.126246_b0305) 2015; 186
Smakhtin (10.1016/j.jhydrol.2021.126246_b0410) 2001; 240
10.1016/j.jhydrol.2021.126246_b0420
10.1016/j.jhydrol.2021.126246_b0380
Ficklin (10.1016/j.jhydrol.2021.126246_b0135) 2016; 43
Kam (10.1016/j.jhydrol.2021.126246_b0225) 2015; 135
10.1016/j.jhydrol.2021.126246_b0180
Sen (10.1016/j.jhydrol.2021.126246_b0395) 1968; 63
Douglas (10.1016/j.jhydrol.2021.126246_b0085) 2000; 240
McCabe (10.1016/j.jhydrol.2021.126246_b0320) 2020; 56
Galbraith (10.1016/j.jhydrol.2021.126246_b0150) 2016; 32
Pendergrass (10.1016/j.jhydrol.2021.126246_b0345) 2020; 10
de Graaf (10.1016/j.jhydrol.2021.126246_b0075) 2014; 64
10.1016/j.jhydrol.2021.126246_b0415
10.1016/j.jhydrol.2021.126246_b0335
10.1016/j.jhydrol.2021.126246_b0215
Lins (10.1016/j.jhydrol.2021.126246_b0295) 1999; 26
Huh (10.1016/j.jhydrol.2021.126246_b0210) 2005; 310
Gleeson (10.1016/j.jhydrol.2021.126246_b0160) 2014; 41
Kam (10.1016/j.jhydrol.2021.126246_b0220) 2013; 26
10.1016/j.jhydrol.2021.126246_b0450
10.1016/j.jhydrol.2021.126246_b0330
Kuentz (10.1016/j.jhydrol.2021.126246_b0265) 2017; 21
Liaw (10.1016/j.jhydrol.2021.126246_b0280) 2018; 4
10.1016/j.jhydrol.2021.126246_b0130
Hansler (10.1016/j.jhydrol.2021.126246_b0185) 1983
Prudhomme (10.1016/j.jhydrol.2021.126246_b0360) 2014; 111
Shuster (10.1016/j.jhydrol.2021.126246_b0400) 2005; 2
Falcone (10.1016/j.jhydrol.2021.126246_b0115) 2018
10.1016/j.jhydrol.2021.126246_b0095
Endreny (10.1016/j.jhydrol.2021.126246_b0100) 2019; 55
McLeod (10.1016/j.jhydrol.2021.126246_b0325) 2011; 2
Hamed (10.1016/j.jhydrol.2021.126246_b0175) 1998; 204
Hamed (10.1016/j.jhydrol.2021.126246_b0170) 2008; 349
Kroll (10.1016/j.jhydrol.2021.126246_b0260) 2004; 9
Carpenter (10.1016/j.jhydrol.2021.126246_b0055) 1996; 94
Brandes (10.1016/j.jhydrol.2021.126246_b0045) 2005; 41
Carlisle (10.1016/j.jhydrol.2021.126246_b0050) 2010; 26
10.1016/j.jhydrol.2021.126246_b0445
Mann (10.1016/j.jhydrol.2021.126246_b0310) 1945; 13
Tijdeman (10.1016/j.jhydrol.2021.126246_b0430) 2018; 54
Laaha (10.1016/j.jhydrol.2021.126246_b0270) 2016; 20
10.1016/j.jhydrol.2021.126246_b0120
10.1016/j.jhydrol.2021.126246_b0285
McCabe (10.1016/j.jhydrol.2021.126246_b0315) 2015; 41
Addor (10.1016/j.jhydrol.2021.126246_b0010) 2018; 54
10.1016/j.jhydrol.2021.126246_b0165
10.1016/j.jhydrol.2021.126246_b0440
Williamson (10.1016/j.jhydrol.2021.126246_b0470) 2016; 139
Falcone (10.1016/j.jhydrol.2021.126246_b0110) 2018; 13
10.1016/j.jhydrol.2021.126246_b0245
10.1016/j.jhydrol.2021.126246_b0125
Patterson (10.1016/j.jhydrol.2021.126246_b0340) 2013; 49
Konapala (10.1016/j.jhydrol.2021.126246_b0240) 2020
10.1016/j.jhydrol.2021.126246_b0200
Lins (10.1016/j.jhydrol.2021.126246_b0290) 2005; 26
10.1016/j.jhydrol.2021.126246_b0365
R Core Team (10.1016/j.jhydrol.2021.126246_b0370) 2018
Winter (10.1016/j.jhydrol.2021.126246_b0465) 2007; 43
Wanders (10.1016/j.jhydrol.2021.126246_b0455) 2015; 526
Daly (10.1016/j.jhydrol.2021.126246_b0070) 2013
Trenberth (10.1016/j.jhydrol.2021.126246_b0435) 2014; 4
Dudley (10.1016/j.jhydrol.2021.126246_b0090) 2019; 580
Cole (10.1016/j.jhydrol.2021.126246_b0065) 2014; 519
Dierauer (10.1016/j.jhydrol.2021.126246_b0080) 2018; 54
10.1016/j.jhydrol.2021.126246_b0030
10.1016/j.jhydrol.2021.126246_b0195
Blodgett (10.1016/j.jhydrol.2021.126246_b0040) 2020
Kauffman (10.1016/j.jhydrol.2021.126246_b0230) 2011; 47
10.1016/j.jhydrol.2021.126246_b0475
10.1016/j.jhydrol.2021.126246_b0190
Knoben (10.1016/j.jhydrol.2021.126246_b0235) 2018; 54
Garcia-Fresca (10.1016/j.jhydrol.2021.126246_b0155) 2005; 16
Abatzoglou (10.1016/j.jhydrol.2021.126246_b0005) 2013; 33
Cohn (10.1016/j.jhydrol.2021.126246_b0060) 2005; 32
Magilligan (10.1016/j.jhydrol.2021.126246_b0300) 2005; 71
Rice (10.1016/j.jhydrol.2021.126246_b0375) 2015; 51
10.1016/j.jhydrol.2021.126246_b0390
References_xml – volume: 517
  start-page: 985
  year: 2014
  end-page: 996
  ident: b0405
  article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments–A comparative hydrology approach
  publication-title: J. Hydrol.
– volume: 47
  start-page: W05521
  year: 2011
  ident: b0230
  article-title: Frequency and intensity of extreme drought in the Delaware Basin, 1600–2002
  publication-title: Water Resour. Res.
– reference: Konikow, L.F., 2013, Groundwater depletion in the United States (1900−2008): U.S. Geological Survey Scientific Investigations Report 2013−5079, 63 p., http://pubs.usgs.gov/sir/2013/5079.
– reference: World Meteorological Organization (WMO), (2008). Manual on low-flow estimation and prediction. Operational hydrology report No. 50. WMO-No. 1029. Geneva, Switzerland.
– volume: 55
  start-page: 1268
  year: 2019
  end-page: 1287
  ident: b0100
  article-title: Reduced Soil Macropores and Forest Cover Reduce Warm-Season Baseflow below Ecological Thresholds in the Upper Delaware River Basin
  publication-title: J. Am. Water Resour. Assoc.
– volume: 51
  start-page: 6262
  year: 2015
  end-page: 6275
  ident: b0375
  article-title: Continental US streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 769
  year: 1997
  end-page: 784
  ident: b0350
  article-title: The natural flow regime
  publication-title: Bioscience
– volume: 63
  start-page: 1379
  year: 1968
  end-page: 1389
  ident: b0395
  article-title: Estimates of the regression coefficient based on Kendall's tau
  publication-title: J. Am. Stat. Assoc.
– reference: Fenneman, D.W., Johnson, N.M. (1946) “Physiographic divisions of the conterminous US.” US Geol. Surv., http://water. usgs. gov/lookup/getspatial.
– volume: 9
  start-page: 116
  year: 2004
  end-page: 125
  ident: b0260
  article-title: Developing a watershed characteristics database to improve low streamflow prediction
  publication-title: J. Hydrol. Eng.
– volume: 54
  start-page: 8792
  year: 2018
  end-page: 8812
  ident: b0010
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
– reference: Hodgkins, G. A., and Dudley, R. W., 2011, Historical summer baseflow and stormflow trends for New England rivers: Water Resources Research, V. 47, W07528, doi:10.1029/2010WR009109.
– reference: New Jersey Department of Environmental Protection, 2017, New Jersey Water Supply Plan 2017-2022: 484p, http://www.nj.gov/dep/watersupply/wsp.html.
– volume: 41
  start-page: 1377
  year: 2005
  end-page: 1391
  ident: b0045
  article-title: Base flow trends in urbanizing watersheds of the Delaware River Basin 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 526
  start-page: 208
  year: 2015
  end-page: 220
  ident: b0455
  article-title: Human and climate impacts on the 21st century hydrological drought
  publication-title: J. Hydrol.
– volume: 54
  start-page: 6005
  year: 2018
  end-page: 6023
  ident: b0430
  article-title: Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States
  publication-title: Water Resour. Res.
– reference: U.S. Environmental Protection Agency, 2018. Low flow statistics tools – A how-to handbook for NPDES permit writers: USEPA Document Number EPA-833-B-18-001, 39 p., https://www.epa.gov/sites/production/files/2018-11/documents/low_flow_stats_tools_handbook.pdf.
– volume: 52
  start-page: 4990
  year: 2016
  end-page: 5007
  ident: b0250
  article-title: Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 3891
  year: 2014
  end-page: 3898
  ident: b0160
  article-title: A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity
  publication-title: Geophys. Res. Lett.
– year: 2020
  ident: b0145
  article-title: Spatial and temporal patterns of low streamflow and precipitation changes in the Chesapeake Bay Watershed
  publication-title: Journal of American Water Resources
– volume: 54
  start-page: 5088
  year: 2018
  end-page: 5109
  ident: b0235
  article-title: A quantitative hydrological climate classification evaluated with independent streamflow data
  publication-title: Water Resour. Res.
– volume: 12
  start-page: 1111
  year: 2008
  end-page: 1120
  ident: b0255
  article-title: Mapping and attribution of change in streamflow in the coterminous United States
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 94
  start-page: 4020
  year: 1996
  ident: b0055
  article-title: Low-flow characteristics of streams in Maryland and Delaware
  publication-title: Water-Resour. Investigat. Rep.
– volume: 135
  start-page: 639
  year: 2015
  end-page: 653
  ident: b0225
  article-title: Changes in the Low Flow Regime over the Eastern United States (1962–2011): Variability, Trends, and Attributions
  publication-title: Clim. Chang.
– volume: 32
  start-page: 1765
  year: 2016
  end-page: 1775
  ident: b0150
  article-title: Evaluating methods to establish habitat suitability criteria: a case study in the upper Delaware River Basin, USA
  publication-title: River Res. Appl.
– volume: 20
  start-page: 3967
  year: 2016
  end-page: 3985
  ident: b0270
  article-title: A three-pillar approach to assessing climate impacts on low flows
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2013
  ident: b0070
  article-title: Descriptions of PRISM spatial climate datasets for the conterminous United States (PRISM Doc
– reference: Milborrow, S. (2019). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. R package version 3.0.8. ://CRAN.R-project.org/package=rpart.plot.
– reference: Therneau, T. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart.
– volume: 204
  start-page: 182
  year: 1998
  end-page: 196
  ident: b0175
  article-title: A modified Mann-Kendall trend test for autocorrelated data
  publication-title: J. Hydrol.
– volume: 13
  start-page: 245
  year: 1945
  ident: b0310
  article-title: Nonparametric tests against trend
  publication-title: Econometrica: J. Economet. Soc.
– volume: 349
  start-page: 350
  year: 2008
  end-page: 363
  ident: b0170
  article-title: Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis
  publication-title: J. Hydrol.
– reference: Theil, H. (1950). A rank-invariant method of linear and polynominal regression analysis (Parts 1-3). In Ned. Akad. Wetensch. Proc. Ser. A (Vol. 53, pp. 1397-1412).
– volume: 56
  start-page: 981
  year: 2020
  end-page: 994
  ident: b0320
  article-title: Hydro-climatic Drought in the Delaware River Basin
  publication-title: J. Am. Water Resour. Assoc.
– year: 2018
  ident: b0370
  article-title: R: A Language and Environment for Statistical Computing
– volume: 64
  start-page: 21
  year: 2014
  end-page: 33
  ident: b0075
  article-title: Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges
  publication-title: Adv. Water Resour.
– reference: Feaster, T.D., and Lee, K.G., (2017). Low-flow frequency and flow-duration characteristics of selected streams in Alabama through March 2014: U.S. Geological Survey Scientific Investigations Report 2017–5083, 371 p., 10.3133/sir20175083.
– volume: 26
  start-page: 489
  year: 2005
  end-page: 501
  ident: b0290
  article-title: Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999
  publication-title: Phys. Geogr.
– year: 2020
  ident: b0240
  article-title: Quantifying climate and catchment control on hydrological drought in continental United States
  publication-title: Water Resour. Res.
– volume: 26
  start-page: 227
  year: 1999
  end-page: 230
  ident: b0295
  article-title: Streamflow trends in the United States
  publication-title: Geophys. Res. Lett.
– volume: 2
  start-page: 263
  year: 2005
  end-page: 275
  ident: b0400
  article-title: Impacts of impervious surface on watershed hydrology: A review
  publication-title: Urban Water J.
– volume: 10
  start-page: 191
  year: 2020
  end-page: 199
  ident: b0345
  article-title: Flash droughts present a new challenge for subseasonal-to-seasonal prediction
  publication-title: Nat. Clim. Change
– volume: 4
  start-page: 17
  year: 2014
  end-page: 22
  ident: b0435
  article-title: Global warming and changes in drought
  publication-title: Nat. Clim. Change
– year: 2007
  ident: b0015
  article-title: Land use effects on streamflow and water quality in the northeastern United States
– volume: 240
  start-page: 147
  year: 2001
  end-page: 186
  ident: b0410
  article-title: Low flow hydrology: a review
  publication-title: J. Hydrol.
– reference: Fischer, J. M., Riva-Murray, K., Hickman, R. E., Chichester, D. C., Brightbill, R. A., Romanok, K., & Bilger, M. D. (2004). Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1999-2001 (Vol. 1227). US Geological Survey.
– start-page: 2
  year: 2020
  ident: b0040
  article-title: intersectr: Package for intersecting spatiotemporal attribute data
  publication-title: R package version
– volume: e2020WR027098
  year: 2020
  ident: b0275
  article-title: Anthropogenic and biophysical controls on low flow hydrology in the southeastern US
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 2863
  year: 2017
  end-page: 2879
  ident: b0265
  article-title: Understanding hydrologic variability across Europe through catchment classification
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Randall, A.D., and Freehafer, D.A., 2017, Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems: U.S. Geological Survey Scientific Investigations Report 2017–5019, 42 p., 10.3133/sir20175019.
– reference: Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.
– reference: Baston, D. (2020). exactextractr: Fast Extraction from Raster Datasets using Polygons. R package version 0.2.0. https://CRAN.R-project.org/package=exactextractr.
– reference: Hutson, S.S., Linsey, K.S., Ludlow, R.A., Reyes, Betzaida, and Shourds, J.L., 2016, Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010: U.S. Geological Survey Scientific Investigations Report 2015–5142, 76 p., http://dx.doi.org/10.3133/sir20155142.
– reference: Hammond, J.C., 2020, Annual low flow, climate and watershed properties for 325 USGS gages in and near the Delaware River Basin: U.S. Geological Survey data release, 10.5066/P92UYECV.
– volume: 4
  start-page: 14
  year: 2018
  ident: b0280
  article-title: randomForest: Breiman and Cutler's Random Forests for Classification and Regression
  publication-title: R package version
– volume: 41
  start-page: 6889
  year: 2015
  end-page: 6897
  ident: b0315
  article-title: Spatial and temporal patterns in conterminous United States streamflow characteristics
  publication-title: Geophys. Res. Lett.
– volume: 519
  start-page: 588
  year: 2014
  end-page: 598
  ident: b0065
  article-title: Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River
  publication-title: J. Hydrol.
– volume: 43
  start-page: 5079
  year: 2016
  end-page: 5088
  ident: b0135
  article-title: Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds
  publication-title: Geophys. Res. Lett.
– reference: Rice, K. C., and Hirsch, R.M., 2012, Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed: U.S. Geological Survey Scientific Investigations Report 2012-5151, 56 p.
– reference: Schreffler, C.L.,1996, Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 1997–4113, 6 p., https://pubs.er.usgs.gov/publication/wri974113.
– volume: 71
  start-page: 61
  year: 2005
  end-page: 78
  ident: b0300
  article-title: Changes in hydrologic regime by dams
  publication-title: Geomorphology
– reference: U.S. Geological Survey, 2014, Agreement of the parties to the 1954 U.S. Supreme Court Decree effective June 1, 2014, accessed June 5, 2014, at http://water.usgs.gov/osw/ odrm/documents/FFMP_2014_Agreement.pdf.
– reference: Dudley, R.W., Hirsch, R.M., Archfield, S.A., Blum, A.G., and Renard, B., 2018. Low streamflow trends and basin characteristics for 2,482 U.S. Geological Survey stream gages in the conterminous U.S.: U.S. Geological Survey data release, doi: 10. 5066/P9LO24MG.
– reference: Lins, H. F. (2012). USGS hydro-climatic data network 2009 (HCDN-2009). US Geological Survey Fact Sheet, 3047(4).
– volume: 26
  start-page: 3067
  year: 2013
  end-page: 3086
  ident: b0220
  article-title: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007)
  publication-title: J. Clim.
– volume: 49
  start-page: 7278
  year: 2013
  end-page: 7291
  ident: b0340
  article-title: Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 15
  year: 2007
  end-page: 25
  ident: b0465
  article-title: The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining Base Flow 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– reference: Falcone, J. A. (2011). GAGES-II: Geospatial attributes of gages for evaluating streamflow (Digit. Spat. Data set). Reston, VA: U.S. Geological Survey.
– volume: 35
  start-page: 293
  year: 2016
  end-page: 310
  ident: b0035
  article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow
  publication-title: Freshwater Sci.
– reference: Hirsch, R.M., and DeCicco, L.A., 2015. User guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R packages for hydrologic data (version 2.0, February 2015): U.S. Geological Survey Techniques and Methods book 4, chap. A10,93 p., doi: 10.3133/tm4A10.
– reference: Watson, K.M., and McHugh, A.R., 2014, Regional regression equations for the estimation of selected monthly lowflow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p., http://dx.doi.org/10.3133/sir20145004.
– volume: 47
  start-page: W02516
  year: 2011
  ident: b0355
  article-title: Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States
  publication-title: Water Resour. Res.
– volume: 54
  start-page: 7495
  year: 2018
  end-page: 7510
  ident: b0080
  article-title: Climate controls on runoff and low flows in mountain catchments of Western North America
  publication-title: Water Resour. Res.
– reference: Groemping, U. and Matthias, L. (2013) zyp: Zhang + Yue-Pilon trends package, R package version 2.2.0.
– volume: 32
  year: 2005
  ident: b0060
  article-title: Nature's style: Naturally trendy
  publication-title: Geophys. Res. Lett.
– volume: 580
  year: 2019
  ident: b0090
  article-title: Low streamflow trends at human-impacted and reference basins in the United States
  publication-title: J. Hydrol.
– volume: 26
  start-page: 118
  year: 2010
  end-page: 136
  ident: b0050
  article-title: Predicting the natural flow regime: models for assessing hydrological alteration in streams
  publication-title: River Res. Appl.
– volume: 240
  start-page: 90
  year: 2000
  end-page: 105
  ident: b0085
  article-title: Trends in floods and low flows in the United States: impact of spatial correlation
  publication-title: J. Hydrol.
– reference: Falcone, J.A., (2017). U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release, 10.5066/F7HQ3XS4.
– volume: 186
  start-page: 171
  year: 2015
  end-page: 192
  ident: b0305
  article-title: An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems
  publication-title: Fundam. Appl. Limnol./Archiv für Hydrobiologie
– reference: Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p. (Also available at http://pubs.usgs.gov/circ/1376/.).
– volume: 310
  start-page: 78
  year: 2005
  end-page: 94
  ident: b0210
  article-title: Temporal analysis of the frequency and duration of low and high streamflow: years of record needed to characterize streamflow variability
  publication-title: J. Hydrol.
– volume: 13
  start-page: 585
  year: 2018
  end-page: 614
  ident: b0110
  article-title: Regional patterns of anthropogenic influences on streams and rivers in the conterminous United States, from the early 1970s to 2012
  publication-title: J. Land Use Sci.
– volume: 573
  start-page: 697
  year: 2019
  end-page: 709
  ident: b0205
  article-title: Effects of climate, regulation, and urbanization on historical flood trends in the United States
  publication-title: J. Hydrol.
– reference: Barr, J. K. 2017. 2017. “Chapter 2 - Water Quantity” in the Technical Report for the Delaware Estuary and Basin. Partnership for the Delaware Estuary. PDE Report No. 17-07, pp. 77-95.
– start-page: 180
  year: 1983
  end-page: 190
  ident: b0185
  article-title: Reservoir Management in the Delaware River Basin
  publication-title: Accomplishments and Impacts of Reservoirs
– volume: 20
  start-page: 633
  year: 2016
  end-page: 649
  ident: b0385
  article-title: Nonstationarity of low flows and their timing in the eastern United States
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 33
  start-page: 121
  year: 2013
  end-page: 131
  ident: b0005
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: Int. J. Climatol.
– reference: U.S. Geological Survey, 2019, National Water Information System, USGS water data for the Nation, accessed September 1, 2019, at http://nwis.waterdata.usgs.gov/nwis.
– volume: 139
  start-page: 215
  year: 2016
  end-page: 228
  ident: b0470
  article-title: Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration
  publication-title: Clim. Change
– reference: Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić, A., ... & Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2).
– volume: 16
  start-page: 123
  year: 2005
  end-page: 136
  ident: b0155
  article-title: Hydrogeologic considerations of urban development: Urban-induced recharge
  publication-title: Reviews in Engineering Geology
– year: 2018
  ident: b0115
  article-title: Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
  publication-title: U.S. Geol. Surv. Data Release.
– volume: 111
  start-page: 3262
  year: 2014
  end-page: 3267
  ident: b0360
  article-title: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2
  year: 2011
  ident: b0325
  article-title: Kendall: Kendall correlation and trend tests
  publication-title: R package version
– volume: 204
  start-page: 182
  issue: 1-4
  year: 1998
  ident: 10.1016/j.jhydrol.2021.126246_b0175
  article-title: A modified Mann-Kendall trend test for autocorrelated data
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(97)00125-X
– volume: 20
  start-page: 3967
  issue: 9
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0270
  article-title: A three-pillar approach to assessing climate impacts on low flows
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-3967-2016
– ident: 10.1016/j.jhydrol.2021.126246_b0365
  doi: 10.3133/sir20175019
– volume: 2
  start-page: 263
  issue: 4
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0400
  article-title: Impacts of impervious surface on watershed hydrology: A review
  publication-title: Urban Water J.
  doi: 10.1080/15730620500386529
– ident: 10.1016/j.jhydrol.2021.126246_b0420
– year: 2007
  ident: 10.1016/j.jhydrol.2021.126246_b0015
– volume: 47
  start-page: W02516
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126246_b0355
  article-title: Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009340
– volume: 13
  start-page: 585
  issue: 6
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0110
  article-title: Regional patterns of anthropogenic influences on streams and rivers in the conterminous United States, from the early 1970s to 2012
  publication-title: J. Land Use Sci.
  doi: 10.1080/1747423X.2019.1590473
– volume: 2
  issue: 2
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126246_b0325
  article-title: Kendall: Kendall correlation and trend tests
  publication-title: R package version
– ident: 10.1016/j.jhydrol.2021.126246_b0190
  doi: 10.1371/journal.pone.0169748
– ident: 10.1016/j.jhydrol.2021.126246_b0330
– volume: 20
  start-page: 633
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0385
  article-title: Nonstationarity of low flows and their timing in the eastern United States
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-633-2016
– volume: 64
  start-page: 21
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126246_b0075
  article-title: Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.12.002
– year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0115
  article-title: Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
  publication-title: U.S. Geol. Surv. Data Release.
– volume: 26
  start-page: 3067
  issue: 10
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126246_b0220
  article-title: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00244.1
– year: 2020
  ident: 10.1016/j.jhydrol.2021.126246_b0240
  article-title: Quantifying climate and catchment control on hydrological drought in continental United States
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024620
– volume: 12
  start-page: 1111
  issue: 4
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126246_b0255
  article-title: Mapping and attribution of change in streamflow in the coterminous United States
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-12-1111-2008
– volume: 94
  start-page: 4020
  year: 1996
  ident: 10.1016/j.jhydrol.2021.126246_b0055
  article-title: Low-flow characteristics of streams in Maryland and Delaware
  publication-title: Water-Resour. Investigat. Rep.
– volume: 4
  start-page: 14
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0280
  article-title: randomForest: Breiman and Cutler's Random Forests for Classification and Regression
  publication-title: R package version
– volume: 47
  start-page: 769
  issue: 11
  year: 1997
  ident: 10.1016/j.jhydrol.2021.126246_b0350
  article-title: The natural flow regime
  publication-title: Bioscience
  doi: 10.2307/1313099
– ident: 10.1016/j.jhydrol.2021.126246_b0285
  doi: 10.3133/fs20123047
– volume: 71
  start-page: 61
  issue: 1-2
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0300
  article-title: Changes in hydrologic regime by dams
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.08.017
– year: 2013
  ident: 10.1016/j.jhydrol.2021.126246_b0070
– ident: 10.1016/j.jhydrol.2021.126246_b0195
  doi: 10.3133/tm4A10
– ident: 10.1016/j.jhydrol.2021.126246_b0245
  doi: 10.3133/sir20135079
– volume: 349
  start-page: 350
  issue: 3–4
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126246_b0170
  article-title: Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.11.009
– year: 2020
  ident: 10.1016/j.jhydrol.2021.126246_b0145
  article-title: Spatial and temporal patterns of low streamflow and precipitation changes in the Chesapeake Bay Watershed
  publication-title: Journal of American Water Resources
– volume: 63
  start-page: 1379
  issue: 324
  year: 1968
  ident: 10.1016/j.jhydrol.2021.126246_b0395
  article-title: Estimates of the regression coefficient based on Kendall's tau
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1968.10480934
– start-page: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126246_b0040
  article-title: intersectr: Package for intersecting spatiotemporal attribute data
  publication-title: R package version
– volume: 526
  start-page: 208
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126246_b0455
  article-title: Human and climate impacts on the 21st century hydrological drought
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.10.047
– volume: 240
  start-page: 90
  issue: 1-2
  year: 2000
  ident: 10.1016/j.jhydrol.2021.126246_b0085
  article-title: Trends in floods and low flows in the United States: impact of spatial correlation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00336-X
– volume: 52
  start-page: 4990
  issue: 7
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0250
  article-title: Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR018125
– ident: 10.1016/j.jhydrol.2021.126246_b0095
– ident: 10.1016/j.jhydrol.2021.126246_b0180
– volume: 54
  start-page: 5088
  issue: 7
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0235
  article-title: A quantitative hydrological climate classification evaluated with independent streamflow data
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022913
– year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0370
– ident: 10.1016/j.jhydrol.2021.126246_b0425
– volume: 10
  start-page: 191
  issue: 3
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126246_b0345
  article-title: Flash droughts present a new challenge for subseasonal-to-seasonal prediction
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0709-0
– volume: 13
  start-page: 245
  issue: 3
  year: 1945
  ident: 10.1016/j.jhydrol.2021.126246_b0310
  article-title: Nonparametric tests against trend
  publication-title: Econometrica: J. Economet. Soc.
  doi: 10.2307/1907187
– volume: 517
  start-page: 985
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126246_b0405
  article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments–A comparative hydrology approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.06.030
– volume: 54
  start-page: 7495
  issue: 10
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0080
  article-title: Climate controls on runoff and low flows in mountain catchments of Western North America
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023087
– volume: 26
  start-page: 118
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126246_b0050
  article-title: Predicting the natural flow regime: models for assessing hydrological alteration in streams
  publication-title: River Res. Appl.
  doi: 10.1002/rra.1247
– volume: 49
  start-page: 7278
  issue: 11
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126246_b0340
  article-title: Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014618
– volume: 35
  start-page: 293
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0035
  article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow
  publication-title: Freshwater Sci.
  doi: 10.1086/685084
– volume: 240
  start-page: 147
  issue: 3-4
  year: 2001
  ident: 10.1016/j.jhydrol.2021.126246_b0410
  article-title: Low flow hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00340-1
– ident: 10.1016/j.jhydrol.2021.126246_b0125
  doi: 10.3133/sir20175083
– ident: 10.1016/j.jhydrol.2021.126246_b0460
  doi: 10.3133/sir20145004
– volume: 573
  start-page: 697
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126246_b0205
  article-title: Effects of climate, regulation, and urbanization on historical flood trends in the United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.102
– ident: 10.1016/j.jhydrol.2021.126246_b0120
– ident: 10.1016/j.jhydrol.2021.126246_b0030
– volume: e2020WR027098
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126246_b0275
  article-title: Anthropogenic and biophysical controls on low flow hydrology in the southeastern US
  publication-title: Water Resour. Res.
– ident: 10.1016/j.jhydrol.2021.126246_b0380
  doi: 10.3133/sir20125151
– ident: 10.1016/j.jhydrol.2021.126246_b0445
– ident: 10.1016/j.jhydrol.2021.126246_b0415
  doi: 10.3133/sir20065130
– ident: 10.1016/j.jhydrol.2021.126246_b0390
– volume: 135
  start-page: 639
  issue: 3-4
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126246_b0225
  article-title: Changes in the Low Flow Regime over the Eastern United States (1962–2011): Variability, Trends, and Attributions
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-015-1574-0
– volume: 26
  start-page: 227
  issue: 2
  year: 1999
  ident: 10.1016/j.jhydrol.2021.126246_b0295
  article-title: Streamflow trends in the United States
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1998GL900291
– ident: 10.1016/j.jhydrol.2021.126246_b0200
  doi: 10.1029/2010WR009109
– volume: 33
  start-page: 121
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126246_b0005
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3413
– ident: 10.1016/j.jhydrol.2021.126246_b0105
– ident: 10.1016/j.jhydrol.2021.126246_b0130
– volume: 9
  start-page: 116
  issue: 2
  year: 2004
  ident: 10.1016/j.jhydrol.2021.126246_b0260
  article-title: Developing a watershed characteristics database to improve low streamflow prediction
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2004)9:2(116)
– volume: 41
  start-page: 6889
  issue: 19
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126246_b0315
  article-title: Spatial and temporal patterns in conterminous United States streamflow characteristics
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061980
– volume: 310
  start-page: 78
  issue: 1-4
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0210
  article-title: Temporal analysis of the frequency and duration of low and high streamflow: years of record needed to characterize streamflow variability
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.12.008
– ident: 10.1016/j.jhydrol.2021.126246_b0025
– volume: 519
  start-page: 588
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126246_b0065
  article-title: Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.07.058
– volume: 16
  start-page: 123
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0155
  article-title: Hydrogeologic considerations of urban development: Urban-induced recharge
  publication-title: Reviews in Engineering Geology
– ident: 10.1016/j.jhydrol.2021.126246_b0215
  doi: 10.3133/sir20155142
– volume: 55
  start-page: 1268
  issue: 5
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126246_b0100
  article-title: Reduced Soil Macropores and Forest Cover Reduce Warm-Season Baseflow below Ecological Thresholds in the Upper Delaware River Basin
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12777
– ident: 10.1016/j.jhydrol.2021.126246_b0165
– ident: 10.1016/j.jhydrol.2021.126246_b0440
– volume: 51
  start-page: 6262
  issue: 8
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126246_b0375
  article-title: Continental US streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016367
– ident: 10.1016/j.jhydrol.2021.126246_b0020
  doi: 10.3133/cir1376
– volume: 54
  start-page: 6005
  issue: 9
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0430
  article-title: Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR022412
– volume: 41
  start-page: 3891
  issue: 11
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126246_b0160
  article-title: A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL059856
– volume: 32
  issue: 23
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0060
  article-title: Nature's style: Naturally trendy
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL024476
– volume: 186
  start-page: 171
  issue: 1-2
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126246_b0305
  article-title: An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems
  publication-title: Fundam. Appl. Limnol./Archiv für Hydrobiologie
  doi: 10.1127/fal/2015/0611
– volume: 32
  start-page: 1765
  issue: 8
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0150
  article-title: Evaluating methods to establish habitat suitability criteria: a case study in the upper Delaware River Basin, USA
  publication-title: River Res. Appl.
  doi: 10.1002/rra.3025
– ident: 10.1016/j.jhydrol.2021.126246_b0335
– volume: 43
  start-page: 15
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126246_b0465
  article-title: The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining Base Flow 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2007.00003.x
– volume: 43
  start-page: 5079
  issue: 10
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0135
  article-title: Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069121
– volume: 26
  start-page: 489
  issue: 6
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0290
  article-title: Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999
  publication-title: Phys. Geogr.
  doi: 10.2747/0272-3646.26.6.489
– volume: 580
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126246_b0090
  article-title: Low streamflow trends at human-impacted and reference basins in the United States
  publication-title: J. Hydrol.
– ident: 10.1016/j.jhydrol.2021.126246_b0450
– start-page: 180
  year: 1983
  ident: 10.1016/j.jhydrol.2021.126246_b0185
  article-title: Reservoir Management in the Delaware River Basin
– volume: 21
  start-page: 2863
  issue: 6
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126246_b0265
  article-title: Understanding hydrologic variability across Europe through catchment classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-2863-2017
– ident: 10.1016/j.jhydrol.2021.126246_b0140
  doi: 10.3133/cir1227
– volume: 4
  start-page: 17
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126246_b0435
  article-title: Global warming and changes in drought
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2067
– volume: 56
  start-page: 981
  issue: 6
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126246_b0320
  article-title: Hydro-climatic Drought in the Delaware River Basin
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12875
– volume: 54
  start-page: 8792
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126246_b0010
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022606
– volume: 47
  start-page: W05521
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126246_b0230
  article-title: Frequency and intensity of extreme drought in the Delaware Basin, 1600–2002
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008821
– volume: 41
  start-page: 1377
  issue: 6
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126246_b0045
  article-title: Base flow trends in urbanizing watersheds of the Delaware River Basin 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2005.tb03806.x
– volume: 111
  start-page: 3262
  issue: 9
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126246_b0360
  article-title: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1222473110
– volume: 139
  start-page: 215
  issue: 2
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126246_b0470
  article-title: Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration
  publication-title: Clim. Change
  doi: 10.1007/s10584-016-1782-2
– ident: 10.1016/j.jhydrol.2021.126246_b0475
SSID ssj0000334
Score 2.4733849
Snippet •Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface...
In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126246
SubjectTerms Climate variability
coastal plains
Delaware River
Delaware River Basin
Drought
humans
hydrology
land cover
landscapes
Low flows
summer
topography
Trends
United States Geological Survey
water management
Water use
watersheds
Title Evaluating low flow patterns, drivers and trends in the Delaware River Basin
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126246
https://www.proquest.com/docview/2524309134
Volume 598
WOSCitedRecordID wos000661813200081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZgQ4IXxE8xfslIiJeSkjh27Dx20AmmqiDUSX2zHMfZVnVpaDu2_fecY7uZYGjjgReriuI0ve90_uo734fQ26SIaaUKHhngwhHNKxOJrGTgy4LwOFdFZeJWbIKPx2I6zb95lb5VKyfA61qcn-fNf4UargHY9ujsP8C9eShcgM8AOowAO4w3An7o-3fXh7354qxX2aFpu2g6ylwu21IMVzq5qYi1_POTmaszWwn23d7R21Ur35b7T_J6dFEuXfcmYKiDE9ttobSulXcRzf7iMlT7dpux4CgnXkdlF9bJErxv__LWA0k2ZaqXjwIkmVMpDuGU5aLX9BOSEZpFVwZpt18w68_cu_bto_2EblUKmfjxV7l3MBrJyXA6edf8iKxemM2re_GU22ibcJZDPNsefBlO97tVOE1p6BRvX7E7vfXhym_-Gy_5bYVuacfkAbrvTY4HDueH6JapH6G7Xrr-6OIxGnV4Y4AaW7xxwPs99mhjsDR2aOPjGgPaOKCNW7Rxi_YTdLA3nHz8HHmJjEinlKwjnVNaakFJnMXcxETRhCSKVYUuuFBcxxVPC50wrrT9Y6uZqBhhKjGlsvlfkz5FW_WiNs8QLqiglOlM00K1yVQDXDaOVZrovGRK7yAaDCS17x9vZUzmMhQKzqS3q7R2lc6uO6i_mda4BirXTRDB-tKzQMfuJPjPdVPfBLQkREmb-lK1WZyuJGGEprYFLn1-g3teoHudu79EW-vlqXmF7uif6-PV8rX3tF9RkIiL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+low+flow+patterns%2C+drivers+and+trends+in+the+Delaware+River+Basin&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Hammond%2C+John+C&rft.au=Fleming%2C+Brandon+J&rft.date=2021-07-01&rft.issn=0022-1694&rft.volume=598+p.126246-&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126246&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon