A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting
•Quantile-based encoder-decoder models proposed for probabilistic runoff forecasting.•Proposed models more accurate and reliable than benchmarks for 3 test catchments.•Wavelet selection can be used to improve forecast accuracy and reliability.•Model performance sensitive to precipitation forecast ac...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 619; s. 129269 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2023
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Quantile-based encoder-decoder models proposed for probabilistic runoff forecasting.•Proposed models more accurate and reliable than benchmarks for 3 test catchments.•Wavelet selection can be used to improve forecast accuracy and reliability.•Model performance sensitive to precipitation forecast accuracy.
Deep neural network (DNN) models have become increasingly popular in the hydrology community. However, most studies are related to (rainfall-) runoff simulation and comparatively fewer studies have focused on runoff forecasting. In this study, quantile-based (q = 0.05, 0.5, 0.95) encoder-decoder (ED) models that use long short-term memory network (LSTM) and dense network (DN) blocks were developed for three and five days ahead runoff forecasting. Through linear (LW) and non-linear (NLW) wavelet selection, hybrid models LSTM-DN, LSTM-DN-LW, LSTM-DN-NLW, ED, ED-LW, and ED-NLW were developed. For each lead time (LT = 3, 5) and value of q, different model configurations were created using different input lag lengths (IL = 15, 45, 180). The developed models were tested for runoff forecasting using three basins (with different characteristics) from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) dataset. The models were compared using deterministic (e.g., the Kling-Gupta efficiency [KGE] metric) and probabilistic (e.g., reliability) statistical metrics. While the models showed high variability in performance across the three basins (KGE = 0.308–0.979 for the q = 0.5 models), very high accuracy (up to KGE = 0.979) was achieved for one of the basins with high snowmelt. The ED-NLW model was found to generally outperform the other models. Although the LSTM-DN model had the highest median KGE (0.434 across all configurations), the ED and ED-NLW models had higher reliability than LSTM-DN (90% and 91%, respectively, considering a 90% confidence level). Models coupled with NLW performed superior to those that used LW. All ED models had high reliability despite two of the basins achieving median KGE values of ∼ 0.390, highlighting that quantile-based models can generate reliable forecast intervals even when the KGE of the median forecast (q = 0.5) is low. An additional experiment generated synthetic precipitation forecasts with varying degrees of accuracy. The models were trained using accurate precipitation forecasts and tested using both accurate and inaccurate precipitation forecasts. While up to a 120% improvement in KGE was found when accurate precipitation forecasts were used as input to the models, using inaccurate precipitation forecasts resulted in a substantial decrease in reliability. Overall, the results of this study can serve as a benchmark for future studies developing probabilistic DNN models for runoff forecasting. |
|---|---|
| AbstractList | Deep neural network (DNN) models have become increasingly popular in the hydrology community. However, most studies are related to (rainfall-) runoff simulation and comparatively fewer studies have focused on runoff forecasting. In this study, quantile-based (q=0.05, 0.5, 0.95) encoder-decoder (ED) models that use long short-term memory networks (LSTMs) and dense networks (DNs) blocks were developed for three and five days ahead runoff forecasting. Through linear (LW) and non-linear (NLW) wavelet selection, hybrid models LSTM-DN, LSTM-DN-LW, LSTM-DN-NLW, ED, ED-LW, and ED-NLW were developed. For each lead time (LT=3, 5) and value of q, different model configurations were created using different input lag lengths (IL=15, 45, 180). The developed models were tested for runoff forecasting using three basins (with different characteristics) from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) dataset. The models were compared using deterministic (e.g., the Kling-Gupta Efficiency [KGE] metric) and probabilistic (e.g., reliability) performance metrics. While the models showed high variability in performance across the three basins (KGE=0.308-0.979 for the q=0.5 models), very high accuracy (up to KGE=0.979) was achieved for one of the basins with high snowmelt. The ED-NLW model was found to generally outperform the other models. Although the LSTM-DN model had the highest median KGE (0.434 across all configurations), the ED and ED-NLW models had higher reliability than LSTM-DN (90% and 91%, respectively, considering a 90 % confidence level). Models coupled with NLW performed superior to those that used LW. All ED models had high reliability despite two of the basins achieving median KGE values of ∼ 0.390, highlighting that quantile-based models can generate reliable forecast intervals even when the KGE of the median forecast (q=0.5) is low. An additional experiment generated synthetic precipitation forecasts with varying degrees of accuracy. The models were trained using “accurate” precipitation forecasts and tested using both “accurate” and “inaccurate” precipitation forecasts. While up to a 120% improvement in KGE was found when “accurate” precipitation forecasts were used as input to the models, using “inaccurate” precipitation forecasts resulted in a substantial decrease in reliability. Overall, the results of this study can serve as a benchmark for future studies developing probabilistic DNN models for runoff forecasting. •Quantile-based encoder-decoder models proposed for probabilistic runoff forecasting.•Proposed models more accurate and reliable than benchmarks for 3 test catchments.•Wavelet selection can be used to improve forecast accuracy and reliability.•Model performance sensitive to precipitation forecast accuracy. Deep neural network (DNN) models have become increasingly popular in the hydrology community. However, most studies are related to (rainfall-) runoff simulation and comparatively fewer studies have focused on runoff forecasting. In this study, quantile-based (q = 0.05, 0.5, 0.95) encoder-decoder (ED) models that use long short-term memory network (LSTM) and dense network (DN) blocks were developed for three and five days ahead runoff forecasting. Through linear (LW) and non-linear (NLW) wavelet selection, hybrid models LSTM-DN, LSTM-DN-LW, LSTM-DN-NLW, ED, ED-LW, and ED-NLW were developed. For each lead time (LT = 3, 5) and value of q, different model configurations were created using different input lag lengths (IL = 15, 45, 180). The developed models were tested for runoff forecasting using three basins (with different characteristics) from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) dataset. The models were compared using deterministic (e.g., the Kling-Gupta efficiency [KGE] metric) and probabilistic (e.g., reliability) statistical metrics. While the models showed high variability in performance across the three basins (KGE = 0.308–0.979 for the q = 0.5 models), very high accuracy (up to KGE = 0.979) was achieved for one of the basins with high snowmelt. The ED-NLW model was found to generally outperform the other models. Although the LSTM-DN model had the highest median KGE (0.434 across all configurations), the ED and ED-NLW models had higher reliability than LSTM-DN (90% and 91%, respectively, considering a 90% confidence level). Models coupled with NLW performed superior to those that used LW. All ED models had high reliability despite two of the basins achieving median KGE values of ∼ 0.390, highlighting that quantile-based models can generate reliable forecast intervals even when the KGE of the median forecast (q = 0.5) is low. An additional experiment generated synthetic precipitation forecasts with varying degrees of accuracy. The models were trained using accurate precipitation forecasts and tested using both accurate and inaccurate precipitation forecasts. While up to a 120% improvement in KGE was found when accurate precipitation forecasts were used as input to the models, using inaccurate precipitation forecasts resulted in a substantial decrease in reliability. Overall, the results of this study can serve as a benchmark for future studies developing probabilistic DNN models for runoff forecasting. |
| ArticleNumber | 129269 |
| Author | Quilty, John Jahangir, Mohammad Sina You, John |
| Author_xml | – sequence: 1 givenname: Mohammad Sina surname: Jahangir fullname: Jahangir, Mohammad Sina – sequence: 2 givenname: John orcidid: 0000-0002-3509-0312 surname: You fullname: You, John – sequence: 3 givenname: John orcidid: 0000-0002-0207-8077 surname: Quilty fullname: Quilty, John email: john.quilty@uwaterloo.ca |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGGPXnZNstkvPEgpfkFBED2HbDKxWbebNskq_fdu3Z68dC7vYd5nBp4ZmnS2A4SuCU4IJvltkzTrvXK2TSimaUJoRfPqDE1JWVQxLXAxQVOMKY1JXrELNPO-wcOkKZuit0W060UXTAtxLTyoCDppFbhYwV9G2okN_Fj3FWnrok3fBhP7ANtIrEGoyPWd1fqwAyl8MN3nJTrXovVwdcw5-nh8eF8-x6vXp5flYhXLlNEQy0wWhaJ1yWqMC6JKwbSWdVbkda5TYEBVpipCBWR1SiqJgegKcJoJUgHLdDpHN-PdrbO7HnzgG-MltK3owPae03L4Q2jO6FC9G6vSWe8daC5NEMHYLjhhWk4wP5jkDT-a5AeTfDQ50Nk_euvMRrj9Se5-5GCw8G3AcS_NoBeUGWQFrqw5ceEX9-mUTQ |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131737 crossref_primary_10_1016_j_eswa_2024_126004 crossref_primary_10_1016_j_jhydrol_2025_132906 crossref_primary_10_3390_w15223947 crossref_primary_10_1029_2025GL116707 crossref_primary_10_1016_j_jhydrol_2024_131434 crossref_primary_10_1016_j_ejrh_2025_102365 crossref_primary_10_1016_j_jhydrol_2025_132769 crossref_primary_10_1016_j_jhydrol_2025_132701 crossref_primary_10_1029_2023WR035139 crossref_primary_10_2166_hydro_2024_205 crossref_primary_10_1109_ACCESS_2024_3384066 crossref_primary_10_1016_j_jhydrol_2024_131494 crossref_primary_10_1029_2024WR039659 crossref_primary_10_2166_nh_2024_124 crossref_primary_10_1016_j_jhydrol_2025_134004 crossref_primary_10_1007_s10489_024_05345_w crossref_primary_10_2166_nh_2025_160 crossref_primary_10_1109_TGRS_2025_3605332 crossref_primary_10_1007_s00477_024_02780_6 crossref_primary_10_2166_hydro_2025_029 crossref_primary_10_1016_j_jhydrol_2023_130138 crossref_primary_10_1016_j_jhydrol_2023_130498 crossref_primary_10_1038_s41598_025_17207_7 crossref_primary_10_5194_hess_29_841_2025 crossref_primary_10_1007_s12145_025_01907_9 crossref_primary_10_1007_s12145_024_01569_z crossref_primary_10_1016_j_jhydrol_2024_131301 crossref_primary_10_1029_2024WR038105 crossref_primary_10_1109_ACCESS_2024_3412948 crossref_primary_10_1016_j_jhydrol_2025_132879 crossref_primary_10_1371_journal_pone_0321583 crossref_primary_10_1016_j_jhydrol_2025_132935 crossref_primary_10_1016_j_jhydrol_2025_133308 crossref_primary_10_1016_j_asoc_2024_112352 crossref_primary_10_1186_s43093_025_00532_8 crossref_primary_10_1038_s41598_024_81779_z crossref_primary_10_1016_j_jhydrol_2023_130076 |
| Cites_doi | 10.1016/j.jhydrol.2019.03.099 10.1016/j.jpowsour.2019.227558 10.3390/w13040437 10.1016/j.engappai.2022.105545 10.1016/j.jhydrol.2012.06.029 10.2166/hydro.2008.015 10.1098/rspa.2003.1199 10.1016/j.envsoft.2021.105094 10.1007/s00477-020-01874-1 10.1016/j.apenergy.2018.10.078 10.1016/j.jhydrol.2021.127043 10.1016/j.envsoft.2020.104718 10.1016/j.jhydrol.2020.125127 10.1198/016214506000001437 10.5194/gmd-12-2463-2019 10.5194/hess-21-5293-2017 10.1016/j.jhydrol.2021.126067 10.1029/2020WR029229 10.5194/hess-22-6005-2018 10.1029/2019WR025326 10.1016/j.jhydrol.2018.05.003 10.1207/s15516709cog1402_1 10.1016/j.ifacol.2022.11.015 10.13031/2013.23153 10.1016/j.agrformet.2019.107647 10.1016/j.asoc.2021.107083 10.1007/s00477-021-02013-0 10.2166/hydro.2013.075 10.5194/hess-19-209-2015 10.1016/j.jhydrol.2022.127653 10.1007/s11269-021-03002-2 10.1016/j.jhydrol.2015.01.042 10.21105/joss.01903 10.1016/j.jhydrol.2019.124296 10.1175/JCLI-D-12-00249.1 10.1061/(ASCE)1084-0699(2006)11:6(597) 10.1016/j.pce.2018.07.003 10.1006/jath.2000.3514 10.3390/w11071387 10.1016/j.jhydrol.2021.126888 10.1016/j.envsoft.2022.105326 10.1016/j.jhydrol.2015.05.051 10.1016/j.jhydrol.2013.10.003 10.5194/hess-24-5491-2020 10.1016/j.scitotenv.2022.161035 10.1111/jfr3.12585 10.1016/j.neucom.2013.05.023 10.1016/j.jhydrol.2020.125376 10.3390/en14061596 10.1029/2019WR026226 10.3390/w11102126 10.1016/j.jhydrol.2018.07.035 10.1016/j.jhydrol.2021.126378 10.1016/j.jhydrol.2004.10.008 10.5194/hess-25-2685-2021 10.1016/j.jhydrol.2020.124631 10.5194/hess-26-2387-2022 10.3390/w10111543 10.1371/journal.pone.0157243 10.1016/j.jhydrol.2019.123957 10.1016/j.envsoft.2020.104926 10.1016/j.jhydrol.2021.126831 10.1029/2019WR026933 10.1111/j.1467-6419.2006.00502.x 10.1016/j.jhydrol.2021.126196 10.1016/j.jhydrol.2022.127764 10.1002/2015JD023787 10.5194/hess-26-4013-2022 10.1007/s10040-021-02403-2 10.2166/nh.2021.161 10.1016/j.envsoft.2021.105119 10.1007/s00521-022-07523-8 10.3390/w13010028 10.1016/j.neucom.2020.04.110 10.1142/S0129065704001899 10.1016/j.jhydrol.2019.06.036 10.18653/v1/D15-1166 10.1016/j.jhydrol.2013.09.025 10.1016/j.advwatres.2020.103622 10.1016/j.advwatres.2009.10.013 10.3390/app11115029 10.1016/j.jhydrol.2021.126526 10.3390/su13031336 10.5194/hess-23-5089-2019 10.1007/978-3-0348-8266-8_56 10.1002/met.1491 10.1029/2019WR026793 10.1016/j.envsoft.2022.105474 10.1016/j.jhydrol.2015.09.047 10.1029/2021WR030216 10.1016/j.jhydrol.2009.08.003 10.1016/j.jhydrol.2011.11.042 10.1016/j.cageo.2010.07.005 10.1162/neco.1997.9.8.1735 10.1016/j.asoc.2019.03.046 10.1029/2021WR029772 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2023.129269 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2023_129269 S0022169423002111 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-c5c77d2b84b0071d8a4ffcb576b6f3e4e2d5d912ae5b319c0e1f9e035a19e45f3 |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965718600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Thu Oct 02 21:42:10 EDT 2025 Sat Nov 29 06:57:08 EST 2025 Tue Nov 18 21:09:13 EST 2025 Fri Feb 23 02:34:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning LSTM Encoder-decoder Runoff forecasting Hydrological forecasting Wavelet decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-c5c77d2b84b0071d8a4ffcb576b6f3e4e2d5d912ae5b319c0e1f9e035a19e45f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3509-0312 0000-0002-0207-8077 |
| PQID | 2834212642 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834212642 crossref_citationtrail_10_1016_j_jhydrol_2023_129269 crossref_primary_10_1016_j_jhydrol_2023_129269 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129269 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Borovykh, A., Bohte, S. and Oosterlee, C.W., 2017. Conditional time series forecasting with convolutional neural networks. Yin, Zhang, Wang, Zhang, Xia, Jin (b0520) 2021; 598 Hu, Wu, Li, Jian, Li, Lou (b0215) 2018; 10 Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0250) 2018; 22 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (b0350) 2007; 50 Ding, Zhu, Feng, Zhang, Cheng (b0135) 2020; 403 Coulibaly, Baldwin (b0120) 2005; 307 Li, Lü, Horton, An, Yu (b0280) 2014; 16 Liu, Zhang, Kang, Li, Lei (b0300) 2021; 13 Partington, Brunner, Simmons, Werner, Therrien, Maier, Dandy (b0390) 2012; 458 Elman (b0140) 1990; 14 Chidepudi, Massei, Jardani, Henriot, Allier, Baulon (b0105) 2023; 865 Lv, Liang, Chen, Zhou, Li, Wei, Wang (b0320) 2020; 141 Barzegar, Aalami, Adamowski (b0050) 2021; 598 Bian, He, Yang, Huang (b0055) 2020; 449 Jamei, Ahmadianfar, Karbasi, Malik, Kisi, Yaseen (b0225) 2023; 117 Xie, Liu, Zhang, Han, Wang, Shen (b0510) 2021; 603 Head, T., Kumar, M., Nahrstaedt, H., Louppe, G. and Shcherbatyi, I., 2020. scikit-optimize/scikit-optimize: v0. 8.1. 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) Han, Choi, Jung, Kim (b0195) 2021; 13 Han, Morrison (b0190) 2022; 608 Jin, Zheng, Kong, Wang, Bai, Su, Lin (b0230) 2021; 14 Alibabaei, Gaspar, Lima (b0025) 2021; 11 Acharya, Babel, Madsen, Sisomphon, Shrestha (b0010) 2020; 13 Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b0275) 2017; 18 Adombi, Chesnaux, Boucher (b0020) 2021; 29 . Hao, Cominola, Castelletti (b0200) 2022; 55 Zhou, Chen, Singh, Zhou, Chen, Xiong (b0545) 2019; 573 Le, Ho, Lee, Jung (b0270) 2019; 11 arXiv preprint arXiv:1012.2599. Wang, Gan, Sun, Zhang, Lu, Kang (b0490) 2019; 235 arXiv preprint arXiv:1412.6980. Apaydin, Sibtain (b0035) 2021; 603 Nevo, Morin, Gerzi Rosenthal, Metzger, Barshai, Weitzner, Voloshin, Kratzert, Elidan, Dror, Begelman (b0355) 2022; 26 Jahangir, Biazar, Hah, Quilty, Isazadeh (b0220) 2021 Zhou, Liu, Duan (b0550) 2020; 588 Feng, Fang, Shen (b0145) 2020; 56 Cui, Zhou, Guo, Wang, Xu (b0130) 2022; 609 Hah, Quilty, Sikorska-Senoner (b0180) 2022 Li, Marshall, Liang, Sharma, Zhou (b0290) 2021; 603 Quilty, Adamowski (b0410) 2020; 130 Li, Marshall, Liang, Sharma, Zhou (b0285) 2021; 57 Newman, Clark, Sampson, Wood, Hay, Bock, Viger, Blodgett, Brekke, Arnold, Hopson (b0360) 2015; 19 Mehr, Kahya, Olyaie (b0340) 2013; 505 Walden, A.T., 2001. Wavelet analysis of discrete time series. In Smith, Marshall, Sharma (b0450) 2015; 528 Nielsen (b0370) 2001; 108 Boucher, Quilty, Adamowski (b0075) 2020; 56 Goodfellow, Bengio, Courville (b0170) 2016 Lian, Luo, Wang, Zuo, Wei (b0295) 2022; 36 Gupta, Kling, Yilmaz, Martinez (b0175) 2009; 377 Seeger (b0435) 2004; 14 Quilty, Adamowski (b0405) 2018; 563 Kratzert, Klotz, Hochreiter, Nearing (b0260) 2021; 25 Tasdighi, Arabi, Harmel (b0460) 2018; 564 Addor, Newman, Mizukami, Clark (b0015) 2017; 21 Mehdizadeh, Fathian, Adamowski (b0335) 2019; 80 Yucel, Onen, Yilmaz, Gochis (b0525) 2015; 523 Tyralis, Papacharalampous, Burnetas, Langousis (b0475) 2019; 577 Malik, Tikhamarine, Souag-Gamane, Kisi, Pham (b0325) 2020; 34 Chollet, F. (2015). Keras. Sikorska-Senoner, Quilty (b0445) 2021; 143 Zuo, Luo, Wang, Lian, He (b0555) 2020; 24 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In Sezen, Bezak, Bai, Šraj (b0440) 2019; 576 Luong, M.T., Pham, H. and Manning, C.D., 2015. Effective approaches to attention-based neural machine translation. McCuen, Knight, Cutter (b0330) 2006; 11 Zhang, Chen, Khan, Zhang, Kuang, Liang, Taccari, Nuttall (b0530) 2021; 596 Quilty, Sikorska-Senoner, Hah (b0420) 2022; 149 Chadalawada, Herath, Babovic (b0095) 2020; 56 Ponnoprat (b0400) 2021; 102 Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R. and Cook, R.B., 2014. Zhang, Telesford, Giusti, Lim, Bassett (b0540) 2016; 11 Solomatine, Ostfeld (b0455) 2008; 10 Alizadeh, Ghaderi Bafti, Kamangir, Zhang, Wright, Franz (b0030) 2021; 601 Valipour (b0480) 2015; 22 Cheng, Fang, Kinouchi, Navon, Pain (b0100) 2020; 590 Ni, Wang, Singh, Wu, Wang, Tao, Zhang (b0365) 2020; 583 Bittelli, Tomei, Pistocchi, Flury, Boll, Brooks, Antolini (b0060) 2010; 33 Lu, Konapala, Painter, Kao, Gangrade (b0310) 2021; 22 Papacharalampous, Langousis (b0380) 2022; 58 Hochreiter, Schmidhuber (b0210) 1997; 9 Kao, Zhou, Chang, Chang (b0235) 2020; 583 Zhang, Peng, Zhang, Wang (b0535) 2015; 530 Hammad, Shoaib, Salahudin, Baig, Khan, Ullah (b0185) 2021; 35 Papacharalampous, Tyralis, Langousis, Jayawardena, Sivakumar, Mamassis, Montanari, Koutsoyiannis (b0385) 2019; 11 (pp. 265-283). Liu, Zhou, Chen, Guan (b0305) 2015; 120 Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0255) 2019; 23 Quilty, Adamowski (b0415) 2021; 144 Percival, Walden (b0395) 2000; Vol. 4 Asadi, Shahrabi, Abbaszadeh, Tabanmehr (b0040) 2013; 121 Girihagama, Naveed Khaliq, Lamontagne, Perdikaris, Roy, Sushama, Elshorbagy (b0160) 2022; 34 Wang, Karimi (b0495) 2022; 26 arXiv preprint arXiv:1508.04025. Rathinasamy, Adamowski, Khosa (b0425) 2013; 507 Crowley (b0125) 2007; 21 Boucher, Tremblay, Delorme, Perreault, Anctil (b0070) 2012; 416 Yang, Zhang (b0515) 2021; 22 Olhede, Walden (b0375) 2004; 460 Samadi, Sadrolashrafi, Kholghi (b0430) 2019; 109 Cannon (b0090) 2011; 37 Gauch, Mai, Lin (b0150) 2021; 135 Team, R.C., 2013. R: A language and environment for statistical computing. Bürger, Sobie, Cannon, Werner, Murdock (b0085) 2013; 26 Ghaemi, Rezaie-Balf, Adamowski, Kisi, Quilty (b0155) 2019; 278 Chlumsky, Mai, Craig, Tolson (b0110) 2021; 57 Knoben, Freer, Fowler, Peel, Woods (b0245) 2019; 12 Gneiting, Raftery (b0165) 2007; 102 Lang, Binder, Richter, Schratz, Pfisterer, Coors, Au, Casalicchio, Kotthoff, Bischl (b0265) 2019; 4 Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Wu, Chen, Zhang, Xiong, Lei, Deng (b0500) 2019; 17 (pp. 627-641). Birkhäuser, Basel. Bai, Li, Liu, Li, Zhang, Qin (b0045) 2021; 52 Moges, Demissie, Larsen, Yassin (b0345) 2020; 13 European Congress of Mathematics Xiang, Yan, Demir (b0505) 2020; 56 arXiv preprint arXiv:1703.04691. Brochu, E., Cora, V.M. and De Freitas, N., 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Le (10.1016/j.jhydrol.2023.129269_b0270) 2019; 11 Yin (10.1016/j.jhydrol.2023.129269_b0520) 2021; 598 Zhang (10.1016/j.jhydrol.2023.129269_b0530) 2021; 596 Li (10.1016/j.jhydrol.2023.129269_b0290) 2021; 603 Nevo (10.1016/j.jhydrol.2023.129269_b0355) 2022; 26 Yucel (10.1016/j.jhydrol.2023.129269_b0525) 2015; 523 Quilty (10.1016/j.jhydrol.2023.129269_b0415) 2021; 144 Cannon (10.1016/j.jhydrol.2023.129269_b0090) 2011; 37 Moges (10.1016/j.jhydrol.2023.129269_b0345) 2020; 13 Gupta (10.1016/j.jhydrol.2023.129269_b0175) 2009; 377 Crowley (10.1016/j.jhydrol.2023.129269_b0125) 2007; 21 Elman (10.1016/j.jhydrol.2023.129269_b0140) 1990; 14 Cui (10.1016/j.jhydrol.2023.129269_b0130) 2022; 609 Yang (10.1016/j.jhydrol.2023.129269_b0515) 2021; 22 Li (10.1016/j.jhydrol.2023.129269_b0285) 2021; 57 10.1016/j.jhydrol.2023.129269_b0315 Sikorska-Senoner (10.1016/j.jhydrol.2023.129269_b0445) 2021; 143 Hammad (10.1016/j.jhydrol.2023.129269_b0185) 2021; 35 Kao (10.1016/j.jhydrol.2023.129269_b0235) 2020; 583 Liu (10.1016/j.jhydrol.2023.129269_b0305) 2015; 120 Ponnoprat (10.1016/j.jhydrol.2023.129269_b0400) 2021; 102 Jin (10.1016/j.jhydrol.2023.129269_b0230) 2021; 14 Asadi (10.1016/j.jhydrol.2023.129269_b0040) 2013; 121 Coulibaly (10.1016/j.jhydrol.2023.129269_b0120) 2005; 307 Hu (10.1016/j.jhydrol.2023.129269_b0215) 2018; 10 Nielsen (10.1016/j.jhydrol.2023.129269_b0370) 2001; 108 Lang (10.1016/j.jhydrol.2023.129269_b0265) 2019; 4 Feng (10.1016/j.jhydrol.2023.129269_b0145) 2020; 56 10.1016/j.jhydrol.2023.129269_b0205 Zhang (10.1016/j.jhydrol.2023.129269_b0540) 2016; 11 Goodfellow (10.1016/j.jhydrol.2023.129269_b0170) 2016 Liu (10.1016/j.jhydrol.2023.129269_b0300) 2021; 13 Partington (10.1016/j.jhydrol.2023.129269_b0390) 2012; 458 Papacharalampous (10.1016/j.jhydrol.2023.129269_b0385) 2019; 11 Jahangir (10.1016/j.jhydrol.2023.129269_b0220) 2021 Addor (10.1016/j.jhydrol.2023.129269_b0015) 2017; 21 Jamei (10.1016/j.jhydrol.2023.129269_b0225) 2023; 117 Apaydin (10.1016/j.jhydrol.2023.129269_b0035) 2021; 603 Wang (10.1016/j.jhydrol.2023.129269_b0495) 2022; 26 Chidepudi (10.1016/j.jhydrol.2023.129269_b0105) 2023; 865 Samadi (10.1016/j.jhydrol.2023.129269_b0430) 2019; 109 Hochreiter (10.1016/j.jhydrol.2023.129269_b0210) 1997; 9 Ding (10.1016/j.jhydrol.2023.129269_b0135) 2020; 403 Gauch (10.1016/j.jhydrol.2023.129269_b0150) 2021; 135 Kratzert (10.1016/j.jhydrol.2023.129269_b0250) 2018; 22 Han (10.1016/j.jhydrol.2023.129269_b0190) 2022; 608 Zhang (10.1016/j.jhydrol.2023.129269_b0535) 2015; 530 Zhou (10.1016/j.jhydrol.2023.129269_b0545) 2019; 573 10.1016/j.jhydrol.2023.129269_b0065 Newman (10.1016/j.jhydrol.2023.129269_b0360) 2015; 19 Wang (10.1016/j.jhydrol.2023.129269_b0490) 2019; 235 Chadalawada (10.1016/j.jhydrol.2023.129269_b0095) 2020; 56 10.1016/j.jhydrol.2023.129269_b0465 Seeger (10.1016/j.jhydrol.2023.129269_b0435) 2004; 14 Malik (10.1016/j.jhydrol.2023.129269_b0325) 2020; 34 Barzegar (10.1016/j.jhydrol.2023.129269_b0050) 2021; 598 Gneiting (10.1016/j.jhydrol.2023.129269_b0165) 2007; 102 Percival (10.1016/j.jhydrol.2023.129269_b0395) 2000; Vol. 4 Bai (10.1016/j.jhydrol.2023.129269_b0045) 2021; 52 Acharya (10.1016/j.jhydrol.2023.129269_b0010) 2020; 13 10.1016/j.jhydrol.2023.129269_b0470 Zhou (10.1016/j.jhydrol.2023.129269_b0550) 2020; 588 Lian (10.1016/j.jhydrol.2023.129269_b0295) 2022; 36 Ni (10.1016/j.jhydrol.2023.129269_b0365) 2020; 583 Alizadeh (10.1016/j.jhydrol.2023.129269_b0030) 2021; 601 10.1016/j.jhydrol.2023.129269_b0115 Rathinasamy (10.1016/j.jhydrol.2023.129269_b0425) 2013; 507 Wu (10.1016/j.jhydrol.2023.129269_b0500) 2019; 17 Kratzert (10.1016/j.jhydrol.2023.129269_b0255) 2019; 23 Smith (10.1016/j.jhydrol.2023.129269_b0450) 2015; 528 Quilty (10.1016/j.jhydrol.2023.129269_b0420) 2022; 149 10.1016/j.jhydrol.2023.129269_b0080 Lu (10.1016/j.jhydrol.2023.129269_b0310) 2021; 22 Olhede (10.1016/j.jhydrol.2023.129269_b0375) 2004; 460 Cheng (10.1016/j.jhydrol.2023.129269_b0100) 2020; 590 Knoben (10.1016/j.jhydrol.2023.129269_b0245) 2019; 12 Xiang (10.1016/j.jhydrol.2023.129269_b0505) 2020; 56 Bian (10.1016/j.jhydrol.2023.129269_b0055) 2020; 449 Xie (10.1016/j.jhydrol.2023.129269_b0510) 2021; 603 10.1016/j.jhydrol.2023.129269_b0240 McCuen (10.1016/j.jhydrol.2023.129269_b0330) 2006; 11 Tasdighi (10.1016/j.jhydrol.2023.129269_b0460) 2018; 564 Bittelli (10.1016/j.jhydrol.2023.129269_b0060) 2010; 33 Li (10.1016/j.jhydrol.2023.129269_b0280) 2014; 16 Alibabaei (10.1016/j.jhydrol.2023.129269_b0025) 2021; 11 10.1016/j.jhydrol.2023.129269_b0005 Papacharalampous (10.1016/j.jhydrol.2023.129269_b0380) 2022; 58 Mehr (10.1016/j.jhydrol.2023.129269_b0340) 2013; 505 Li (10.1016/j.jhydrol.2023.129269_b0275) 2017; 18 Moriasi (10.1016/j.jhydrol.2023.129269_b0350) 2007; 50 Valipour (10.1016/j.jhydrol.2023.129269_b0480) 2015; 22 10.1016/j.jhydrol.2023.129269_b0485 Girihagama (10.1016/j.jhydrol.2023.129269_b0160) 2022; 34 Mehdizadeh (10.1016/j.jhydrol.2023.129269_b0335) 2019; 80 Ghaemi (10.1016/j.jhydrol.2023.129269_b0155) 2019; 278 Lv (10.1016/j.jhydrol.2023.129269_b0320) 2020; 141 Solomatine (10.1016/j.jhydrol.2023.129269_b0455) 2008; 10 Adombi (10.1016/j.jhydrol.2023.129269_b0020) 2021; 29 Kratzert (10.1016/j.jhydrol.2023.129269_b0260) 2021; 25 Quilty (10.1016/j.jhydrol.2023.129269_b0410) 2020; 130 Boucher (10.1016/j.jhydrol.2023.129269_b0070) 2012; 416 Hah (10.1016/j.jhydrol.2023.129269_b0180) 2022 Zuo (10.1016/j.jhydrol.2023.129269_b0555) 2020; 24 Hao (10.1016/j.jhydrol.2023.129269_b0200) 2022; 55 Sezen (10.1016/j.jhydrol.2023.129269_b0440) 2019; 576 Quilty (10.1016/j.jhydrol.2023.129269_b0405) 2018; 563 Tyralis (10.1016/j.jhydrol.2023.129269_b0475) 2019; 577 Bürger (10.1016/j.jhydrol.2023.129269_b0085) 2013; 26 Boucher (10.1016/j.jhydrol.2023.129269_b0075) 2020; 56 Han (10.1016/j.jhydrol.2023.129269_b0195) 2021; 13 Chlumsky (10.1016/j.jhydrol.2023.129269_b0110) 2021; 57 |
| References_xml | – volume: 590 start-page: 125376 year: 2020 ident: b0100 article-title: Long lead-time daily and monthly streamflow forecasting using machine learning methods publication-title: J. Hydrol. – volume: 18 start-page: 6765 year: 2017 end-page: 6816 ident: b0275 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J. Machine Learn. Res. – volume: 58 year: 2022 ident: b0380 article-title: Probabilistic water demand forecasting using quantile regression algorithms publication-title: Water Resour. Res. – volume: 583 year: 2020 ident: b0235 article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting publication-title: J. Hydrol. – volume: 13 start-page: 28 year: 2020 ident: b0345 article-title: Sources of hydrological model uncertainties and advances in their analysis publication-title: Water – volume: 21 start-page: 5293 year: 2017 end-page: 5313 ident: b0015 article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. – volume: 26 start-page: 4013 year: 2022 end-page: 4032 ident: b0355 article-title: Flood forecasting with machine learning models in an operational framework publication-title: Hydrol. Earth Syst. Sci. – volume: 11 start-page: 597 year: 2006 end-page: 602 ident: b0330 article-title: Evaluation of the Nash-Sutcliffe efficiency index publication-title: J. Hydrol. Eng. – volume: 22 start-page: 1421 year: 2021 end-page: 1438 ident: b0310 article-title: Streamflow simulation in data-scarce basins using bayesian and physics-informed machine learning models publication-title: J. Hydrometeorol. – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b0140 article-title: Finding structure in time publication-title: Cognit. Sci. – volume: 598 year: 2021 ident: b0520 article-title: Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model publication-title: J. Hydrol. – volume: 24 start-page: 5491 year: 2020 end-page: 5518 ident: b0555 article-title: Two-stage variational mode decomposition and support vector regression for streamflow forecasting publication-title: Hydrol. Earth Syst. Sci. – volume: 135 start-page: 104926 year: 2021 ident: b0150 article-title: The proper care and feeding of CAMELS: How limited training data affects streamflow prediction publication-title: Environ. Model. Softw. – reference: Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R. and Cook, R.B., 2014. – volume: 865 start-page: 161035 year: 2023 ident: b0105 article-title: A wavelet-assisted deep learning approach for simulating groundwater levels affected by low-frequency variability publication-title: Sci. Total Environ. – volume: 528 start-page: 29 year: 2015 end-page: 37 ident: b0450 article-title: Modeling residual hydrologic errors with Bayesian inference publication-title: J. Hydrol. – reference: arXiv preprint arXiv:1412.6980. – volume: 16 start-page: 973 year: 2014 end-page: 988 ident: b0280 article-title: Real-time flood forecast using the coupling support vector machine and data assimilation method publication-title: J. Hydroinf. – volume: 10 start-page: 3 year: 2008 end-page: 22 ident: b0455 article-title: Data-driven modelling: some past experiences and new approaches publication-title: J. Hydroinf. – volume: 19 start-page: 209 year: 2015 end-page: 223 ident: b0360 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: b0350 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE – volume: 603 start-page: 126831 year: 2021 ident: b0035 article-title: A multivariate streamflow forecasting model by integrating improved complete ensemble empirical mode decomposition with additive noise, sample entropy, Gini index and sequence-to-sequence approaches publication-title: J. Hydrol. – volume: 143 year: 2021 ident: b0445 article-title: A novel ensemble-based conceptual-data-driven approach for improved streamflow simulations publication-title: Environ. Model. Softw. – volume: 22 start-page: 592 year: 2015 end-page: 598 ident: b0480 article-title: Long-term runoff study using SARIMA and ARIMA models in the United States publication-title: Meteorol. Appl. – volume: 588 year: 2020 ident: b0550 article-title: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity publication-title: J. Hydrol. – reference: arXiv preprint arXiv:1012.2599. – volume: 56 year: 2020 ident: b0075 article-title: Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons publication-title: Water Resour. Res. – volume: 34 start-page: 1755 year: 2020 end-page: 1773 ident: b0325 article-title: Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction publication-title: Stochastic Environ. Res. Risk Assess. – volume: 23 start-page: 5089 year: 2019 end-page: 5110 ident: b0255 article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets publication-title: Hydrol. Earth Syst. Sci. – volume: 523 start-page: 49 year: 2015 end-page: 66 ident: b0525 article-title: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall publication-title: J. Hydrol. – volume: 141 year: 2020 ident: b0320 article-title: A long Short-Term memory cyclic model with mutual information for hydrology forecasting: A Case study in the xixian basin publication-title: Adv. Water Resour. – volume: 22 start-page: 6005 year: 2018 end-page: 6022 ident: b0250 article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0210 article-title: Long short-term memory publication-title: Neural Comput. – reference: (pp. 627-641). Birkhäuser, Basel. – reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In – volume: 576 start-page: 98 year: 2019 end-page: 110 ident: b0440 article-title: Hydrological modelling of karst catchment using lumped conceptual and data mining models publication-title: J. Hydrol. – volume: 13 start-page: e12585 year: 2020 ident: b0010 article-title: Comparison of different quantile regression methods to estimate predictive hydrological uncertainty in the Upper Chao Phraya River Basin, Thailand publication-title: J. Flood Risk Manage. – volume: 21 start-page: 207 year: 2007 end-page: 267 ident: b0125 article-title: A guide to wavelets for economists publication-title: J. Econ. Surv. – volume: 109 start-page: 9 year: 2019 end-page: 25 ident: b0430 article-title: Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: A case study for the Dez River Basin publication-title: Physics and Chemistry of the Earth, Parts A/B/C – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: b0165 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. – reference: Team, R.C., 2013. R: A language and environment for statistical computing. – volume: 563 start-page: 336 year: 2018 end-page: 353 ident: b0405 article-title: Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework publication-title: J. Hydrol. – volume: 4 start-page: 1903 year: 2019 ident: b0265 article-title: mlr3: A modern object-oriented machine learning framework in R publication-title: J. Open Source Software – reference: Luong, M.T., Pham, H. and Manning, C.D., 2015. Effective approaches to attention-based neural machine translation. – volume: 29 start-page: 2671 year: 2021 end-page: 2683 ident: b0020 article-title: Theory-guided machine learning applied to hydrogeology—state of the art, opportunities and future challenges publication-title: Hydrgeol. J. – volume: 14 start-page: 1596 year: 2021 ident: b0230 article-title: Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization publication-title: Energies – volume: 601 start-page: 126526 year: 2021 ident: b0030 article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction publication-title: J. Hydrol. – volume: 144 year: 2021 ident: b0415 article-title: A maximal overlap discrete wavelet packet transform integrated approach for rainfall forecasting–A case study in the Awash River Basin (Ethiopia) publication-title: Environ. Model. Softw. – volume: 26 start-page: 3429 year: 2013 end-page: 3449 ident: b0085 article-title: Downscaling extremes: An intercomparison of multiple methods for future climate publication-title: J. Clim. – volume: 505 start-page: 240 year: 2013 end-page: 249 ident: b0340 article-title: Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique publication-title: J. Hydrol. – volume: 17 start-page: 26 year: 2019 end-page: 40 ident: b0500 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: J. Electron. Sci. Technol. – volume: 57 year: 2021 ident: b0110 article-title: Simultaneous calibration of hydrologic model structure and parameters using a blended model publication-title: Water Resour. Res. – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: b0435 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 121 start-page: 470 year: 2013 end-page: 480 ident: b0040 article-title: A new hybrid artificial neural networks for rainfall–runoff process modeling publication-title: Neurocomputing – volume: 10 start-page: 1543 year: 2018 ident: b0215 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water – volume: 564 start-page: 476 year: 2018 end-page: 489 ident: b0460 article-title: A probabilistic appraisal of rainfall-runoff modeling approaches within SWAT in mixed land use watersheds publication-title: J. Hydrol. – reference: arXiv preprint arXiv:1703.04691. – volume: 117 year: 2023 ident: b0225 article-title: Development of wavelet-based Kalman online sequential extreme learning machine optimized with Boruta-Random Forest for drought index forecasting publication-title: Eng. Appl. Artif. Intel. – volume: 598 start-page: 126196 year: 2021 ident: b0050 article-title: Coupling a hybrid CNN-LSTM deep learning model with a Boundary Corrected Maximal Overlap Discrete Wavelet Transform for multiscale Lake water level forecasting publication-title: J. Hydrol. – volume: 307 start-page: 164 year: 2005 end-page: 174 ident: b0120 article-title: Nonstationary hydrological time series forecasting using nonlinear dynamic methods publication-title: J. Hydrol. – volume: 460 start-page: 955 year: 2004 end-page: 975 ident: b0375 article-title: The Hilbert spectrum via wavelet projections publication-title: Proc. Royal Soc. London. Series A: Math. Phys. Eng. Sci. – volume: 603 year: 2021 ident: b0290 article-title: Characterizing distributed hydrological model residual errors using a probabilistic long short-term memory network publication-title: J. Hydrol. – volume: 596 year: 2021 ident: b0530 article-title: Daily runoff forecasting by deep recursive neural network publication-title: J. Hydrol. – volume: 26 start-page: 2387 year: 2022 end-page: 2403 ident: b0495 article-title: Impact of spatial distribution information of rainfall in runoff simulation using deep learning method publication-title: Hydrol. Earth Syst. Sci. – volume: 449 start-page: 227558 year: 2020 ident: b0055 article-title: State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture publication-title: J. Power Sources – volume: 403 start-page: 348 year: 2020 end-page: 359 ident: b0135 article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting publication-title: Neurocomputing – volume: 573 start-page: 524 year: 2019 end-page: 533 ident: b0545 article-title: Rainfall-runoff simulation in karst dominated areas based on a coupled conceptual hydrological model publication-title: J. Hydrol. – start-page: 1 year: 2021 end-page: 25 ident: b0220 article-title: Investigating the impact of input variable selection on daily solar radiation prediction accuracy using data-driven models: a case study in northern Iran publication-title: Stoch. Env. Res. Risk A. – volume: 235 start-page: 10 year: 2019 end-page: 20 ident: b0490 article-title: Probabilistic individual load forecasting using pinball loss guided LSTM publication-title: Appl. Energy – volume: 34 start-page: 19995 year: 2022 end-page: 20015 ident: b0160 article-title: Streamflow modelling and forecasting for Canadian watersheds using LSTM networks with attention mechanism publication-title: Neural Comput. Appl. – volume: 130 year: 2020 ident: b0410 article-title: A stochastic wavelet-based data-driven framework for forecasting uncertain multiscale hydrological and water resources processes publication-title: Environ. Model. Softw. – reference: Walden, A.T., 2001. Wavelet analysis of discrete time series. In – volume: 80 start-page: 873 year: 2019 end-page: 887 ident: b0335 article-title: Hybrid artificial intelligence-time series models for monthly streamflow modeling publication-title: Appl. Soft Comput. – reference: 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) – volume: 11 start-page: 5029 year: 2021 ident: b0025 article-title: Modeling soil water content and reference evapotranspiration from climate data using deep learning method publication-title: Appl. Sci. – volume: 583 year: 2020 ident: b0365 article-title: Streamflow and rainfall forecasting by two long short-term memory-based models publication-title: J. Hydrol. – reference: Brochu, E., Cora, V.M. and De Freitas, N., 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. – volume: 278 start-page: 107647 year: 2019 ident: b0155 article-title: On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction publication-title: Agric. For. Meteorol. – volume: 56 year: 2020 ident: b0145 article-title: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales publication-title: Water Resour. Res. – volume: 13 start-page: 437 year: 2021 ident: b0195 article-title: Deep Learning with Long Short Term Memory Based Sequence-to-Sequence Model for Rainfall-Runoff Simulation publication-title: Water – volume: 37 start-page: 1277 year: 2011 end-page: 1284 ident: b0090 article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling publication-title: Comput. Geosci. – volume: 149 year: 2022 ident: b0420 article-title: A stochastic conceptual-data-driven approach for improved hydrological simulations publication-title: Environ. Model. Softw. – volume: 11 start-page: e0157243 year: 2016 ident: b0540 article-title: Choosing wavelet methods, filters, and lengths for functional brain network construction publication-title: PLoS One – volume: 33 start-page: 106 year: 2010 end-page: 122 ident: b0060 article-title: Development and testing of a physically based, three-dimensional model of surface and subsurface hydrology publication-title: Adv. Water Resour. – volume: 416 start-page: 133 year: 2012 end-page: 144 ident: b0070 article-title: Hydro-economic assessment of hydrological forecasting systems publication-title: J. Hydrol. – reference: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). – volume: 36 start-page: 21 year: 2022 end-page: 37 ident: b0295 article-title: Climate-driven model based on long short-term memory and bayesian optimization for multi-day-ahead daily streamflow forecasting publication-title: Water Resour. Manag. – volume: Vol. 4 year: 2000 ident: b0395 publication-title: Wavelet methods for time series analysis – volume: 577 year: 2019 ident: b0475 article-title: Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS publication-title: J. Hydrol. – reference: Chollet, F. (2015). Keras. – volume: 377 start-page: 80 year: 2009 end-page: 91 ident: b0175 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. – volume: 507 start-page: 186 year: 2013 end-page: 200 ident: b0425 article-title: Multiscale streamflow forecasting using a new Bayesian Model Average based ensemble multi-wavelet Volterra nonlinear method publication-title: J. Hydrol. – volume: 102 year: 2021 ident: b0400 article-title: Short-term daily precipitation forecasting with seasonally-integrated autoencoder publication-title: Appl. Soft Comput. – reference: (pp. 265-283). – volume: 25 start-page: 2685 year: 2021 end-page: 2703 ident: b0260 article-title: A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling publication-title: Hydrol. Earth Syst. Sci. – volume: 22 start-page: 149 year: 2021 end-page: 1141 ident: b0515 article-title: Hyperparameter Optimization via Sequential Uniform Designs publication-title: Journal of Machin Learning Research. – year: 2016 ident: b0170 article-title: Deep Learning – volume: 56 year: 2020 ident: b0505 article-title: A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning publication-title: Water Resour. Res. – reference: Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. – volume: 52 start-page: 927 year: 2021 end-page: 943 ident: b0045 article-title: Hydrological probabilistic forecasting based on deep learning and Bayesian optimization algorithm publication-title: Hydrol. Res. – reference: Borovykh, A., Bohte, S. and Oosterlee, C.W., 2017. Conditional time series forecasting with convolutional neural networks. – volume: 108 start-page: 36 year: 2001 end-page: 52 ident: b0370 article-title: On the construction and frequency localization of finite orthogonal quadrature filters publication-title: J. Approx. Theory – volume: 608 year: 2022 ident: b0190 article-title: Improved runoff forecasting performance through error predictions using a deep-learning approach publication-title: J. Hydrol. – reference: arXiv preprint arXiv:1508.04025. – volume: 11 start-page: 2126 year: 2019 ident: b0385 article-title: Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms publication-title: Water – volume: 120 start-page: 10 year: 2015 end-page: 116 ident: b0305 article-title: A multivariate conditional model for streamflow prediction and spatial precipitation refinement publication-title: J. Geophys. Res. Atmos. – volume: 11 start-page: 1387 year: 2019 ident: b0270 article-title: Application of long short-term memory (lstm) neural network for flood forecasting publication-title: Water – volume: 35 start-page: 2213 year: 2021 end-page: 2235 ident: b0185 article-title: Rainfall forecasting in upper Indus basin using various artificial intelligence techniques publication-title: Stoch. Env. Res. Risk A. – volume: 56 year: 2020 ident: b0095 article-title: Hydrologically informed machine learning for rainfall-runoff modeling: A genetic programming-based toolkit for automatic model induction publication-title: Water Resour. Res. – volume: 530 start-page: 137 year: 2015 end-page: 152 ident: b0535 article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences publication-title: J. Hydrol. – volume: 12 start-page: 2463 year: 2019 end-page: 2480 ident: b0245 article-title: Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v1. 2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations publication-title: Geosci. Model Dev. – reference: European Congress of Mathematics – volume: 55 start-page: 92 year: 2022 end-page: 98 ident: b0200 article-title: Comparing Predictive Machine Learning Models for Short-and Long-Term Urban Water Demand Forecasting in Milan publication-title: Italy. IFAC-PapersOnLine – reference: Head, T., Kumar, M., Nahrstaedt, H., Louppe, G. and Shcherbatyi, I., 2020. scikit-optimize/scikit-optimize: v0. 8.1. – volume: 13 start-page: 1336 year: 2021 ident: b0300 article-title: Research on runoff simulations using deep-learning methods publication-title: Sustainability – reference: . – volume: 57 year: 2021 ident: b0285 article-title: Bayesian LSTM with stochastic variational inference for estimating model uncertainty in process-based hydrological models publication-title: Water Resour. Res. – volume: 603 year: 2021 ident: b0510 article-title: Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships publication-title: J. Hydrol. – volume: 458 start-page: 28 year: 2012 end-page: 39 ident: b0390 article-title: Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model publication-title: J. Hydrol. – volume: 609 start-page: 127764 year: 2022 ident: b0130 article-title: Effective improvement of multi-step-ahead flood forecasting accuracy through encoder-decoder with an exogenous input structure publication-title: J. Hydrol. – year: 2022 ident: b0180 article-title: Ensemble and stochastic conceptual data-driven approaches for improving streamflow simulations: Exploring different hydrological and data-driven models and a diagnostic tool publication-title: Environ. Model. Softw. – volume: 573 start-page: 524 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0545 article-title: Rainfall-runoff simulation in karst dominated areas based on a coupled conceptual hydrological model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.099 – volume: 449 start-page: 227558 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0055 article-title: State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227558 – volume: 13 start-page: 437 issue: 4 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0195 article-title: Deep Learning with Long Short Term Memory Based Sequence-to-Sequence Model for Rainfall-Runoff Simulation publication-title: Water doi: 10.3390/w13040437 – ident: 10.1016/j.jhydrol.2023.129269_b0205 – volume: 117 year: 2023 ident: 10.1016/j.jhydrol.2023.129269_b0225 article-title: Development of wavelet-based Kalman online sequential extreme learning machine optimized with Boruta-Random Forest for drought index forecasting publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2022.105545 – volume: 458 start-page: 28 year: 2012 ident: 10.1016/j.jhydrol.2023.129269_b0390 article-title: Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.029 – volume: 10 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.jhydrol.2023.129269_b0455 article-title: Data-driven modelling: some past experiences and new approaches publication-title: J. Hydroinf. doi: 10.2166/hydro.2008.015 – volume: 460 start-page: 955 issue: 2044 year: 2004 ident: 10.1016/j.jhydrol.2023.129269_b0375 article-title: The Hilbert spectrum via wavelet projections publication-title: Proc. Royal Soc. London. Series A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.2003.1199 – volume: 143 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0445 article-title: A novel ensemble-based conceptual-data-driven approach for improved streamflow simulations publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105094 – volume: 34 start-page: 1755 issue: 11 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0325 article-title: Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction publication-title: Stochastic Environ. Res. Risk Assess. doi: 10.1007/s00477-020-01874-1 – volume: 235 start-page: 10 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0490 article-title: Probabilistic individual load forecasting using pinball loss guided LSTM publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.078 – volume: 603 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0510 article-title: Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127043 – volume: 130 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0410 article-title: A stochastic wavelet-based data-driven framework for forecasting uncertain multiscale hydrological and water resources processes publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2020.104718 – volume: 588 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0550 article-title: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125127 – volume: 102 start-page: 359 issue: 477 year: 2007 ident: 10.1016/j.jhydrol.2023.129269_b0165 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – volume: 12 start-page: 2463 issue: 6 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0245 article-title: Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v1. 2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-2463-2019 – volume: 21 start-page: 5293 issue: 10 year: 2017 ident: 10.1016/j.jhydrol.2023.129269_b0015 article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-5293-2017 – volume: 596 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0530 article-title: Daily runoff forecasting by deep recursive neural network publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126067 – volume: 57 issue: 5 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0110 article-title: Simultaneous calibration of hydrologic model structure and parameters using a blended model publication-title: Water Resour. Res. doi: 10.1029/2020WR029229 – ident: 10.1016/j.jhydrol.2023.129269_b0080 – year: 2016 ident: 10.1016/j.jhydrol.2023.129269_b0170 – volume: 22 start-page: 6005 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2023.129269_b0250 article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 56 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0505 article-title: A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning publication-title: Water Resour. Res. doi: 10.1029/2019WR025326 – volume: 563 start-page: 336 year: 2018 ident: 10.1016/j.jhydrol.2023.129269_b0405 article-title: Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.05.003 – ident: 10.1016/j.jhydrol.2023.129269_b0005 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.jhydrol.2023.129269_b0140 article-title: Finding structure in time publication-title: Cognit. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 55 start-page: 92 issue: 33 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0200 article-title: Comparing Predictive Machine Learning Models for Short-and Long-Term Urban Water Demand Forecasting in Milan publication-title: Italy. IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.11.015 – ident: 10.1016/j.jhydrol.2023.129269_b0240 – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.jhydrol.2023.129269_b0350 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – volume: 278 start-page: 107647 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0155 article-title: On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107647 – volume: 102 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0400 article-title: Short-term daily precipitation forecasting with seasonally-integrated autoencoder publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107083 – volume: 35 start-page: 2213 issue: 11 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0185 article-title: Rainfall forecasting in upper Indus basin using various artificial intelligence techniques publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-021-02013-0 – volume: 18 start-page: 6765 issue: 1 year: 2017 ident: 10.1016/j.jhydrol.2023.129269_b0275 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J. Machine Learn. Res. – volume: 16 start-page: 973 issue: 5 year: 2014 ident: 10.1016/j.jhydrol.2023.129269_b0280 article-title: Real-time flood forecast using the coupling support vector machine and data assimilation method publication-title: J. Hydroinf. doi: 10.2166/hydro.2013.075 – volume: 19 start-page: 209 issue: 1 year: 2015 ident: 10.1016/j.jhydrol.2023.129269_b0360 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-209-2015 – volume: 608 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0190 article-title: Improved runoff forecasting performance through error predictions using a deep-learning approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127653 – volume: 36 start-page: 21 issue: 1 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0295 article-title: Climate-driven model based on long short-term memory and bayesian optimization for multi-day-ahead daily streamflow forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-03002-2 – volume: 523 start-page: 49 year: 2015 ident: 10.1016/j.jhydrol.2023.129269_b0525 article-title: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.01.042 – volume: 4 start-page: 1903 issue: 44 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0265 article-title: mlr3: A modern object-oriented machine learning framework in R publication-title: J. Open Source Software doi: 10.21105/joss.01903 – volume: 583 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0365 article-title: Streamflow and rainfall forecasting by two long short-term memory-based models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124296 – volume: 26 start-page: 3429 issue: 10 year: 2013 ident: 10.1016/j.jhydrol.2023.129269_b0085 article-title: Downscaling extremes: An intercomparison of multiple methods for future climate publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00249.1 – volume: 11 start-page: 597 issue: 6 year: 2006 ident: 10.1016/j.jhydrol.2023.129269_b0330 article-title: Evaluation of the Nash-Sutcliffe efficiency index publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597) – volume: 109 start-page: 9 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0430 article-title: Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: A case study for the Dez River Basin publication-title: Physics and Chemistry of the Earth, Parts A/B/C doi: 10.1016/j.pce.2018.07.003 – volume: 108 start-page: 36 issue: 1 year: 2001 ident: 10.1016/j.jhydrol.2023.129269_b0370 article-title: On the construction and frequency localization of finite orthogonal quadrature filters publication-title: J. Approx. Theory doi: 10.1006/jath.2000.3514 – volume: 11 start-page: 1387 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0270 article-title: Application of long short-term memory (lstm) neural network for flood forecasting publication-title: Water doi: 10.3390/w11071387 – volume: 603 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0290 article-title: Characterizing distributed hydrological model residual errors using a probabilistic long short-term memory network publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126888 – volume: Vol. 4 year: 2000 ident: 10.1016/j.jhydrol.2023.129269_b0395 – volume: 149 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0420 article-title: A stochastic conceptual-data-driven approach for improved hydrological simulations publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2022.105326 – ident: 10.1016/j.jhydrol.2023.129269_b0470 – volume: 528 start-page: 29 year: 2015 ident: 10.1016/j.jhydrol.2023.129269_b0450 article-title: Modeling residual hydrologic errors with Bayesian inference publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.051 – volume: 505 start-page: 240 year: 2013 ident: 10.1016/j.jhydrol.2023.129269_b0340 article-title: Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.10.003 – ident: 10.1016/j.jhydrol.2023.129269_b0065 – volume: 24 start-page: 5491 issue: 11 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0555 article-title: Two-stage variational mode decomposition and support vector regression for streamflow forecasting publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-24-5491-2020 – volume: 865 start-page: 161035 year: 2023 ident: 10.1016/j.jhydrol.2023.129269_b0105 article-title: A wavelet-assisted deep learning approach for simulating groundwater levels affected by low-frequency variability publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.161035 – volume: 13 start-page: e12585 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0010 article-title: Comparison of different quantile regression methods to estimate predictive hydrological uncertainty in the Upper Chao Phraya River Basin, Thailand publication-title: J. Flood Risk Manage. doi: 10.1111/jfr3.12585 – ident: 10.1016/j.jhydrol.2023.129269_b0465 – volume: 121 start-page: 470 year: 2013 ident: 10.1016/j.jhydrol.2023.129269_b0040 article-title: A new hybrid artificial neural networks for rainfall–runoff process modeling publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.023 – volume: 590 start-page: 125376 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0100 article-title: Long lead-time daily and monthly streamflow forecasting using machine learning methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125376 – volume: 14 start-page: 1596 issue: 6 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0230 article-title: Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization publication-title: Energies doi: 10.3390/en14061596 – volume: 56 issue: 6 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0075 article-title: Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons publication-title: Water Resour. Res. doi: 10.1029/2019WR026226 – volume: 11 start-page: 2126 issue: 10 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0385 article-title: Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms publication-title: Water doi: 10.3390/w11102126 – volume: 564 start-page: 476 year: 2018 ident: 10.1016/j.jhydrol.2023.129269_b0460 article-title: A probabilistic appraisal of rainfall-runoff modeling approaches within SWAT in mixed land use watersheds publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.07.035 – volume: 598 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0520 article-title: Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126378 – volume: 307 start-page: 164 issue: 1–4 year: 2005 ident: 10.1016/j.jhydrol.2023.129269_b0120 article-title: Nonstationary hydrological time series forecasting using nonlinear dynamic methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.10.008 – volume: 25 start-page: 2685 issue: 5 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0260 article-title: A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-2685-2021 – volume: 583 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0235 article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124631 – ident: 10.1016/j.jhydrol.2023.129269_b0115 – volume: 26 start-page: 2387 issue: 9 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0495 article-title: Impact of spatial distribution information of rainfall in runoff simulation using deep learning method publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-2387-2022 – volume: 10 start-page: 1543 year: 2018 ident: 10.1016/j.jhydrol.2023.129269_b0215 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water doi: 10.3390/w10111543 – start-page: 1 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0220 article-title: Investigating the impact of input variable selection on daily solar radiation prediction accuracy using data-driven models: a case study in northern Iran publication-title: Stoch. Env. Res. Risk A. – volume: 11 start-page: e0157243 issue: 6 year: 2016 ident: 10.1016/j.jhydrol.2023.129269_b0540 article-title: Choosing wavelet methods, filters, and lengths for functional brain network construction publication-title: PLoS One doi: 10.1371/journal.pone.0157243 – volume: 22 start-page: 149 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0515 article-title: Hyperparameter Optimization via Sequential Uniform Designs publication-title: Journal of Machin Learning Research. – volume: 577 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0475 article-title: Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123957 – volume: 135 start-page: 104926 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0150 article-title: The proper care and feeding of CAMELS: How limited training data affects streamflow prediction publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2020.104926 – volume: 603 start-page: 126831 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0035 article-title: A multivariate streamflow forecasting model by integrating improved complete ensemble empirical mode decomposition with additive noise, sample entropy, Gini index and sequence-to-sequence approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126831 – volume: 56 issue: 4 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0095 article-title: Hydrologically informed machine learning for rainfall-runoff modeling: A genetic programming-based toolkit for automatic model induction publication-title: Water Resour. Res. doi: 10.1029/2019WR026933 – volume: 21 start-page: 207 issue: 2 year: 2007 ident: 10.1016/j.jhydrol.2023.129269_b0125 article-title: A guide to wavelets for economists publication-title: J. Econ. Surv. doi: 10.1111/j.1467-6419.2006.00502.x – volume: 598 start-page: 126196 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0050 article-title: Coupling a hybrid CNN-LSTM deep learning model with a Boundary Corrected Maximal Overlap Discrete Wavelet Transform for multiscale Lake water level forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126196 – volume: 609 start-page: 127764 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0130 article-title: Effective improvement of multi-step-ahead flood forecasting accuracy through encoder-decoder with an exogenous input structure publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127764 – volume: 120 start-page: 10 issue: 19 year: 2015 ident: 10.1016/j.jhydrol.2023.129269_b0305 article-title: A multivariate conditional model for streamflow prediction and spatial precipitation refinement publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023787 – volume: 26 start-page: 4013 issue: 15 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0355 article-title: Flood forecasting with machine learning models in an operational framework publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-4013-2022 – volume: 29 start-page: 2671 issue: 8 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0020 article-title: Theory-guided machine learning applied to hydrogeology—state of the art, opportunities and future challenges publication-title: Hydrgeol. J. doi: 10.1007/s10040-021-02403-2 – volume: 52 start-page: 927 issue: 4 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0045 article-title: Hydrological probabilistic forecasting based on deep learning and Bayesian optimization algorithm publication-title: Hydrol. Res. doi: 10.2166/nh.2021.161 – volume: 144 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0415 article-title: A maximal overlap discrete wavelet packet transform integrated approach for rainfall forecasting–A case study in the Awash River Basin (Ethiopia) publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105119 – volume: 34 start-page: 19995 issue: 22 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0160 article-title: Streamflow modelling and forecasting for Canadian watersheds using LSTM networks with attention mechanism publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07523-8 – volume: 13 start-page: 28 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0345 article-title: Sources of hydrological model uncertainties and advances in their analysis publication-title: Water doi: 10.3390/w13010028 – volume: 403 start-page: 348 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0135 article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.110 – volume: 14 start-page: 69 issue: 02 year: 2004 ident: 10.1016/j.jhydrol.2023.129269_b0435 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 576 start-page: 98 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0440 article-title: Hydrological modelling of karst catchment using lumped conceptual and data mining models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.036 – ident: 10.1016/j.jhydrol.2023.129269_b0315 doi: 10.18653/v1/D15-1166 – volume: 507 start-page: 186 year: 2013 ident: 10.1016/j.jhydrol.2023.129269_b0425 article-title: Multiscale streamflow forecasting using a new Bayesian Model Average based ensemble multi-wavelet Volterra nonlinear method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.09.025 – volume: 141 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0320 article-title: A long Short-Term memory cyclic model with mutual information for hydrology forecasting: A Case study in the xixian basin publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103622 – volume: 22 start-page: 1421 issue: 6 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0310 article-title: Streamflow simulation in data-scarce basins using bayesian and physics-informed machine learning models publication-title: J. Hydrometeorol. – volume: 17 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0500 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: J. Electron. Sci. Technol. – volume: 33 start-page: 106 issue: 1 year: 2010 ident: 10.1016/j.jhydrol.2023.129269_b0060 article-title: Development and testing of a physically based, three-dimensional model of surface and subsurface hydrology publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.10.013 – volume: 11 start-page: 5029 issue: 11 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0025 article-title: Modeling soil water content and reference evapotranspiration from climate data using deep learning method publication-title: Appl. Sci. doi: 10.3390/app11115029 – volume: 601 start-page: 126526 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0030 article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126526 – volume: 13 start-page: 1336 issue: 3 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0300 article-title: Research on runoff simulations using deep-learning methods publication-title: Sustainability doi: 10.3390/su13031336 – volume: 23 start-page: 5089 issue: 12 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0255 article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-5089-2019 – ident: 10.1016/j.jhydrol.2023.129269_b0485 doi: 10.1007/978-3-0348-8266-8_56 – volume: 22 start-page: 592 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2023.129269_b0480 article-title: Long-term runoff study using SARIMA and ARIMA models in the United States publication-title: Meteorol. Appl. doi: 10.1002/met.1491 – volume: 56 issue: 9 year: 2020 ident: 10.1016/j.jhydrol.2023.129269_b0145 article-title: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales publication-title: Water Resour. Res. doi: 10.1029/2019WR026793 – year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0180 article-title: Ensemble and stochastic conceptual data-driven approaches for improving streamflow simulations: Exploring different hydrological and data-driven models and a diagnostic tool publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2022.105474 – volume: 530 start-page: 137 year: 2015 ident: 10.1016/j.jhydrol.2023.129269_b0535 article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.047 – volume: 58 issue: 6 year: 2022 ident: 10.1016/j.jhydrol.2023.129269_b0380 article-title: Probabilistic water demand forecasting using quantile regression algorithms publication-title: Water Resour. Res. doi: 10.1029/2021WR030216 – volume: 377 start-page: 80 issue: 1–2 year: 2009 ident: 10.1016/j.jhydrol.2023.129269_b0175 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.08.003 – volume: 416 start-page: 133 year: 2012 ident: 10.1016/j.jhydrol.2023.129269_b0070 article-title: Hydro-economic assessment of hydrological forecasting systems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.11.042 – volume: 37 start-page: 1277 issue: 9 year: 2011 ident: 10.1016/j.jhydrol.2023.129269_b0090 article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.07.005 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.jhydrol.2023.129269_b0210 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 80 start-page: 873 year: 2019 ident: 10.1016/j.jhydrol.2023.129269_b0335 article-title: Hybrid artificial intelligence-time series models for monthly streamflow modeling publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.046 – volume: 57 issue: 9 year: 2021 ident: 10.1016/j.jhydrol.2023.129269_b0285 article-title: Bayesian LSTM with stochastic variational inference for estimating model uncertainty in process-based hydrological models publication-title: Water Resour. Res. doi: 10.1029/2021WR029772 |
| SSID | ssj0000334 |
| Score | 2.5715532 |
| Snippet | •Quantile-based encoder-decoder models proposed for probabilistic runoff forecasting.•Proposed models more accurate and reliable than benchmarks for 3 test... Deep neural network (DNN) models have become increasingly popular in the hydrology community. However, most studies are related to (rainfall-) runoff... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 129269 |
| SubjectTerms | data collection Deep learning Encoder-decoder Hydrological forecasting LSTM meteorology neural networks rain runoff Runoff forecasting snowmelt watersheds wavelet Wavelet decomposition |
| Title | A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2023.129269 https://www.proquest.com/docview/2834212642 |
| Volume | 619 |
| WOSCitedRecordID | wos000965718600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQ4IXxKcYXwoS4iVyaRKncR4j1AmmUb46qW-WHdtqqzUtaYq2_55z7CRdB9p44CWp3DiN7ne9Ozt390PobQjLiIEQFCcQbGOSCIU5-G1MYSkQB0PNldI12UQyHtPpNP3qWPo2NZ1AUhT0_Dxd_1eoYQzANqWz_wB3e1MYgM8AOhwBdjjeCPjMFEoWFfzbsXFR0jetKqUqsVT12ddNPladYlhnFGLAeu1zMMzSL7fFSmvzncr5pmpc29UAdnYhS9vBCaLUbGk6LkijXu3Wwo95wf1jbrak57VifF7N-HLJ5Y6p2U8H_radn1megnbU7UmE0U4qS1cjEAwtffEVI233Cxb9hX3OvrlDH-KO0JK2XG6KPf7Cjk5PTthkNJ28W__Ehi_MvFd35Cm30UGYxCntoYPs02h63HnhKCJNp3jzJF311vs__vLf4pI9D12HHZMH6L4Tt5dZnB-iW6p4hO466vrZxWP0PfMu4-3t4e21eHuAqdfh7dV4exZvbwfvJ-j0aDT58BE7ogycRySscB7nSSJDQYkwIaOknGidC1hKiqGOFFGhjGUahFzFAkxuPlCBTtUginmQKhLr6CnqFatCPUMej0NN8pAoMYwJj3M64LDApcLUV6dC00NEGjGx3HWRN2QmZ6xJF1wwJ11mpMusdA9Rv522tm1UrptAGwyYiwVtjMdAi66b-qbBjIGtNC_AeKFW2w2DUNokQMCS-_kNrnmB7nW6_RL1qnKrXqE7-a9qvilfO337DRHhjpM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantile-based+encoder-decoder+framework+for+multi-step+ahead+runoff+forecasting&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Sina+Jahangir%2C+Mohammad&rft.au=You%2C+John&rft.au=Quilty%2C+John&rft.date=2023-04-01&rft.issn=0022-1694&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129269&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |