Logical and Algebraic Characterizations of Rational Transductions
Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congrue...
Gespeichert in:
| Veröffentlicht in: | Logical methods in computer science Jg. 15, Issue 4; H. 4 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Logical Methods in Computer Science Association
19.12.2019
Logical Methods in Computer Science e.V |
| Schlagworte: | |
| ISSN: | 1860-5974, 1860-5974 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete. |
|---|---|
| AbstractList | Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete. |
| Author | Lhote, Nathan Gauwin, Olivier Filiot, Emmanuel |
| Author_xml | – sequence: 1 givenname: Emmanuel surname: Filiot fullname: Filiot, Emmanuel – sequence: 2 givenname: Olivier surname: Gauwin fullname: Gauwin, Olivier – sequence: 3 givenname: Nathan surname: Lhote fullname: Lhote, Nathan |
| BackLink | https://hal.science/hal-02503054$$DView record in HAL |
| BookMark | eNpVUE1Lw0AUXETBWvsHPOVoD9H9yu7GWyhqCxFB63l52Y82JWZlEwX99aapiL7LG-bNm4E5Q8dtaB1CFwRfUSaYui4fFs8pyS75DRFzikl-hCZECZxmueTHf_ApmnXdDg_DGFFUTFBRhk1toEmgtUnRbFwVoTbJYgsRTO9i_QV9HdouCT55GuGgXUdoO_tuxss5OvHQdG72s6fo5e52vVim5eP9alGUqWGc9qmRHAwlKq_Aeuml85wIRR11CjNZqYxTbJQg0ufcZGAZYxSDgMpX2FY4Z1O0OvjaADv9FutXiJ86QK1HIsSNhtjXpnGaZJKxXFmWW84VzSpMBJbeDDmeW_CD1_zgtYXmn9WyKPWewzTDDGf8gwxaetCaGLouOv_7QLAe-9f7_odQzTURet8_-wb9P3j4 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC DOA |
| DOI | 10.23638/LMCS-15(4:16)2019 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-5974 |
| ExternalDocumentID | oai_doaj_org_article_1573398d39d44825b01607fc37bf4daf oai:HAL:hal-02503054v1 10_23638_LMCS_15_4_16_2019 |
| GroupedDBID | .4S .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADMLS ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 MK~ ML~ M~E OK1 OVT P2P TR2 TUS XSB 1XC |
| ID | FETCH-LOGICAL-c342t-c74ac2189badf7f7ef41682e2e8037b85420c8617f94c5ad33320a6abfb0db093 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505789500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:51:22 EDT 2025 Tue Oct 14 20:05:59 EDT 2025 Sat Nov 29 08:05:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | rational word transductions definability problems algebraic characterizations first-order logic |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-c74ac2189badf7f7ef41682e2e8037b85420c8617f94c5ad33320a6abfb0db093 |
| ORCID | 0000-0003-3303-5368 0000-0002-7250-043X |
| OpenAccessLink | https://doaj.org/article/1573398d39d44825b01607fc37bf4daf |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1573398d39d44825b01607fc37bf4daf hal_primary_oai_HAL_hal_02503054v1 crossref_primary_10_23638_LMCS_15_4_16_2019 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-19 |
| PublicationDateYYYYMMDD | 2019-12-19 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2019 |
| Publisher | Logical Methods in Computer Science Association Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science Association – name: Logical Methods in Computer Science e.V |
| SSID | ssj0000331826 |
| Score | 2.1921725 |
| Snippet | Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order... |
| SourceID | doaj hal crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SubjectTerms | Computer Science computer science - formal languages and automata theory computer science - logic in computer science Formal Languages and Automata Theory |
| Title | Logical and Algebraic Characterizations of Rational Transductions |
| URI | https://hal.science/hal-02503054 https://doaj.org/article/1573398d39d44825b01607fc37bf4daf |
| Volume | 15, Issue 4 |
| WOSCitedRecordID | wos000505789500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgvWYgBhKLGrzhmC1WrDmmFeEjdLMexoRJKUVs68tuxnbQqEwtLBitKrO-cu--cu88AXKvYIKzTJGIC4YjahESeN0eEqYJpZkxSNwrnfDhMRyPxuHbUl68Jq-WBa-DayAv2ibQkonSZBGZFkESzmnBfYqas976O9awlU8EHE-KJc90lg4lbZO180HmOELuh9yi5xUFaZy0SBcF-F1_el_upIb709sBOQwxhVk9oH2yY6gDsLg9dgM03eAiyvHZWUFUlzD7e_I_fsYadlfBy01cJJxY-NTt9MESkshaKnR2B1173pdOPmnMQIk0onkeaU6VdKBaFKi233FjHolJssEljB0PKKI4d3IhbQTVTJSEExypRhS3isogFOQab1aQyJwCmmKcWEeRMoalQXMRCcyVoTK3DVokWuFtiIj9ruQvp0oSAoPQISsQklSiRHsEWePCwre70UtVhwBlQNgaUfxmwBa4c6L-e0c9y6cc8P3P-iC7Q6X-86Qxs-1n7YhQkzsHmfPplLsCWXszHs-llWEDuOvju_gB5sceQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+and+Algebraic+Characterizations+of+Rational+Transductions&rft.jtitle=Logical+methods+in+computer+science&rft.au=Filiot%2C+Emmanuel&rft.au=Gauwin%2C+Olivier&rft.au=Lhote%2C+Nathan&rft.date=2019-12-19&rft.pub=Logical+Methods+in+Computer+Science+Association&rft.eissn=1860-5974&rft.volume=15&rft.issue=4&rft_id=info:doi/10.23638%2FLMCS-15%284%3A16%292019&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02503054v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |