Logical and Algebraic Characterizations of Rational Transductions

Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congrue...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 15, Issue 4; číslo 4
Hlavní autoři: Filiot, Emmanuel, Gauwin, Olivier, Lhote, Nathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science Association 19.12.2019
Logical Methods in Computer Science e.V
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete.
AbstractList Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete.
Author Lhote, Nathan
Gauwin, Olivier
Filiot, Emmanuel
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Filiot
  fullname: Filiot, Emmanuel
– sequence: 2
  givenname: Olivier
  surname: Gauwin
  fullname: Gauwin, Olivier
– sequence: 3
  givenname: Nathan
  surname: Lhote
  fullname: Lhote, Nathan
BackLink https://hal.science/hal-02503054$$DView record in HAL
BookMark eNpVUE1Lw0AUXETBWvsHPOVoD9H9yu7GWyhqCxFB63l52Y82JWZlEwX99aapiL7LG-bNm4E5Q8dtaB1CFwRfUSaYui4fFs8pyS75DRFzikl-hCZECZxmueTHf_ApmnXdDg_DGFFUTFBRhk1toEmgtUnRbFwVoTbJYgsRTO9i_QV9HdouCT55GuGgXUdoO_tuxss5OvHQdG72s6fo5e52vVim5eP9alGUqWGc9qmRHAwlKq_Aeuml85wIRR11CjNZqYxTbJQg0ufcZGAZYxSDgMpX2FY4Z1O0OvjaADv9FutXiJ86QK1HIsSNhtjXpnGaZJKxXFmWW84VzSpMBJbeDDmeW_CD1_zgtYXmn9WyKPWewzTDDGf8gwxaetCaGLouOv_7QLAe-9f7_odQzTURet8_-wb9P3j4
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOA
DOI 10.23638/LMCS-15(4:16)2019
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_1573398d39d44825b01607fc37bf4daf
oai:HAL:hal-02503054v1
10_23638_LMCS_15_4_16_2019
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
ID FETCH-LOGICAL-c342t-c74ac2189badf7f7ef41682e2e8037b85420c8617f94c5ad33320a6abfb0db093
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505789500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:51:22 EDT 2025
Tue Oct 14 20:05:59 EDT 2025
Sat Nov 29 08:05:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords rational word transductions
definability problems
algebraic characterizations
first-order logic
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-c74ac2189badf7f7ef41682e2e8037b85420c8617f94c5ad33320a6abfb0db093
ORCID 0000-0003-3303-5368
0000-0002-7250-043X
OpenAccessLink https://doaj.org/article/1573398d39d44825b01607fc37bf4daf
ParticipantIDs doaj_primary_oai_doaj_org_article_1573398d39d44825b01607fc37bf4daf
hal_primary_oai_HAL_hal_02503054v1
crossref_primary_10_23638_LMCS_15_4_16_2019
PublicationCentury 2000
PublicationDate 2019-12-19
PublicationDateYYYYMMDD 2019-12-19
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-19
  day: 19
PublicationDecade 2010
PublicationTitle Logical methods in computer science
PublicationYear 2019
Publisher Logical Methods in Computer Science Association
Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science Association
– name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.1917362
Snippet Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms Computer Science
computer science - formal languages and automata theory
computer science - logic in computer science
Formal Languages and Automata Theory
Title Logical and Algebraic Characterizations of Rational Transductions
URI https://hal.science/hal-02503054
https://doaj.org/article/1573398d39d44825b01607fc37bf4daf
Volume 15, Issue 4
WOSCitedRecordID wos000505789500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgvWYgBhKz6lcRmC1WrDm2FeEjdLMeOoRJqUVs68tuxnbQqEwtLBitKrO-cu--c83cAXAuXUC6kQyJ1HHFmJdKSaOSzIU4tKW1WFrHZRDYYiOFQPq61-go1YZU8cAVckwTBPiksk9ZnEjQpoiSaMywLJWbaBe-LM7mWTEUfzFggztUpGcr8Imv2-q1nRJIbfk_SWxqlddYiURTs9_HlfbmfGuNLZw_s1MQQ5tWE9sFGOT4Au8umC7D-Bg9B3qucFdRjC_OPt_Djd2RgayW8XJ-rhBMHn-qdPhgjkq2EYmdH4LXTfml1Ud0HARnG6RyZjGvjQ7EstHWZy0rnWZSgJS0F9jCIhFNshKciTnKTaMsYo1inunAFtgWW7Bhsjifj8gRAYROLtU2p9tTBcaoZlzbF1lNs4ZNh3gB3S0zUZyV3oXyaEBFUAUFFEsUVSVVAsAEeAmyrO4NUdRzwBlS1AdVfBmyAKw_6r2d0854KY4GfeX_EF-T0P950BrbDrEMxCpHnYHM-_SovwJZZzEez6WVcQP7a_27_AHzpyAk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+and+Algebraic+Characterizations+of+Rational+Transductions&rft.jtitle=Logical+methods+in+computer+science&rft.au=Filiot%2C+Emmanuel&rft.au=Gauwin%2C+Olivier&rft.au=Lhote%2C+Nathan&rft.date=2019-12-19&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=15%2C+Issue+4&rft_id=info:doi/10.23638%2FLMCS-15%284%3A16%292019&rft.externalDBID=n%2Fa&rft.externalDocID=10_23638_LMCS_15_4_16_2019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon