Evaluating low flow patterns, drivers and trends in the Delaware River Basin
•Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface properties.•Low flows have mainly increased in recent decades along with precipitation.•However, changes in reservoir storage and water use modified climat...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 598; s. 126246 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2021
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface properties.•Low flows have mainly increased in recent decades along with precipitation.•However, changes in reservoir storage and water use modified climate-based trends.•Future departures from recent, wetter conditions may complicate low flow management.
In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan for future flows. Using a sample of 325 U.S. Geological Survey gages, we evaluated spatial patterns in several low flow metrics, the biophysical and climatic drivers of these metrics, and trends in low flows for two periods: 1950–2018 and 1980–2018. We calculated the annual 7-day low flow and date, low flow deficit as the departure below a long-term daily flow threshold and the number of discrete low flow periods below this threshold. We also aggregated several climate metrics to watershed scale and used existing watershed properties quantifying land cover, topography, soils, geology, and human activity. Random forest models were used to assess the hierarchy of variable importance in explaining mean-annual low flow variability for each low flow metric using all gages. We find muted regional patterns in mean-annual low flow and low flow variability, likely due to the myriad of anthropogenic, landscape, and flow modifications that obscure flow regimes from their natural characteristics. In contrast, individual years show markedly different spatial patterns in low flow magnitude and severity. Coincident with increases in precipitation, 7-day low flows have generally increased and low flow deficits decreased for both 1950–2018 and 1980–2018 periods. However, 7-day low flows have decreased in the Coastal Plain physiographic province where water use and impervious area have increased in recent decades, highlighting the effects of land and water management on low flows. With continued change expected in the DRB, additional research needs are highlighted to enable estimation of future low flows and to plan for periods of prolonged low flow. |
|---|---|
| AbstractList | In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan for future flows. Using a sample of 325 U.S. Geological Survey gages, we evaluated spatial patterns in several low flow metrics, the biophysical and climatic drivers of these metrics, and trends in low flows for two periods: 1950–2018 and 1980–2018. We calculated the annual 7-day low flow and date, low flow deficit as the departure below a long-term daily flow threshold and the number of discrete low flow periods below this threshold. We also aggregated several climate metrics to watershed scale and used existing watershed properties quantifying land cover, topography, soils, geology, and human activity. Random forest models were used to assess the hierarchy of variable importance in explaining mean-annual low flow variability for each low flow metric using all gages. We find muted regional patterns in mean-annual low flow and low flow variability, likely due to the myriad of anthropogenic, landscape, and flow modifications that obscure flow regimes from their natural characteristics. In contrast, individual years show markedly different spatial patterns in low flow magnitude and severity. Coincident with increases in precipitation, 7-day low flows have generally increased and low flow deficits decreased for both 1950–2018 and 1980–2018 periods. However, 7-day low flows have decreased in the Coastal Plain physiographic province where water use and impervious area have increased in recent decades, highlighting the effects of land and water management on low flows. With continued change expected in the DRB, additional research needs are highlighted to enable estimation of future low flows and to plan for periods of prolonged low flow. •Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface properties.•Low flows have mainly increased in recent decades along with precipitation.•However, changes in reservoir storage and water use modified climate-based trends.•Future departures from recent, wetter conditions may complicate low flow management. In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan for future flows. Using a sample of 325 U.S. Geological Survey gages, we evaluated spatial patterns in several low flow metrics, the biophysical and climatic drivers of these metrics, and trends in low flows for two periods: 1950–2018 and 1980–2018. We calculated the annual 7-day low flow and date, low flow deficit as the departure below a long-term daily flow threshold and the number of discrete low flow periods below this threshold. We also aggregated several climate metrics to watershed scale and used existing watershed properties quantifying land cover, topography, soils, geology, and human activity. Random forest models were used to assess the hierarchy of variable importance in explaining mean-annual low flow variability for each low flow metric using all gages. We find muted regional patterns in mean-annual low flow and low flow variability, likely due to the myriad of anthropogenic, landscape, and flow modifications that obscure flow regimes from their natural characteristics. In contrast, individual years show markedly different spatial patterns in low flow magnitude and severity. Coincident with increases in precipitation, 7-day low flows have generally increased and low flow deficits decreased for both 1950–2018 and 1980–2018 periods. However, 7-day low flows have decreased in the Coastal Plain physiographic province where water use and impervious area have increased in recent decades, highlighting the effects of land and water management on low flows. With continued change expected in the DRB, additional research needs are highlighted to enable estimation of future low flows and to plan for periods of prolonged low flow. |
| ArticleNumber | 126246 |
| Author | Hammond, John C. Fleming, Brandon J. |
| Author_xml | – sequence: 1 givenname: John C. surname: Hammond fullname: Hammond, John C. email: jhammond@usgs.gov organization: U.S. Geological Survey MD‐DE‐DC Water Science Center, Baltimore, MD, USA – sequence: 2 givenname: Brandon J. surname: Fleming fullname: Fleming, Brandon J. organization: U.S. Geological Survey Pennsylvania Water Science Center, New Cumberland, PA, USA |
| BookMark | eNqFkDtPwzAUhS1UJNrCT0DyyECK7TgvMSAo5SFVQkIwW7fODXWUOsV2W_XfkyqdWHqHc5fzneEbkYFtLRJyzdmEM57e1ZN6uS9d20wEE3zCRSpkekaGPM-KSGQsG5AhY0JEPC3kBRl5X7Pu4lgOyXy2hWYDwdgf2rQ7Wh1iDSGgs_6Wls5s0XkKtqTBoS09NZaGJdJnbGAHDunnoUGfwBt7Sc4raDxeHf-YfL_MvqZv0fzj9X36OI90LEWIdCFlqXMpWMoyZAIkFxySaqEXWQ6ZZlUWLzRPMtBFkaY6yatEJMCxhFzEHOMxuel316793aAPamW8xqYBi-3GK5EIGbOCx7KrJn1Vu9Z7h5VaO7MCt1ecqYM9VaujPXWwp3p7HXf_j9MmdJpaGxyY5iT90NPYWdgadMprg1ZjaRzqoMrWnFj4AzlRkJo |
| CitedBy_id | crossref_primary_10_2166_wcc_2023_284 crossref_primary_10_1061_JHYEFF_HEENG_6030 crossref_primary_10_1016_j_envsoft_2024_106185 crossref_primary_10_1016_j_jhydrol_2021_126697 crossref_primary_10_1016_j_jhydrol_2025_132908 crossref_primary_10_1016_j_scitotenv_2024_172685 crossref_primary_10_1029_2024WR039500 crossref_primary_10_1029_2022WR031930 crossref_primary_10_1088_2515_7620_ade36f crossref_primary_10_3390_w13243487 crossref_primary_10_1080_02626667_2024_2369639 crossref_primary_10_1016_j_scitotenv_2022_159691 crossref_primary_10_1029_2021WR030618 crossref_primary_10_5194_hess_29_3629_2025 crossref_primary_10_1002_hyp_14877 crossref_primary_10_2166_wcc_2025_648 crossref_primary_10_1002_hyp_14832 crossref_primary_10_1016_j_jhydrol_2022_127447 crossref_primary_10_3390_w14010011 crossref_primary_10_1080_02626667_2024_2390925 |
| Cites_doi | 10.1016/S0022-1694(97)00125-X 10.5194/hess-20-3967-2016 10.3133/sir20175019 10.1080/15730620500386529 10.1029/2010WR009340 10.1080/1747423X.2019.1590473 10.1371/journal.pone.0169748 10.5194/hess-20-633-2016 10.1016/j.advwatres.2013.12.002 10.1175/JCLI-D-12-00244.1 10.1029/2018WR024620 10.5194/hess-12-1111-2008 10.2307/1313099 10.3133/fs20123047 10.1016/j.geomorph.2004.08.017 10.3133/tm4A10 10.3133/sir20135079 10.1016/j.jhydrol.2007.11.009 10.1080/01621459.1968.10480934 10.1016/j.jhydrol.2014.10.047 10.1016/S0022-1694(00)00336-X 10.1002/2015WR018125 10.1029/2018WR022913 10.1038/s41558-020-0709-0 10.2307/1907187 10.1016/j.jhydrol.2014.06.030 10.1029/2018WR023087 10.1002/rra.1247 10.1002/2013WR014618 10.1086/685084 10.1016/S0022-1694(00)00340-1 10.3133/sir20175083 10.3133/sir20145004 10.1016/j.jhydrol.2019.03.102 10.3133/sir20125151 10.3133/sir20065130 10.1007/s10584-015-1574-0 10.1029/1998GL900291 10.1029/2010WR009109 10.1002/joc.3413 10.1061/(ASCE)1084-0699(2004)9:2(116) 10.1002/2014GL061980 10.1016/j.jhydrol.2004.12.008 10.1016/j.jhydrol.2014.07.058 10.3133/sir20155142 10.1111/1752-1688.12777 10.1002/2014WR016367 10.3133/cir1376 10.1029/2017WR022412 10.1002/2014GL059856 10.1029/2005GL024476 10.1127/fal/2015/0611 10.1002/rra.3025 10.1111/j.1752-1688.2007.00003.x 10.1002/2016GL069121 10.2747/0272-3646.26.6.489 10.5194/hess-21-2863-2017 10.3133/cir1227 10.1038/nclimate2067 10.1111/1752-1688.12875 10.1029/2018WR022606 10.1029/2009WR008821 10.1111/j.1752-1688.2005.tb03806.x 10.1073/pnas.1222473110 10.1007/s10584-016-1782-2 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2021.126246 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2021_126246 S0022169421002936 |
| GeographicLocations | Delaware River |
| GeographicLocations_xml | – name: Delaware River |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-c944dc8420607e02a4121a5fbcb78a7c0f73bc157ac9966c58f525a1eda8231e3 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661813200081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Sep 28 10:54:03 EDT 2025 Sat Nov 29 06:59:47 EST 2025 Tue Nov 18 21:25:49 EST 2025 Fri Feb 23 02:42:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water use Trends Drought Climate variability Delaware River Basin Low flows |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-c944dc8420607e02a4121a5fbcb78a7c0f73bc157ac9966c58f525a1eda8231e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2524309134 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2524309134 crossref_primary_10_1016_j_jhydrol_2021_126246 crossref_citationtrail_10_1016_j_jhydrol_2021_126246 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126246 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sen (b0395) 1968; 63 Schreffler, C.L.,1996, Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 1997–4113, 6 p., https://pubs.er.usgs.gov/publication/wri974113. Prudhomme, Giuntoli, Robinson, Clark, Arnell, Dankers, Fekete, Franssen, Gerten, Gosling, Hagemann, Hannah, Kim, Masaki, Satoh, Stacke, Wada, Wisser (b0360) 2014; 111 Tijdeman, Barker, Svoboda, Stahl (b0430) 2018; 54 Baston, D. (2020). exactextractr: Fast Extraction from Raster Datasets using Polygons. R package version 0.2.0. https://CRAN.R-project.org/package=exactextractr. Williamson, Nystrom, Milly (b0470) 2016; 139 Patterson, Lutz, Doyle (b0340) 2013; 49 Rice, K. C., and Hirsch, R.M., 2012, Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed: U.S. Geological Survey Scientific Investigations Report 2012-5151, 56 p. Winter (b0465) 2007; 43 Endreny, Kwon, Williamson, Evans (b0100) 2019; 55 Randall, A.D., and Freehafer, D.A., 2017, Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems: U.S. Geological Survey Scientific Investigations Report 2017–5019, 42 p., 10.3133/sir20175019. Blodgett (b0040) 2020 Lins, H. F. (2012). USGS hydro-climatic data network 2009 (HCDN-2009). US Geological Survey Fact Sheet, 3047(4). Knoben, Woods, Freer (b0235) 2018; 54 Falcone, J.A., (2017). U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release, 10.5066/F7HQ3XS4. Hirsch, R.M., and DeCicco, L.A., 2015. User guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R packages for hydrologic data (version 2.0, February 2015): U.S. Geological Survey Techniques and Methods book 4, chap. A10,93 p., doi: 10.3133/tm4A10. Lins, Slack (b0290) 2005; 26 Carlisle, Falcone, Wolock, Meador, Norris (b0050) 2010; 26 Falcone, Murphy, Sprague (b0110) 2018; 13 Hamed, Ramachandra Rao (b0175) 1998; 204 Brandes, Cavallo, Nilson (b0045) 2005; 41 McCabe, Wolock (b0315) 2015; 41 Wanders, Wada (b0455) 2015; 526 Bhaskar, Beesley, Burns, Fletcher, Hamel, Oldham, Roy (b0035) 2016; 35 Ficklin, Robeson, Knouft (b0135) 2016; 43 Therneau, T. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart. Poff, Allan, Bain, Karr, Prestegaard, Richter, Sparks, Stromberg (b0350) 1997; 47 Kauffman, Vonck (b0230) 2011; 47 Hutson, S.S., Linsey, K.S., Ludlow, R.A., Reyes, Betzaida, and Shourds, J.L., 2016, Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010: U.S. Geological Survey Scientific Investigations Report 2015–5142, 76 p., http://dx.doi.org/10.3133/sir20155142. Fleming, Archfield, Hirsch, Kaing, Wolock (b0145) 2020 Abatzoglou (b0005) 2013; 33 Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p. (Also available at http://pubs.usgs.gov/circ/1376/.). U.S. Environmental Protection Agency, 2018. Low flow statistics tools – A how-to handbook for NPDES permit writers: USEPA Document Number EPA-833-B-18-001, 39 p., https://www.epa.gov/sites/production/files/2018-11/documents/low_flow_stats_tools_handbook.pdf. Hodgkins, G. A., and Dudley, R. W., 2011, Historical summer baseflow and stormflow trends for New England rivers: Water Resources Research, V. 47, W07528, doi:10.1029/2010WR009109. Groemping, U. and Matthias, L. (2013) zyp: Zhang + Yue-Pilon trends package, R package version 2.2.0. World Meteorological Organization (WMO), (2008). Manual on low-flow estimation and prediction. Operational hydrology report No. 50. WMO-No. 1029. Geneva, Switzerland. Dudley, Hirsch, Archfield, Blum, Renard (b0090) 2019; 580 Avril, Barten (b0015) 2007 Maloney, Talbert, Cole, Galbraith, Blakeslee, Hanson, Holmquist-Johnson (b0305) 2015; 186 Kormos, Luce, Wenger, Berghuijs (b0250) 2016; 52 Daly (b0070) 2013 Falcone, J. A. (2011). GAGES-II: Geospatial attributes of gages for evaluating streamflow (Digit. Spat. Data set). Reston, VA: U.S. Geological Survey. de Graaf, van Beek, Wada, Bierkens (b0075) 2014; 64 Dudley, R.W., Hirsch, R.M., Archfield, S.A., Blum, A.G., and Renard, B., 2018. Low streamflow trends and basin characteristics for 2,482 U.S. Geological Survey stream gages in the conterminous U.S.: U.S. Geological Survey data release, doi: 10. 5066/P9LO24MG. Theil, H. (1950). A rank-invariant method of linear and polynominal regression analysis (Parts 1-3). In Ned. Akad. Wetensch. Proc. Ser. A (Vol. 53, pp. 1397-1412). Kuentz, Arheimer, Hundecha, Wagener (b0265) 2017; 21 McLeod (b0325) 2011; 2 Konikow, L.F., 2013, Groundwater depletion in the United States (1900−2008): U.S. Geological Survey Scientific Investigations Report 2013−5079, 63 p., http://pubs.usgs.gov/sir/2013/5079. Liaw (b0280) 2018; 4 Dierauer, Whitfield, Allen (b0080) 2018; 54 Hansler, Goodell (b0185) 1983 Hodgkins, Dudley, Archfield, Renard (b0205) 2019; 573 Addor, Nearing, Prieto, Newman, Le Vine, Clark (b0010) 2018; 54 Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić, A., ... & Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2). Magilligan, Nislow (b0300) 2005; 71 Konapala, Mishra (b0240) 2020 Cohn, Lins (b0060) 2005; 32 Fenneman, D.W., Johnson, N.M. (1946) “Physiographic divisions of the conterminous US.” US Geol. Surv., http://water. usgs. gov/lookup/getspatial. Krakauer, Fung (b0255) 2008; 12 Carpenter, Hayes (b0055) 1996; 94 Kam, Sheffield (b0225) 2015; 135 Price, Jackson, Parker, Reitan, Dowd, Cyterski (b0355) 2011; 47 Pendergrass, Meehl, Pulwarty, Hobbins, Hoell, AghaKouchak, Bonfils, Gallant, Hoerling, Hoffmann, Kaatz, Lehner, Llewellyn, Mote, Neale, Overpeck, Sheffield, Stahl, Svoboda, Wheeler, Wood, Woodhouse (b0345) 2020; 10 U.S. Geological Survey, 2014, Agreement of the parties to the 1954 U.S. Supreme Court Decree effective June 1, 2014, accessed June 5, 2014, at http://water.usgs.gov/osw/ odrm/documents/FFMP_2014_Agreement.pdf. Falcone (b0115) 2018 Ledford, Zimmer, Payan (b0275) 2020; e2020WR027098 Fischer, J. M., Riva-Murray, K., Hickman, R. E., Chichester, D. C., Brightbill, R. A., Romanok, K., & Bilger, M. D. (2004). Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1999-2001 (Vol. 1227). US Geological Survey. Shuster, Bonta, Thurston, Warnemuende, Smith (b0400) 2005; 2 Watson, K.M., and McHugh, A.R., 2014, Regional regression equations for the estimation of selected monthly lowflow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p., http://dx.doi.org/10.3133/sir20145004. Gleeson, Moosdorf, Hartmann, van Beek (b0160) 2014; 41 Garcia-Fresca, Sharp (b0155) 2005; 16 R Core Team (b0370) 2018 Laaha, Parajka, Viglione, Koffler, Haslinger, Schöner, Zehetgruber, Blöschl (b0270) 2016; 20 Barr, J. K. 2017. 2017. “Chapter 2 - Water Quantity” in the Technical Report for the Delaware Estuary and Basin. Partnership for the Delaware Estuary. PDE Report No. 17-07, pp. 77-95. McCabe, Wolock (b0320) 2020; 56 Rice, Emanuel, Vose, Nelson (b0375) 2015; 51 U.S. Geological Survey, 2019, National Water Information System, USGS water data for the Nation, accessed September 1, 2019, at http://nwis.waterdata.usgs.gov/nwis. Singh, Archfield, Wagener (b0405) 2014; 517 Smakhtin (b0410) 2001; 240 Feaster, T.D., and Lee, K.G., (2017). Low-flow frequency and flow-duration characteristics of selected streams in Alabama through March 2014: U.S. Geological Survey Scientific Investigations Report 2017–5083, 371 p., 10.3133/sir20175083. Cole, Maloney, Schmid, McKenna (b0065) 2014; 519 Sadri, Kam, Sheffield (b0385) 2016; 20 Mann (b0310) 1945; 13 Kroll, Luz, Allen, Vogel (b0260) 2004; 9 Lins, Slack (b0295) 1999; 26 Milborrow, S. (2019). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. R package version 3.0.8. ://CRAN.R-project.org/package=rpart.plot. Kam, Sheffield, Yuan, Wood (b0220) 2013; 26 Hammond, J.C., 2020, Annual low flow, climate and watershed properties for 325 USGS gages in and near the Delaware River Basin: U.S. Geological Survey data release, 10.5066/P92UYECV. Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. Huh, Dickey, Meador, Ruhl (b0210) 2005; 310 Hamed (b0170) 2008; 349 Douglas, Vogel, Kroll (b0085) 2000; 240 Galbraith, Blakeslee, Cole, Talbert, Maloney (b0150) 2016; 32 Trenberth, Dai, van der Schrier, Jones, Barichivich, Briffa, Sheffield (b0435) 2014; 4 New Jersey Department of Environmental Protection, 2017, New Jersey Water Supply Plan 2017-2022: 484p, http://www.nj.gov/dep/watersupply/wsp.html. Avril (10.1016/j.jhydrol.2021.126246_b0015) 2007 Kormos (10.1016/j.jhydrol.2021.126246_b0250) 2016; 52 Ledford (10.1016/j.jhydrol.2021.126246_b0275) 2020; e2020WR027098 Poff (10.1016/j.jhydrol.2021.126246_b0350) 1997; 47 Singh (10.1016/j.jhydrol.2021.126246_b0405) 2014; 517 Fleming (10.1016/j.jhydrol.2021.126246_b0145) 2020 10.1016/j.jhydrol.2021.126246_b0425 Price (10.1016/j.jhydrol.2021.126246_b0355) 2011; 47 10.1016/j.jhydrol.2021.126246_b0105 Krakauer (10.1016/j.jhydrol.2021.126246_b0255) 2008; 12 Bhaskar (10.1016/j.jhydrol.2021.126246_b0035) 2016; 35 10.1016/j.jhydrol.2021.126246_b0140 10.1016/j.jhydrol.2021.126246_b0020 10.1016/j.jhydrol.2021.126246_b0460 10.1016/j.jhydrol.2021.126246_b0025 Hodgkins (10.1016/j.jhydrol.2021.126246_b0205) 2019; 573 Sadri (10.1016/j.jhydrol.2021.126246_b0385) 2016; 20 Maloney (10.1016/j.jhydrol.2021.126246_b0305) 2015; 186 Smakhtin (10.1016/j.jhydrol.2021.126246_b0410) 2001; 240 10.1016/j.jhydrol.2021.126246_b0420 10.1016/j.jhydrol.2021.126246_b0380 Ficklin (10.1016/j.jhydrol.2021.126246_b0135) 2016; 43 Kam (10.1016/j.jhydrol.2021.126246_b0225) 2015; 135 10.1016/j.jhydrol.2021.126246_b0180 Sen (10.1016/j.jhydrol.2021.126246_b0395) 1968; 63 Douglas (10.1016/j.jhydrol.2021.126246_b0085) 2000; 240 McCabe (10.1016/j.jhydrol.2021.126246_b0320) 2020; 56 Galbraith (10.1016/j.jhydrol.2021.126246_b0150) 2016; 32 Pendergrass (10.1016/j.jhydrol.2021.126246_b0345) 2020; 10 de Graaf (10.1016/j.jhydrol.2021.126246_b0075) 2014; 64 10.1016/j.jhydrol.2021.126246_b0415 10.1016/j.jhydrol.2021.126246_b0335 10.1016/j.jhydrol.2021.126246_b0215 Lins (10.1016/j.jhydrol.2021.126246_b0295) 1999; 26 Huh (10.1016/j.jhydrol.2021.126246_b0210) 2005; 310 Gleeson (10.1016/j.jhydrol.2021.126246_b0160) 2014; 41 Kam (10.1016/j.jhydrol.2021.126246_b0220) 2013; 26 10.1016/j.jhydrol.2021.126246_b0450 10.1016/j.jhydrol.2021.126246_b0330 Kuentz (10.1016/j.jhydrol.2021.126246_b0265) 2017; 21 Liaw (10.1016/j.jhydrol.2021.126246_b0280) 2018; 4 10.1016/j.jhydrol.2021.126246_b0130 Hansler (10.1016/j.jhydrol.2021.126246_b0185) 1983 Prudhomme (10.1016/j.jhydrol.2021.126246_b0360) 2014; 111 Shuster (10.1016/j.jhydrol.2021.126246_b0400) 2005; 2 Falcone (10.1016/j.jhydrol.2021.126246_b0115) 2018 10.1016/j.jhydrol.2021.126246_b0095 Endreny (10.1016/j.jhydrol.2021.126246_b0100) 2019; 55 McLeod (10.1016/j.jhydrol.2021.126246_b0325) 2011; 2 Hamed (10.1016/j.jhydrol.2021.126246_b0175) 1998; 204 Hamed (10.1016/j.jhydrol.2021.126246_b0170) 2008; 349 Kroll (10.1016/j.jhydrol.2021.126246_b0260) 2004; 9 Carpenter (10.1016/j.jhydrol.2021.126246_b0055) 1996; 94 Brandes (10.1016/j.jhydrol.2021.126246_b0045) 2005; 41 Carlisle (10.1016/j.jhydrol.2021.126246_b0050) 2010; 26 10.1016/j.jhydrol.2021.126246_b0445 Mann (10.1016/j.jhydrol.2021.126246_b0310) 1945; 13 Tijdeman (10.1016/j.jhydrol.2021.126246_b0430) 2018; 54 Laaha (10.1016/j.jhydrol.2021.126246_b0270) 2016; 20 10.1016/j.jhydrol.2021.126246_b0120 10.1016/j.jhydrol.2021.126246_b0285 McCabe (10.1016/j.jhydrol.2021.126246_b0315) 2015; 41 Addor (10.1016/j.jhydrol.2021.126246_b0010) 2018; 54 10.1016/j.jhydrol.2021.126246_b0165 10.1016/j.jhydrol.2021.126246_b0440 Williamson (10.1016/j.jhydrol.2021.126246_b0470) 2016; 139 Falcone (10.1016/j.jhydrol.2021.126246_b0110) 2018; 13 10.1016/j.jhydrol.2021.126246_b0245 10.1016/j.jhydrol.2021.126246_b0125 Patterson (10.1016/j.jhydrol.2021.126246_b0340) 2013; 49 Konapala (10.1016/j.jhydrol.2021.126246_b0240) 2020 10.1016/j.jhydrol.2021.126246_b0200 Lins (10.1016/j.jhydrol.2021.126246_b0290) 2005; 26 10.1016/j.jhydrol.2021.126246_b0365 R Core Team (10.1016/j.jhydrol.2021.126246_b0370) 2018 Winter (10.1016/j.jhydrol.2021.126246_b0465) 2007; 43 Wanders (10.1016/j.jhydrol.2021.126246_b0455) 2015; 526 Daly (10.1016/j.jhydrol.2021.126246_b0070) 2013 Trenberth (10.1016/j.jhydrol.2021.126246_b0435) 2014; 4 Dudley (10.1016/j.jhydrol.2021.126246_b0090) 2019; 580 Cole (10.1016/j.jhydrol.2021.126246_b0065) 2014; 519 Dierauer (10.1016/j.jhydrol.2021.126246_b0080) 2018; 54 10.1016/j.jhydrol.2021.126246_b0030 10.1016/j.jhydrol.2021.126246_b0195 Blodgett (10.1016/j.jhydrol.2021.126246_b0040) 2020 Kauffman (10.1016/j.jhydrol.2021.126246_b0230) 2011; 47 10.1016/j.jhydrol.2021.126246_b0475 10.1016/j.jhydrol.2021.126246_b0190 Knoben (10.1016/j.jhydrol.2021.126246_b0235) 2018; 54 Garcia-Fresca (10.1016/j.jhydrol.2021.126246_b0155) 2005; 16 Abatzoglou (10.1016/j.jhydrol.2021.126246_b0005) 2013; 33 Cohn (10.1016/j.jhydrol.2021.126246_b0060) 2005; 32 Magilligan (10.1016/j.jhydrol.2021.126246_b0300) 2005; 71 Rice (10.1016/j.jhydrol.2021.126246_b0375) 2015; 51 10.1016/j.jhydrol.2021.126246_b0390 |
| References_xml | – volume: 517 start-page: 985 year: 2014 end-page: 996 ident: b0405 article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments–A comparative hydrology approach publication-title: J. Hydrol. – volume: 47 start-page: W05521 year: 2011 ident: b0230 article-title: Frequency and intensity of extreme drought in the Delaware Basin, 1600–2002 publication-title: Water Resour. Res. – reference: Konikow, L.F., 2013, Groundwater depletion in the United States (1900−2008): U.S. Geological Survey Scientific Investigations Report 2013−5079, 63 p., http://pubs.usgs.gov/sir/2013/5079. – reference: World Meteorological Organization (WMO), (2008). Manual on low-flow estimation and prediction. Operational hydrology report No. 50. WMO-No. 1029. Geneva, Switzerland. – volume: 55 start-page: 1268 year: 2019 end-page: 1287 ident: b0100 article-title: Reduced Soil Macropores and Forest Cover Reduce Warm-Season Baseflow below Ecological Thresholds in the Upper Delaware River Basin publication-title: J. Am. Water Resour. Assoc. – volume: 51 start-page: 6262 year: 2015 end-page: 6275 ident: b0375 article-title: Continental US streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics publication-title: Water Resour. Res. – volume: 47 start-page: 769 year: 1997 end-page: 784 ident: b0350 article-title: The natural flow regime publication-title: Bioscience – volume: 63 start-page: 1379 year: 1968 end-page: 1389 ident: b0395 article-title: Estimates of the regression coefficient based on Kendall's tau publication-title: J. Am. Stat. Assoc. – reference: Fenneman, D.W., Johnson, N.M. (1946) “Physiographic divisions of the conterminous US.” US Geol. Surv., http://water. usgs. gov/lookup/getspatial. – volume: 9 start-page: 116 year: 2004 end-page: 125 ident: b0260 article-title: Developing a watershed characteristics database to improve low streamflow prediction publication-title: J. Hydrol. Eng. – volume: 54 start-page: 8792 year: 2018 end-page: 8812 ident: b0010 article-title: A ranking of hydrological signatures based on their predictability in space publication-title: Water Resour. Res. – reference: Hodgkins, G. A., and Dudley, R. W., 2011, Historical summer baseflow and stormflow trends for New England rivers: Water Resources Research, V. 47, W07528, doi:10.1029/2010WR009109. – reference: New Jersey Department of Environmental Protection, 2017, New Jersey Water Supply Plan 2017-2022: 484p, http://www.nj.gov/dep/watersupply/wsp.html. – volume: 41 start-page: 1377 year: 2005 end-page: 1391 ident: b0045 article-title: Base flow trends in urbanizing watersheds of the Delaware River Basin 1 publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 526 start-page: 208 year: 2015 end-page: 220 ident: b0455 article-title: Human and climate impacts on the 21st century hydrological drought publication-title: J. Hydrol. – volume: 54 start-page: 6005 year: 2018 end-page: 6023 ident: b0430 article-title: Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States publication-title: Water Resour. Res. – reference: U.S. Environmental Protection Agency, 2018. Low flow statistics tools – A how-to handbook for NPDES permit writers: USEPA Document Number EPA-833-B-18-001, 39 p., https://www.epa.gov/sites/production/files/2018-11/documents/low_flow_stats_tools_handbook.pdf. – volume: 52 start-page: 4990 year: 2016 end-page: 5007 ident: b0250 article-title: Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams publication-title: Water Resour. Res. – volume: 41 start-page: 3891 year: 2014 end-page: 3898 ident: b0160 article-title: A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity publication-title: Geophys. Res. Lett. – year: 2020 ident: b0145 article-title: Spatial and temporal patterns of low streamflow and precipitation changes in the Chesapeake Bay Watershed publication-title: Journal of American Water Resources – volume: 54 start-page: 5088 year: 2018 end-page: 5109 ident: b0235 article-title: A quantitative hydrological climate classification evaluated with independent streamflow data publication-title: Water Resour. Res. – volume: 12 start-page: 1111 year: 2008 end-page: 1120 ident: b0255 article-title: Mapping and attribution of change in streamflow in the coterminous United States publication-title: Hydrol. Earth Syst. Sci. – volume: 94 start-page: 4020 year: 1996 ident: b0055 article-title: Low-flow characteristics of streams in Maryland and Delaware publication-title: Water-Resour. Investigat. Rep. – volume: 135 start-page: 639 year: 2015 end-page: 653 ident: b0225 article-title: Changes in the Low Flow Regime over the Eastern United States (1962–2011): Variability, Trends, and Attributions publication-title: Clim. Chang. – volume: 32 start-page: 1765 year: 2016 end-page: 1775 ident: b0150 article-title: Evaluating methods to establish habitat suitability criteria: a case study in the upper Delaware River Basin, USA publication-title: River Res. Appl. – volume: 20 start-page: 3967 year: 2016 end-page: 3985 ident: b0270 article-title: A three-pillar approach to assessing climate impacts on low flows publication-title: Hydrol. Earth Syst. Sci. – year: 2013 ident: b0070 article-title: Descriptions of PRISM spatial climate datasets for the conterminous United States (PRISM Doc – reference: Milborrow, S. (2019). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. R package version 3.0.8. ://CRAN.R-project.org/package=rpart.plot. – reference: Therneau, T. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart. – volume: 204 start-page: 182 year: 1998 end-page: 196 ident: b0175 article-title: A modified Mann-Kendall trend test for autocorrelated data publication-title: J. Hydrol. – volume: 13 start-page: 245 year: 1945 ident: b0310 article-title: Nonparametric tests against trend publication-title: Econometrica: J. Economet. Soc. – volume: 349 start-page: 350 year: 2008 end-page: 363 ident: b0170 article-title: Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis publication-title: J. Hydrol. – reference: Theil, H. (1950). A rank-invariant method of linear and polynominal regression analysis (Parts 1-3). In Ned. Akad. Wetensch. Proc. Ser. A (Vol. 53, pp. 1397-1412). – volume: 56 start-page: 981 year: 2020 end-page: 994 ident: b0320 article-title: Hydro-climatic Drought in the Delaware River Basin publication-title: J. Am. Water Resour. Assoc. – year: 2018 ident: b0370 article-title: R: A Language and Environment for Statistical Computing – volume: 64 start-page: 21 year: 2014 end-page: 33 ident: b0075 article-title: Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges publication-title: Adv. Water Resour. – reference: Feaster, T.D., and Lee, K.G., (2017). Low-flow frequency and flow-duration characteristics of selected streams in Alabama through March 2014: U.S. Geological Survey Scientific Investigations Report 2017–5083, 371 p., 10.3133/sir20175083. – volume: 26 start-page: 489 year: 2005 end-page: 501 ident: b0290 article-title: Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999 publication-title: Phys. Geogr. – year: 2020 ident: b0240 article-title: Quantifying climate and catchment control on hydrological drought in continental United States publication-title: Water Resour. Res. – volume: 26 start-page: 227 year: 1999 end-page: 230 ident: b0295 article-title: Streamflow trends in the United States publication-title: Geophys. Res. Lett. – volume: 2 start-page: 263 year: 2005 end-page: 275 ident: b0400 article-title: Impacts of impervious surface on watershed hydrology: A review publication-title: Urban Water J. – volume: 10 start-page: 191 year: 2020 end-page: 199 ident: b0345 article-title: Flash droughts present a new challenge for subseasonal-to-seasonal prediction publication-title: Nat. Clim. Change – volume: 4 start-page: 17 year: 2014 end-page: 22 ident: b0435 article-title: Global warming and changes in drought publication-title: Nat. Clim. Change – year: 2007 ident: b0015 article-title: Land use effects on streamflow and water quality in the northeastern United States – volume: 240 start-page: 147 year: 2001 end-page: 186 ident: b0410 article-title: Low flow hydrology: a review publication-title: J. Hydrol. – reference: Fischer, J. M., Riva-Murray, K., Hickman, R. E., Chichester, D. C., Brightbill, R. A., Romanok, K., & Bilger, M. D. (2004). Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1999-2001 (Vol. 1227). US Geological Survey. – start-page: 2 year: 2020 ident: b0040 article-title: intersectr: Package for intersecting spatiotemporal attribute data publication-title: R package version – volume: e2020WR027098 year: 2020 ident: b0275 article-title: Anthropogenic and biophysical controls on low flow hydrology in the southeastern US publication-title: Water Resour. Res. – volume: 21 start-page: 2863 year: 2017 end-page: 2879 ident: b0265 article-title: Understanding hydrologic variability across Europe through catchment classification publication-title: Hydrol. Earth Syst. Sci. – reference: Randall, A.D., and Freehafer, D.A., 2017, Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems: U.S. Geological Survey Scientific Investigations Report 2017–5019, 42 p., 10.3133/sir20175019. – reference: Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. – reference: Baston, D. (2020). exactextractr: Fast Extraction from Raster Datasets using Polygons. R package version 0.2.0. https://CRAN.R-project.org/package=exactextractr. – reference: Hutson, S.S., Linsey, K.S., Ludlow, R.A., Reyes, Betzaida, and Shourds, J.L., 2016, Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010: U.S. Geological Survey Scientific Investigations Report 2015–5142, 76 p., http://dx.doi.org/10.3133/sir20155142. – reference: Hammond, J.C., 2020, Annual low flow, climate and watershed properties for 325 USGS gages in and near the Delaware River Basin: U.S. Geological Survey data release, 10.5066/P92UYECV. – volume: 4 start-page: 14 year: 2018 ident: b0280 article-title: randomForest: Breiman and Cutler's Random Forests for Classification and Regression publication-title: R package version – volume: 41 start-page: 6889 year: 2015 end-page: 6897 ident: b0315 article-title: Spatial and temporal patterns in conterminous United States streamflow characteristics publication-title: Geophys. Res. Lett. – volume: 519 start-page: 588 year: 2014 end-page: 598 ident: b0065 article-title: Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River publication-title: J. Hydrol. – volume: 43 start-page: 5079 year: 2016 end-page: 5088 ident: b0135 article-title: Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds publication-title: Geophys. Res. Lett. – reference: Rice, K. C., and Hirsch, R.M., 2012, Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed: U.S. Geological Survey Scientific Investigations Report 2012-5151, 56 p. – reference: Schreffler, C.L.,1996, Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 1997–4113, 6 p., https://pubs.er.usgs.gov/publication/wri974113. – volume: 71 start-page: 61 year: 2005 end-page: 78 ident: b0300 article-title: Changes in hydrologic regime by dams publication-title: Geomorphology – reference: U.S. Geological Survey, 2014, Agreement of the parties to the 1954 U.S. Supreme Court Decree effective June 1, 2014, accessed June 5, 2014, at http://water.usgs.gov/osw/ odrm/documents/FFMP_2014_Agreement.pdf. – reference: Dudley, R.W., Hirsch, R.M., Archfield, S.A., Blum, A.G., and Renard, B., 2018. Low streamflow trends and basin characteristics for 2,482 U.S. Geological Survey stream gages in the conterminous U.S.: U.S. Geological Survey data release, doi: 10. 5066/P9LO24MG. – reference: Lins, H. F. (2012). USGS hydro-climatic data network 2009 (HCDN-2009). US Geological Survey Fact Sheet, 3047(4). – volume: 26 start-page: 3067 year: 2013 end-page: 3086 ident: b0220 article-title: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007) publication-title: J. Clim. – volume: 49 start-page: 7278 year: 2013 end-page: 7291 ident: b0340 article-title: Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA publication-title: Water Resour. Res. – volume: 43 start-page: 15 year: 2007 end-page: 25 ident: b0465 article-title: The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining Base Flow 1 publication-title: JAWRA J. Am. Water Resour. Assoc. – reference: Falcone, J. A. (2011). GAGES-II: Geospatial attributes of gages for evaluating streamflow (Digit. Spat. Data set). Reston, VA: U.S. Geological Survey. – volume: 35 start-page: 293 year: 2016 end-page: 310 ident: b0035 article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow publication-title: Freshwater Sci. – reference: Hirsch, R.M., and DeCicco, L.A., 2015. User guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R packages for hydrologic data (version 2.0, February 2015): U.S. Geological Survey Techniques and Methods book 4, chap. A10,93 p., doi: 10.3133/tm4A10. – reference: Watson, K.M., and McHugh, A.R., 2014, Regional regression equations for the estimation of selected monthly lowflow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p., http://dx.doi.org/10.3133/sir20145004. – volume: 47 start-page: W02516 year: 2011 ident: b0355 article-title: Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States publication-title: Water Resour. Res. – volume: 54 start-page: 7495 year: 2018 end-page: 7510 ident: b0080 article-title: Climate controls on runoff and low flows in mountain catchments of Western North America publication-title: Water Resour. Res. – reference: Groemping, U. and Matthias, L. (2013) zyp: Zhang + Yue-Pilon trends package, R package version 2.2.0. – volume: 32 year: 2005 ident: b0060 article-title: Nature's style: Naturally trendy publication-title: Geophys. Res. Lett. – volume: 580 year: 2019 ident: b0090 article-title: Low streamflow trends at human-impacted and reference basins in the United States publication-title: J. Hydrol. – volume: 26 start-page: 118 year: 2010 end-page: 136 ident: b0050 article-title: Predicting the natural flow regime: models for assessing hydrological alteration in streams publication-title: River Res. Appl. – volume: 240 start-page: 90 year: 2000 end-page: 105 ident: b0085 article-title: Trends in floods and low flows in the United States: impact of spatial correlation publication-title: J. Hydrol. – reference: Falcone, J.A., (2017). U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release, 10.5066/F7HQ3XS4. – volume: 186 start-page: 171 year: 2015 end-page: 192 ident: b0305 article-title: An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems publication-title: Fundam. Appl. Limnol./Archiv für Hydrobiologie – reference: Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p. (Also available at http://pubs.usgs.gov/circ/1376/.). – volume: 310 start-page: 78 year: 2005 end-page: 94 ident: b0210 article-title: Temporal analysis of the frequency and duration of low and high streamflow: years of record needed to characterize streamflow variability publication-title: J. Hydrol. – volume: 13 start-page: 585 year: 2018 end-page: 614 ident: b0110 article-title: Regional patterns of anthropogenic influences on streams and rivers in the conterminous United States, from the early 1970s to 2012 publication-title: J. Land Use Sci. – volume: 573 start-page: 697 year: 2019 end-page: 709 ident: b0205 article-title: Effects of climate, regulation, and urbanization on historical flood trends in the United States publication-title: J. Hydrol. – reference: Barr, J. K. 2017. 2017. “Chapter 2 - Water Quantity” in the Technical Report for the Delaware Estuary and Basin. Partnership for the Delaware Estuary. PDE Report No. 17-07, pp. 77-95. – start-page: 180 year: 1983 end-page: 190 ident: b0185 article-title: Reservoir Management in the Delaware River Basin publication-title: Accomplishments and Impacts of Reservoirs – volume: 20 start-page: 633 year: 2016 end-page: 649 ident: b0385 article-title: Nonstationarity of low flows and their timing in the eastern United States publication-title: Hydrol. Earth Syst. Sci. – volume: 33 start-page: 121 year: 2013 end-page: 131 ident: b0005 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: Int. J. Climatol. – reference: U.S. Geological Survey, 2019, National Water Information System, USGS water data for the Nation, accessed September 1, 2019, at http://nwis.waterdata.usgs.gov/nwis. – volume: 139 start-page: 215 year: 2016 end-page: 228 ident: b0470 article-title: Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration publication-title: Clim. Change – reference: Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić, A., ... & Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2). – volume: 16 start-page: 123 year: 2005 end-page: 136 ident: b0155 article-title: Hydrogeologic considerations of urban development: Urban-induced recharge publication-title: Reviews in Engineering Geology – year: 2018 ident: b0115 article-title: Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes publication-title: U.S. Geol. Surv. Data Release. – volume: 111 start-page: 3262 year: 2014 end-page: 3267 ident: b0360 article-title: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment publication-title: Proc. Natl. Acad. Sci. – volume: 2 year: 2011 ident: b0325 article-title: Kendall: Kendall correlation and trend tests publication-title: R package version – volume: 204 start-page: 182 issue: 1-4 year: 1998 ident: 10.1016/j.jhydrol.2021.126246_b0175 article-title: A modified Mann-Kendall trend test for autocorrelated data publication-title: J. Hydrol. doi: 10.1016/S0022-1694(97)00125-X – volume: 20 start-page: 3967 issue: 9 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0270 article-title: A three-pillar approach to assessing climate impacts on low flows publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-3967-2016 – ident: 10.1016/j.jhydrol.2021.126246_b0365 doi: 10.3133/sir20175019 – volume: 2 start-page: 263 issue: 4 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0400 article-title: Impacts of impervious surface on watershed hydrology: A review publication-title: Urban Water J. doi: 10.1080/15730620500386529 – ident: 10.1016/j.jhydrol.2021.126246_b0420 – year: 2007 ident: 10.1016/j.jhydrol.2021.126246_b0015 – volume: 47 start-page: W02516 year: 2011 ident: 10.1016/j.jhydrol.2021.126246_b0355 article-title: Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States publication-title: Water Resour. Res. doi: 10.1029/2010WR009340 – volume: 13 start-page: 585 issue: 6 year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0110 article-title: Regional patterns of anthropogenic influences on streams and rivers in the conterminous United States, from the early 1970s to 2012 publication-title: J. Land Use Sci. doi: 10.1080/1747423X.2019.1590473 – volume: 2 issue: 2 year: 2011 ident: 10.1016/j.jhydrol.2021.126246_b0325 article-title: Kendall: Kendall correlation and trend tests publication-title: R package version – ident: 10.1016/j.jhydrol.2021.126246_b0190 doi: 10.1371/journal.pone.0169748 – ident: 10.1016/j.jhydrol.2021.126246_b0330 – volume: 20 start-page: 633 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0385 article-title: Nonstationarity of low flows and their timing in the eastern United States publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-633-2016 – volume: 64 start-page: 21 year: 2014 ident: 10.1016/j.jhydrol.2021.126246_b0075 article-title: Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.12.002 – year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0115 article-title: Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes publication-title: U.S. Geol. Surv. Data Release. – volume: 26 start-page: 3067 issue: 10 year: 2013 ident: 10.1016/j.jhydrol.2021.126246_b0220 article-title: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007) publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00244.1 – year: 2020 ident: 10.1016/j.jhydrol.2021.126246_b0240 article-title: Quantifying climate and catchment control on hydrological drought in continental United States publication-title: Water Resour. Res. doi: 10.1029/2018WR024620 – volume: 12 start-page: 1111 issue: 4 year: 2008 ident: 10.1016/j.jhydrol.2021.126246_b0255 article-title: Mapping and attribution of change in streamflow in the coterminous United States publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-12-1111-2008 – volume: 94 start-page: 4020 year: 1996 ident: 10.1016/j.jhydrol.2021.126246_b0055 article-title: Low-flow characteristics of streams in Maryland and Delaware publication-title: Water-Resour. Investigat. Rep. – volume: 4 start-page: 14 year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0280 article-title: randomForest: Breiman and Cutler's Random Forests for Classification and Regression publication-title: R package version – volume: 47 start-page: 769 issue: 11 year: 1997 ident: 10.1016/j.jhydrol.2021.126246_b0350 article-title: The natural flow regime publication-title: Bioscience doi: 10.2307/1313099 – ident: 10.1016/j.jhydrol.2021.126246_b0285 doi: 10.3133/fs20123047 – volume: 71 start-page: 61 issue: 1-2 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0300 article-title: Changes in hydrologic regime by dams publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.08.017 – year: 2013 ident: 10.1016/j.jhydrol.2021.126246_b0070 – ident: 10.1016/j.jhydrol.2021.126246_b0195 doi: 10.3133/tm4A10 – ident: 10.1016/j.jhydrol.2021.126246_b0245 doi: 10.3133/sir20135079 – volume: 349 start-page: 350 issue: 3–4 year: 2008 ident: 10.1016/j.jhydrol.2021.126246_b0170 article-title: Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.11.009 – year: 2020 ident: 10.1016/j.jhydrol.2021.126246_b0145 article-title: Spatial and temporal patterns of low streamflow and precipitation changes in the Chesapeake Bay Watershed publication-title: Journal of American Water Resources – volume: 63 start-page: 1379 issue: 324 year: 1968 ident: 10.1016/j.jhydrol.2021.126246_b0395 article-title: Estimates of the regression coefficient based on Kendall's tau publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1968.10480934 – start-page: 2 year: 2020 ident: 10.1016/j.jhydrol.2021.126246_b0040 article-title: intersectr: Package for intersecting spatiotemporal attribute data publication-title: R package version – volume: 526 start-page: 208 year: 2015 ident: 10.1016/j.jhydrol.2021.126246_b0455 article-title: Human and climate impacts on the 21st century hydrological drought publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.10.047 – volume: 240 start-page: 90 issue: 1-2 year: 2000 ident: 10.1016/j.jhydrol.2021.126246_b0085 article-title: Trends in floods and low flows in the United States: impact of spatial correlation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00336-X – volume: 52 start-page: 4990 issue: 7 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0250 article-title: Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams publication-title: Water Resour. Res. doi: 10.1002/2015WR018125 – ident: 10.1016/j.jhydrol.2021.126246_b0095 – ident: 10.1016/j.jhydrol.2021.126246_b0180 – volume: 54 start-page: 5088 issue: 7 year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0235 article-title: A quantitative hydrological climate classification evaluated with independent streamflow data publication-title: Water Resour. Res. doi: 10.1029/2018WR022913 – year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0370 – ident: 10.1016/j.jhydrol.2021.126246_b0425 – volume: 10 start-page: 191 issue: 3 year: 2020 ident: 10.1016/j.jhydrol.2021.126246_b0345 article-title: Flash droughts present a new challenge for subseasonal-to-seasonal prediction publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0709-0 – volume: 13 start-page: 245 issue: 3 year: 1945 ident: 10.1016/j.jhydrol.2021.126246_b0310 article-title: Nonparametric tests against trend publication-title: Econometrica: J. Economet. Soc. doi: 10.2307/1907187 – volume: 517 start-page: 985 year: 2014 ident: 10.1016/j.jhydrol.2021.126246_b0405 article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments–A comparative hydrology approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.06.030 – volume: 54 start-page: 7495 issue: 10 year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0080 article-title: Climate controls on runoff and low flows in mountain catchments of Western North America publication-title: Water Resour. Res. doi: 10.1029/2018WR023087 – volume: 26 start-page: 118 issue: 2 year: 2010 ident: 10.1016/j.jhydrol.2021.126246_b0050 article-title: Predicting the natural flow regime: models for assessing hydrological alteration in streams publication-title: River Res. Appl. doi: 10.1002/rra.1247 – volume: 49 start-page: 7278 issue: 11 year: 2013 ident: 10.1016/j.jhydrol.2021.126246_b0340 article-title: Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA publication-title: Water Resour. Res. doi: 10.1002/2013WR014618 – volume: 35 start-page: 293 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0035 article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow publication-title: Freshwater Sci. doi: 10.1086/685084 – volume: 240 start-page: 147 issue: 3-4 year: 2001 ident: 10.1016/j.jhydrol.2021.126246_b0410 article-title: Low flow hydrology: a review publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00340-1 – ident: 10.1016/j.jhydrol.2021.126246_b0125 doi: 10.3133/sir20175083 – ident: 10.1016/j.jhydrol.2021.126246_b0460 doi: 10.3133/sir20145004 – volume: 573 start-page: 697 year: 2019 ident: 10.1016/j.jhydrol.2021.126246_b0205 article-title: Effects of climate, regulation, and urbanization on historical flood trends in the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.102 – ident: 10.1016/j.jhydrol.2021.126246_b0120 – ident: 10.1016/j.jhydrol.2021.126246_b0030 – volume: e2020WR027098 year: 2020 ident: 10.1016/j.jhydrol.2021.126246_b0275 article-title: Anthropogenic and biophysical controls on low flow hydrology in the southeastern US publication-title: Water Resour. Res. – ident: 10.1016/j.jhydrol.2021.126246_b0380 doi: 10.3133/sir20125151 – ident: 10.1016/j.jhydrol.2021.126246_b0445 – ident: 10.1016/j.jhydrol.2021.126246_b0415 doi: 10.3133/sir20065130 – ident: 10.1016/j.jhydrol.2021.126246_b0390 – volume: 135 start-page: 639 issue: 3-4 year: 2015 ident: 10.1016/j.jhydrol.2021.126246_b0225 article-title: Changes in the Low Flow Regime over the Eastern United States (1962–2011): Variability, Trends, and Attributions publication-title: Clim. Chang. doi: 10.1007/s10584-015-1574-0 – volume: 26 start-page: 227 issue: 2 year: 1999 ident: 10.1016/j.jhydrol.2021.126246_b0295 article-title: Streamflow trends in the United States publication-title: Geophys. Res. Lett. doi: 10.1029/1998GL900291 – ident: 10.1016/j.jhydrol.2021.126246_b0200 doi: 10.1029/2010WR009109 – volume: 33 start-page: 121 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2021.126246_b0005 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: Int. J. Climatol. doi: 10.1002/joc.3413 – ident: 10.1016/j.jhydrol.2021.126246_b0105 – ident: 10.1016/j.jhydrol.2021.126246_b0130 – volume: 9 start-page: 116 issue: 2 year: 2004 ident: 10.1016/j.jhydrol.2021.126246_b0260 article-title: Developing a watershed characteristics database to improve low streamflow prediction publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2004)9:2(116) – volume: 41 start-page: 6889 issue: 19 year: 2015 ident: 10.1016/j.jhydrol.2021.126246_b0315 article-title: Spatial and temporal patterns in conterminous United States streamflow characteristics publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL061980 – volume: 310 start-page: 78 issue: 1-4 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0210 article-title: Temporal analysis of the frequency and duration of low and high streamflow: years of record needed to characterize streamflow variability publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.12.008 – ident: 10.1016/j.jhydrol.2021.126246_b0025 – volume: 519 start-page: 588 year: 2014 ident: 10.1016/j.jhydrol.2021.126246_b0065 article-title: Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.07.058 – volume: 16 start-page: 123 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0155 article-title: Hydrogeologic considerations of urban development: Urban-induced recharge publication-title: Reviews in Engineering Geology – ident: 10.1016/j.jhydrol.2021.126246_b0215 doi: 10.3133/sir20155142 – volume: 55 start-page: 1268 issue: 5 year: 2019 ident: 10.1016/j.jhydrol.2021.126246_b0100 article-title: Reduced Soil Macropores and Forest Cover Reduce Warm-Season Baseflow below Ecological Thresholds in the Upper Delaware River Basin publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12777 – ident: 10.1016/j.jhydrol.2021.126246_b0165 – ident: 10.1016/j.jhydrol.2021.126246_b0440 – volume: 51 start-page: 6262 issue: 8 year: 2015 ident: 10.1016/j.jhydrol.2021.126246_b0375 article-title: Continental US streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics publication-title: Water Resour. Res. doi: 10.1002/2014WR016367 – ident: 10.1016/j.jhydrol.2021.126246_b0020 doi: 10.3133/cir1376 – volume: 54 start-page: 6005 issue: 9 year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0430 article-title: Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States publication-title: Water Resour. Res. doi: 10.1029/2017WR022412 – volume: 41 start-page: 3891 issue: 11 year: 2014 ident: 10.1016/j.jhydrol.2021.126246_b0160 article-title: A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL059856 – volume: 32 issue: 23 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0060 article-title: Nature's style: Naturally trendy publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL024476 – volume: 186 start-page: 171 issue: 1-2 year: 2015 ident: 10.1016/j.jhydrol.2021.126246_b0305 article-title: An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems publication-title: Fundam. Appl. Limnol./Archiv für Hydrobiologie doi: 10.1127/fal/2015/0611 – volume: 32 start-page: 1765 issue: 8 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0150 article-title: Evaluating methods to establish habitat suitability criteria: a case study in the upper Delaware River Basin, USA publication-title: River Res. Appl. doi: 10.1002/rra.3025 – ident: 10.1016/j.jhydrol.2021.126246_b0335 – volume: 43 start-page: 15 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2021.126246_b0465 article-title: The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining Base Flow 1 publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2007.00003.x – volume: 43 start-page: 5079 issue: 10 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0135 article-title: Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069121 – volume: 26 start-page: 489 issue: 6 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0290 article-title: Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999 publication-title: Phys. Geogr. doi: 10.2747/0272-3646.26.6.489 – volume: 580 year: 2019 ident: 10.1016/j.jhydrol.2021.126246_b0090 article-title: Low streamflow trends at human-impacted and reference basins in the United States publication-title: J. Hydrol. – ident: 10.1016/j.jhydrol.2021.126246_b0450 – start-page: 180 year: 1983 ident: 10.1016/j.jhydrol.2021.126246_b0185 article-title: Reservoir Management in the Delaware River Basin – volume: 21 start-page: 2863 issue: 6 year: 2017 ident: 10.1016/j.jhydrol.2021.126246_b0265 article-title: Understanding hydrologic variability across Europe through catchment classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-2863-2017 – ident: 10.1016/j.jhydrol.2021.126246_b0140 doi: 10.3133/cir1227 – volume: 4 start-page: 17 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2021.126246_b0435 article-title: Global warming and changes in drought publication-title: Nat. Clim. Change doi: 10.1038/nclimate2067 – volume: 56 start-page: 981 issue: 6 year: 2020 ident: 10.1016/j.jhydrol.2021.126246_b0320 article-title: Hydro-climatic Drought in the Delaware River Basin publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12875 – volume: 54 start-page: 8792 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2021.126246_b0010 article-title: A ranking of hydrological signatures based on their predictability in space publication-title: Water Resour. Res. doi: 10.1029/2018WR022606 – volume: 47 start-page: W05521 year: 2011 ident: 10.1016/j.jhydrol.2021.126246_b0230 article-title: Frequency and intensity of extreme drought in the Delaware Basin, 1600–2002 publication-title: Water Resour. Res. doi: 10.1029/2009WR008821 – volume: 41 start-page: 1377 issue: 6 year: 2005 ident: 10.1016/j.jhydrol.2021.126246_b0045 article-title: Base flow trends in urbanizing watersheds of the Delaware River Basin 1 publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2005.tb03806.x – volume: 111 start-page: 3262 issue: 9 year: 2014 ident: 10.1016/j.jhydrol.2021.126246_b0360 article-title: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1222473110 – volume: 139 start-page: 215 issue: 2 year: 2016 ident: 10.1016/j.jhydrol.2021.126246_b0470 article-title: Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration publication-title: Clim. Change doi: 10.1007/s10584-016-1782-2 – ident: 10.1016/j.jhydrol.2021.126246_b0475 |
| SSID | ssj0000334 |
| Score | 2.4733849 |
| Snippet | •Long-term 7-day low flows are driven by water use, impervious area, dam storage.•Low flow deficits are driven by aridity, slope, and subsurface... In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126246 |
| SubjectTerms | Climate variability coastal plains Delaware River Delaware River Basin Drought humans hydrology land cover landscapes Low flows summer topography Trends United States Geological Survey water management Water use watersheds |
| Title | Evaluating low flow patterns, drivers and trends in the Delaware River Basin |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2021.126246 https://www.proquest.com/docview/2524309134 |
| Volume | 598 |
| WOSCitedRecordID | wos000661813200081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZgQ4IXxE8xfslIiJeSkjh27Dx20AmmqiDUSX2zHMfZVnVpaDu2_fecY7uZYGjjgReriuI0ve90_uo734fQ26SIaaUKHhngwhHNKxOJrGTgy4LwOFdFZeJWbIKPx2I6zb95lb5VKyfA61qcn-fNf4UargHY9ujsP8C9eShcgM8AOowAO4w3An7o-3fXh7354qxX2aFpu2g6ylwu21IMVzq5qYi1_POTmaszWwn23d7R21Ur35b7T_J6dFEuXfcmYKiDE9ttobSulXcRzf7iMlT7dpux4CgnXkdlF9bJErxv__LWA0k2ZaqXjwIkmVMpDuGU5aLX9BOSEZpFVwZpt18w68_cu_bto_2EblUKmfjxV7l3MBrJyXA6edf8iKxemM2re_GU22ibcJZDPNsefBlO97tVOE1p6BRvX7E7vfXhym_-Gy_5bYVuacfkAbrvTY4HDueH6JapH6G7Xrr-6OIxGnV4Y4AaW7xxwPs99mhjsDR2aOPjGgPaOKCNW7Rxi_YTdLA3nHz8HHmJjEinlKwjnVNaakFJnMXcxETRhCSKVYUuuFBcxxVPC50wrrT9Y6uZqBhhKjGlsvlfkz5FW_WiNs8QLqiglOlM00K1yVQDXDaOVZrovGRK7yAaDCS17x9vZUzmMhQKzqS3q7R2lc6uO6i_mda4BirXTRDB-tKzQMfuJPjPdVPfBLQkREmb-lK1WZyuJGGEprYFLn1-g3teoHudu79EW-vlqXmF7uif6-PV8rX3tF9RkIiL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+low+flow+patterns%2C+drivers+and+trends+in+the+Delaware+River+Basin&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Hammond%2C+John+C&rft.au=Fleming%2C+Brandon+J&rft.date=2021-07-01&rft.issn=0022-1694&rft.volume=598+p.126246-&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126246&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |