Enhanced optical, dielectric, and non-Ohmic properties in Ta-doped Bi2/3Cu3Ti4O12 ceramics
In this paper, Ta-doped Bi2/3Cu3Ti4O12 (BCTO) ceramics are prepared by solid-state method. Phase structure, microstructure, optical, dielectric, and non-Ohmic properties of all samples are systematically investigated. Cu/Ta-rich phases at grain boundaries (GB) together with defects affect the micros...
Gespeichert in:
| Veröffentlicht in: | Solid state sciences Jg. 150; S. 107495 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Masson SAS
01.04.2024
|
| Schlagworte: | |
| ISSN: | 1293-2558, 1873-3085 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, Ta-doped Bi2/3Cu3Ti4O12 (BCTO) ceramics are prepared by solid-state method. Phase structure, microstructure, optical, dielectric, and non-Ohmic properties of all samples are systematically investigated. Cu/Ta-rich phases at grain boundaries (GB) together with defects affect the microstructure, causing grain size and compactness to increase first and then decrease. Moreover, Ta doping increases the optical band gap of BCTO from 4.03 to 4.25 eV as well as the GB activation energy and GB barrier. An increase in dielectric constant (Ɛr), nonlinear coefficient (α) and breakdown field (Eb), and a decrease in the dielectric loss (tanδ) are observed in Ta-doped BCTO ceramics. The improvement in dielectric and non-Ohmic properties can be attributed to the internal barrier layer caused by GB Schottky barrier structure. In particular, Bi2/3Cu3Ti3.95Ta0.05O12 ceramic exhibits the high Ɛr of ∼45997 and the low tanδ of ∼0.035 at 10 kHz along with α of ∼5.62, and Eb of ∼3.45 kV/cm. The temperature-independent (-110-210 °C) dielectric response confirms that temperature stability of specimens increases with doping. These results suggest that improved optical, dielectric, and non-Ohmic properties in Bi2/3Cu3Ti4O12 can be achieved simultaneously via defect engineering.
[Display omitted]
•The high Ɛr of ∼45997, low tanδ of ∼0.035, α of ∼5.62, and Eb of ∼3.45 kV/cm are obtained in Bi2/3Cu3Ti3.95Ta0.05O12 ceramic.•The Eg increased to 4.25 eV for Bi2/3Cu3Ti3.9Ta0.1O12 ceramic as a result of enhanced structural defects.•Cu/Ta-rich phases at grain boundary together with defects affect the electrical properties in Bi2/3Cu3Ti4-xTaxO12 ceramics.•The improvement in dielectric and non-Ohmic properties via defect engineering can be applied to IBLC model caused. |
|---|---|
| AbstractList | In this paper, Ta-doped Bi2/3Cu3Ti4O12 (BCTO) ceramics are prepared by solid-state method. Phase structure, microstructure, optical, dielectric, and non-Ohmic properties of all samples are systematically investigated. Cu/Ta-rich phases at grain boundaries (GB) together with defects affect the microstructure, causing grain size and compactness to increase first and then decrease. Moreover, Ta doping increases the optical band gap of BCTO from 4.03 to 4.25 eV as well as the GB activation energy and GB barrier. An increase in dielectric constant (Ɛr), nonlinear coefficient (α) and breakdown field (Eb), and a decrease in the dielectric loss (tanδ) are observed in Ta-doped BCTO ceramics. The improvement in dielectric and non-Ohmic properties can be attributed to the internal barrier layer caused by GB Schottky barrier structure. In particular, Bi2/3Cu3Ti3.95Ta0.05O12 ceramic exhibits the high Ɛr of ∼45997 and the low tanδ of ∼0.035 at 10 kHz along with α of ∼5.62, and Eb of ∼3.45 kV/cm. The temperature-independent (-110-210 °C) dielectric response confirms that temperature stability of specimens increases with doping. These results suggest that improved optical, dielectric, and non-Ohmic properties in Bi2/3Cu3Ti4O12 can be achieved simultaneously via defect engineering.
[Display omitted]
•The high Ɛr of ∼45997, low tanδ of ∼0.035, α of ∼5.62, and Eb of ∼3.45 kV/cm are obtained in Bi2/3Cu3Ti3.95Ta0.05O12 ceramic.•The Eg increased to 4.25 eV for Bi2/3Cu3Ti3.9Ta0.1O12 ceramic as a result of enhanced structural defects.•Cu/Ta-rich phases at grain boundary together with defects affect the electrical properties in Bi2/3Cu3Ti4-xTaxO12 ceramics.•The improvement in dielectric and non-Ohmic properties via defect engineering can be applied to IBLC model caused. |
| ArticleNumber | 107495 |
| Author | Zhu, Xiang Xiao, Yifan Liu, Xiaosong Wang, Haiyan Li, Tao Yuan, Chunyu Cao, Binbin Chen, Ziyang Dai, Haiyang Zhao, Liuyang Xue, Renzhong |
| Author_xml | – sequence: 1 givenname: Renzhong orcidid: 0000-0002-0566-5517 surname: Xue fullname: Xue, Renzhong email: xrzbotao@163.com organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 2 givenname: Liuyang surname: Zhao fullname: Zhao, Liuyang organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 3 givenname: Xiaosong surname: Liu fullname: Liu, Xiaosong organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 4 givenname: Haiyan surname: Wang fullname: Wang, Haiyan organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 5 givenname: Xiang surname: Zhu fullname: Zhu, Xiang organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 6 givenname: Yifan surname: Xiao fullname: Xiao, Yifan organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 7 givenname: Chunyu surname: Yuan fullname: Yuan, Chunyu organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 8 givenname: Binbin surname: Cao fullname: Cao, Binbin organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 9 givenname: Ziyang surname: Chen fullname: Chen, Ziyang organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 10 givenname: Tao surname: Li fullname: Li, Tao organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China – sequence: 11 givenname: Haiyang surname: Dai fullname: Dai, Haiyang organization: School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China |
| BookMark | eNqVkEtPwzAMgCM0JLbBf8iRw7rl1aa9AdPGQ5N2GRcuUZp4mqeunZKCxL8n0zjBBU62Zfuz_I3IoO1aIOSWsylnvJjtp7Fr0Mfe9hAdQusgTgUTKrW1qvILMuSllplkZT5IuahkJvK8vCKjGPeMsaLQakjeFu3Opl1Pu2OPzjYT6hEacH1AN6G29TQdzta7Azp6DN0RQo8QKbZ0YzOfak8fUMzk_F1uUK25oA6CTdPxmlxubRPh5juOyetysZk_Zav14_P8fpU5qUSf1aXzumI1q4T2hdOgNM89sC3kBS9rzTw4LaVSdVFCKXOtSwva5YrVRaEYyDFZnrkudDEG2BqHyQp2bR8sNoYzczJm9ua3MXMyZs7GEujuB-gY8GDD538QL2cEpIc_EIL5HvMYklPjO_w77Atzo5iT |
| CitedBy_id | crossref_primary_10_1016_j_ceramint_2025_04_060 crossref_primary_10_1039_D4RA04602A crossref_primary_10_1088_1402_4896_adee6d crossref_primary_10_1007_s10854_025_14766_3 crossref_primary_10_1016_j_ceramint_2024_10_401 crossref_primary_10_1049_nde2_12085 crossref_primary_10_1111_jace_70077 crossref_primary_10_1016_j_ceramint_2025_02_301 crossref_primary_10_1007_s13369_024_09608_z crossref_primary_10_1016_j_jelechem_2024_118803 crossref_primary_10_1016_j_jallcom_2025_181738 crossref_primary_10_1016_j_solidstatesciences_2024_107628 crossref_primary_10_1016_j_matchemphys_2025_130689 crossref_primary_10_1016_j_ceramint_2024_05_297 crossref_primary_10_1038_s41598_024_69910_6 crossref_primary_10_1007_s10854_025_15267_z crossref_primary_10_1007_s10854_025_15268_y crossref_primary_10_1016_j_ceramint_2025_08_325 crossref_primary_10_1016_j_solidstatesciences_2024_107675 crossref_primary_10_1016_j_jallcom_2024_178060 crossref_primary_10_1016_j_jwpe_2025_108688 crossref_primary_10_1134_S1063782625602171 crossref_primary_10_1016_j_ceramint_2024_12_492 crossref_primary_10_1016_j_jallcom_2024_177639 crossref_primary_10_1016_j_mtcomm_2024_110815 crossref_primary_10_1038_s41598_025_09930_y crossref_primary_10_1038_s41598_025_92269_1 crossref_primary_10_1016_j_ceramint_2025_04_148 crossref_primary_10_1038_s41598_025_03201_6 crossref_primary_10_1016_j_jallcom_2024_174341 |
| Cites_doi | 10.1002/1521-4095(20020916)14:18<1321::AID-ADMA1321>3.0.CO;2-P 10.1016/j.pnsc.2016.11.008 10.1016/j.jeurceramsoc.2012.02.048 10.1002/adma.201700400 10.1016/j.matchemphys.2020.122933 10.1126/science.1061655 10.1063/1.2125117 10.1016/j.actamat.2006.02.037 10.1016/j.jallcom.2022.163643 10.1111/jace.18330 10.1016/j.ceramint.2022.10.289 10.1016/j.jeurceramsoc.2020.04.053 10.1016/j.jeurceramsoc.2014.11.028 10.1016/j.jeurceramsoc.2020.04.030 10.1016/j.ceramint.2020.02.239 10.1006/jssc.2000.8703 10.1111/jace.12812 10.1016/j.ceramint.2022.07.157 10.1063/1.4768468 10.1063/1.1463211 10.1007/s10854-013-1244-9 10.1002/adfm.201910020 10.1016/j.materresbull.2014.12.060 10.3390/ma15093173 10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N 10.1007/s10948-021-05978-9 10.1039/D3RA00743J 10.1016/j.ceramint.2016.07.167 10.1111/j.1551-2916.2009.03298.x 10.1016/j.jssc.2004.09.009 10.1016/j.ceramint.2019.04.245 10.1063/1.2777184 10.1016/j.tsf.2023.139940 10.1016/j.matdes.2015.12.042 10.1103/PhysRevB.70.144106 10.1103/PhysRevB.70.172102 10.1016/j.rinp.2019.102886 10.1016/j.ceramint.2022.08.321 10.1016/j.materresbull.2015.12.020 10.1111/j.1551-2916.2011.05025.x 10.1016/j.jallcom.2017.10.140 10.1103/RevModPhys.85.1583 10.1142/S2010135X21500077 10.1088/2053-1591/aab87d 10.1016/j.ceramint.2015.10.054 10.1016/j.jeurceramsoc.2018.06.045 10.1038/nmat1238 10.1107/S0567739476001551 10.1111/jace.18066 10.1007/s42341-023-00435-x 10.1016/0025-5408(90)90183-3 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Masson SAS |
| Copyright_xml | – notice: 2024 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.solidstatesciences.2024.107495 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3085 |
| ExternalDocumentID | 10_1016_j_solidstatesciences_2024_107495 S1293255824000608 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSM SSZ T5K ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c342t-b8cd790b0927d6c7e4715de0fe5618b70dec73344b68e835778ae7c540b6640e3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001219743200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1293-2558 |
| IngestDate | Sat Nov 29 07:04:11 EST 2025 Tue Nov 18 22:29:05 EST 2025 Sat Mar 30 16:21:43 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Positron lifetime spectroscopy Dielectric loss Non-Ohmic properties Optical band gap Bi2/3Cu3Ti4O12 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-b8cd790b0927d6c7e4715de0fe5618b70dec73344b68e835778ae7c540b6640e3 |
| ORCID | 0000-0002-0566-5517 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_solidstatesciences_2024_107495 crossref_primary_10_1016_j_solidstatesciences_2024_107495 elsevier_sciencedirect_doi_10_1016_j_solidstatesciences_2024_107495 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Solid state sciences |
| PublicationYear | 2024 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Adams, Sinclair, West (bib7) 2002; 14 Capsoni, Bini, Massarotti, Chiodelli, Mozzati, Azzoni (bib37) 2004; 177 Mackie, Singh, Laverock, Dugdale, Keeble (bib39) 2009; 79 Lunkenheimer, Fichtl, Ebbinghaus, Loidl (bib5) 2004; 70 Tuomisto, Makkonen (bib38) 2013; 85 Xu, Ji, Shen, Li, Tang, Ye, Jia, Xin (bib32) 1999; 30 Gautam, Khare, Sharma, Singh, Mandal (bib18) 2016; 26 Saengvong, Chanlek, Srepusharawoot, Harnchana, Thongbai (bib26) 2022; 105 Mao, Lu, Yan, Annadi, Guo, Wang, Liu, Xie, Zhang (bib50) 2022; 48 Chhetry, Sharma, Yoon, Ko, Park (bib3) 2020; 30 Chung, Choi, Choi (bib24) 2007; 91 Swatsitang, Putjuso, Nijpanich, Putjuso (bib6) 2022; 902 Ahmadipour, Arjmand, Ain, Ahmad, Pung (bib44) 2019; 45 Prajapati, Rai, Kumar, Verma, Kumar, Singh, Mandal (bib20) 2023; 24 Xue, Zhao, Chen, Chen, Liu (bib27) 2016; 76 Xue, Chen, Li, Liu, Chen, Chen, Cui (bib41) 2021; 34 Liu, Duan, Mei, Smith, Hardly (bib10) 2005; 98 Homes, Vogt, Shapiro, Wakimoto, Ramirez (bib2) 2001; 293 Lu, Li, Wu (bib9) 2012; 95 Tripathy, Das, Ghosh, Pradhan, Kar (bib43) 2018; 5 Jumpatam, Mooltang, Putasaeng, Kidkhunthod, Chanlek, Thongbai (bib11) 2016; 42 Subramanian, Li, Duan, Reisner, Sleight (bib1) 2000; 151 Ahmad, Alshoaibi, Ansari, Kayed, Khater, Kotb (bib17) 2022; 15 Carol T, Mohammed, Bhargava, Khan, Mishra, Godara, Srivastava (bib29) 2020; 248 Chung, Kim, Kang (bib8) 2004; 3 Xue, Zhao, Chen, Chen, Cui, Bai, Li, Liu, Dai (bib12) 2023; 49 Kolev, Bontchev, Jacobson, Popov, Hadjiev, Litvinchuk, Iliev (bib31) 2002; 66 Liu, Duan, Yin, Mei, Smith, Hardy (bib14) 2004; 70 Thongbai, Jumpatam, Yamwong, Maensiri (bib25) 2012; 32 Thongbai, Yamwong, Maensiri, Amornkitbamrung, Chindaprasirt (bib53) 2014; 97 Bryntse, Werner (bib34) 1990; 25 Felix, Spreitzer, Vengust, Suvorov, Orlandi (bib46) 2018; 38 Jesus, Silva, Raj, M'Peko (bib19) 2020; 40 Yang, Song, Li, Zhang (bib21) 2021; 11 Dhavala, Bhimireddi, Muthukumar V, Kollipara, Varma (bib51) 2023; 13 Yang, Chao, Yang, Zhao, Wei, Yang (bib15) 2016; 42 Boonlakhorn, Srepusharawoot, Thongbai (bib28) 2020; 16 Kum-onsa, Thongbai, Putasaeng, Yamwong, Maensiri (bib13) 2015; 35 Thongbai, Jumpatam, Putasaeng, Yamwong, Maensiri (bib48) 2012; 112 Swatsitang, Putjuso, Nijpanich, Putjuso (bib49) 2022; 902 Hao, Zhang, Tan, Su (bib36) 2009; 92 Peng, Wang, Zhou, Zhu, Lei, Liang, Chao, Yang (bib52) 2020; 46 Yang, Chao, Liang, Wei, Yang (bib22) 2015; 64 Fang, Mei, Ho (bib35) 2006; 54 Shannon (bib30) 1976; 32 Yadav, Kar, Ghorai, Kumar (bib4) 2023; 49 Sinclair, Adams, Morrison, West (bib40) 2002; 80 Xue, Zhao, Chen, Cao, Yuan, Xiao (bib42) 2023; 779 Lu, Sheng, Tong, Yu, Sun, Yu, Xu, Wang, Xu, Shi, Chen (bib47) 2017; 29 Chen, Li, Miao, Zhang, Zhang (bib33) 2022; 105 Jesus, Barbosa, Ardila, Silva, M'Peko (bib16) 2018; 735 Rashad, Turky, Kandil (bib45) 2013; 24 Peng, Wang, Liang, Zhu, Zhou, Chao, Yang (bib23) 2020; 40 Boonlakhorn, Putasaeng, Kidkhunthod, Thongbai (bib54) 2016; 92 Mao (10.1016/j.solidstatesciences.2024.107495_bib50) 2022; 48 Chhetry (10.1016/j.solidstatesciences.2024.107495_bib3) 2020; 30 Jesus (10.1016/j.solidstatesciences.2024.107495_bib19) 2020; 40 Tripathy (10.1016/j.solidstatesciences.2024.107495_bib43) 2018; 5 Prajapati (10.1016/j.solidstatesciences.2024.107495_bib20) 2023; 24 Liu (10.1016/j.solidstatesciences.2024.107495_bib10) 2005; 98 Hao (10.1016/j.solidstatesciences.2024.107495_bib36) 2009; 92 Yadav (10.1016/j.solidstatesciences.2024.107495_bib4) 2023; 49 Jesus (10.1016/j.solidstatesciences.2024.107495_bib16) 2018; 735 Saengvong (10.1016/j.solidstatesciences.2024.107495_bib26) 2022; 105 Subramanian (10.1016/j.solidstatesciences.2024.107495_bib1) 2000; 151 Capsoni (10.1016/j.solidstatesciences.2024.107495_bib37) 2004; 177 Dhavala (10.1016/j.solidstatesciences.2024.107495_bib51) 2023; 13 Bryntse (10.1016/j.solidstatesciences.2024.107495_bib34) 1990; 25 Peng (10.1016/j.solidstatesciences.2024.107495_bib23) 2020; 40 Felix (10.1016/j.solidstatesciences.2024.107495_bib46) 2018; 38 Xue (10.1016/j.solidstatesciences.2024.107495_bib27) 2016; 76 Lu (10.1016/j.solidstatesciences.2024.107495_bib9) 2012; 95 Xue (10.1016/j.solidstatesciences.2024.107495_bib12) 2023; 49 Xue (10.1016/j.solidstatesciences.2024.107495_bib42) 2023; 779 Homes (10.1016/j.solidstatesciences.2024.107495_bib2) 2001; 293 Yang (10.1016/j.solidstatesciences.2024.107495_bib22) 2015; 64 Gautam (10.1016/j.solidstatesciences.2024.107495_bib18) 2016; 26 Thongbai (10.1016/j.solidstatesciences.2024.107495_bib53) 2014; 97 Lu (10.1016/j.solidstatesciences.2024.107495_bib47) 2017; 29 Carol T (10.1016/j.solidstatesciences.2024.107495_bib29) 2020; 248 Kum-onsa (10.1016/j.solidstatesciences.2024.107495_bib13) 2015; 35 Thongbai (10.1016/j.solidstatesciences.2024.107495_bib48) 2012; 112 Swatsitang (10.1016/j.solidstatesciences.2024.107495_bib6) 2022; 902 Tuomisto (10.1016/j.solidstatesciences.2024.107495_bib38) 2013; 85 Liu (10.1016/j.solidstatesciences.2024.107495_bib14) 2004; 70 Ahmadipour (10.1016/j.solidstatesciences.2024.107495_bib44) 2019; 45 Peng (10.1016/j.solidstatesciences.2024.107495_bib52) 2020; 46 Yang (10.1016/j.solidstatesciences.2024.107495_bib21) 2021; 11 Xue (10.1016/j.solidstatesciences.2024.107495_bib41) 2021; 34 Mackie (10.1016/j.solidstatesciences.2024.107495_bib39) 2009; 79 Chung (10.1016/j.solidstatesciences.2024.107495_bib24) 2007; 91 Kolev (10.1016/j.solidstatesciences.2024.107495_bib31) 2002; 66 Boonlakhorn (10.1016/j.solidstatesciences.2024.107495_bib54) 2016; 92 Fang (10.1016/j.solidstatesciences.2024.107495_bib35) 2006; 54 Rashad (10.1016/j.solidstatesciences.2024.107495_bib45) 2013; 24 Chung (10.1016/j.solidstatesciences.2024.107495_bib8) 2004; 3 Swatsitang (10.1016/j.solidstatesciences.2024.107495_bib49) 2022; 902 Ahmad (10.1016/j.solidstatesciences.2024.107495_bib17) 2022; 15 Shannon (10.1016/j.solidstatesciences.2024.107495_bib30) 1976; 32 Adams (10.1016/j.solidstatesciences.2024.107495_bib7) 2002; 14 Yang (10.1016/j.solidstatesciences.2024.107495_bib15) 2016; 42 Thongbai (10.1016/j.solidstatesciences.2024.107495_bib25) 2012; 32 Boonlakhorn (10.1016/j.solidstatesciences.2024.107495_bib28) 2020; 16 Jumpatam (10.1016/j.solidstatesciences.2024.107495_bib11) 2016; 42 Lunkenheimer (10.1016/j.solidstatesciences.2024.107495_bib5) 2004; 70 Xu (10.1016/j.solidstatesciences.2024.107495_bib32) 1999; 30 Chen (10.1016/j.solidstatesciences.2024.107495_bib33) 2022; 105 Sinclair (10.1016/j.solidstatesciences.2024.107495_bib40) 2002; 80 |
| References_xml | – volume: 14 start-page: 1321 year: 2002 end-page: 1323 ident: bib7 article-title: Giant barrier layer capacitance effects in CaCu publication-title: Adv. Mater. – volume: 248 year: 2020 ident: bib29 article-title: Crystal structure refinement, optical properties, dielectric response, and impedance spectroscopy of Ni publication-title: Mater. Chem. Phys. – volume: 45 start-page: 15077 year: 2019 end-page: 15081 ident: bib44 article-title: Effect of Ar: N publication-title: Ceram. Int. – volume: 49 start-page: 6932 year: 2023 end-page: 6945 ident: bib4 article-title: Exploring the dielectric and conduction characteristics of iodine substituted CaCu publication-title: Ceram. Int. – volume: 24 start-page: 3284 year: 2013 end-page: 3291 ident: bib45 article-title: Optical and electrical properties of Ba publication-title: J. Mater. Sci. Mater. Electron. – volume: 98 year: 2005 ident: bib10 article-title: Dielectric properties and Maxwell–Wagner relaxation of compounds ACu publication-title: J. Appl. Phys. – volume: 70 year: 2004 ident: bib5 article-title: Nonintrinsic origin of the colossal dielectric constants in CaCu publication-title: Phys. Rev. B – volume: 30 year: 2020 ident: bib3 article-title: Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu publication-title: Adv. Funct. Mater. – volume: 40 start-page: 4010 year: 2020 end-page: 4015 ident: bib23 article-title: A new perovskite-related ceramic with colossal permittivity and low dielectric loss publication-title: J. Eur. Ceram. Soc. – volume: 13 year: 2023 ident: bib51 article-title: Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics publication-title: RSC Adv. – volume: 24 start-page: 194 year: 2023 end-page: 204 ident: bib20 article-title: The effect of rare earth metal doping in Bi publication-title: Trans. Electr. Electro. – volume: 735 start-page: 2384 year: 2018 end-page: 2394 ident: bib16 article-title: Effect of conventional and laser sintering on the (micro)structural and dielectric properties of Bi publication-title: J. Alloys Compd. – volume: 105 start-page: 225 year: 2022 end-page: 244 ident: bib33 article-title: Ta publication-title: J. Am. Ceram. Soc. – volume: 112 year: 2012 ident: bib48 article-title: The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics publication-title: J. Appl. Phys. – volume: 97 start-page: 1785 year: 2014 end-page: 1790 ident: bib53 article-title: Improved dielectric and nonlinear electrical properties of fine-grained CaCu publication-title: J. Am. Ceram. Soc. – volume: 177 start-page: 4494 year: 2004 end-page: 4500 ident: bib37 article-title: Role of doping and CuO segregation in improving the giant permittivity of CaCu publication-title: J. Solid State Chem. – volume: 26 start-page: 567 year: 2016 end-page: 571 ident: bib18 article-title: Characterization of Bi publication-title: Prog. Nat. Sci. – volume: 92 start-page: 2937 year: 2009 end-page: 2943 ident: bib36 article-title: Giant dielectric-permittivity phenomena of compositionally and structurally CaCu publication-title: J. Am. Ceram. Soc. – volume: 42 start-page: 2526 year: 2016 end-page: 2533 ident: bib15 article-title: Dielectric constant versus voltage and non-Ohmic characteristics of Bi publication-title: Ceram. Int. – volume: 29 year: 2017 ident: bib47 article-title: Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX publication-title: Adv. Mater. – volume: 42 start-page: 16287 year: 2016 end-page: 16295 ident: bib11 article-title: Effects of Mg publication-title: Ceram. Int. – volume: 70 year: 2004 ident: bib14 article-title: Large dielectric constant and Maxwell–Wagner relaxation in Bi publication-title: Phys. Rev. B – volume: 85 start-page: 1583 year: 2013 end-page: 1624 ident: bib38 article-title: Defect identification in semiconductors with positron annihilation: Experiment and theory publication-title: Rev. Mod. Phys. – volume: 3 start-page: 774 year: 2004 end-page: 778 ident: bib8 article-title: Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate publication-title: Nat. Mater. – volume: 76 start-page: 124 year: 2016 end-page: 132 ident: bib27 article-title: Effect of doping ions on the structural defect and the electrical behavior of CaCu publication-title: Mater. Res. Bull. – volume: 38 start-page: 5002 year: 2018 end-page: 5006 ident: bib46 article-title: Probing the effects of oxygen-related defects on the optical and luminescence properties in CaCu publication-title: J. Eur. Ceram. Soc. – volume: 902 year: 2022 ident: bib6 article-title: Modification of Cu-deficient CaCu publication-title: J. Alloys Compd. – volume: 30 start-page: 413 year: 1999 end-page: 415 ident: bib32 article-title: Raman spectra of CuO nanocrystals publication-title: J. Raman Spectrosc. – volume: 902 year: 2022 ident: bib49 article-title: Modification of Cu-deficient CaCu publication-title: J. Alloys Compd. – volume: 80 start-page: 2153 year: 2002 end-page: 2155 ident: bib40 article-title: CaCu publication-title: Appl. Phys. Lett. – volume: 15 start-page: 3173 year: 2022 ident: bib17 article-title: Dielectric properties of Bi publication-title: Materials – volume: 64 start-page: 216 year: 2015 end-page: 222 ident: bib22 article-title: Electrical properties and high-temperature dielectric relaxation behaviors of Na publication-title: Mater. Res. Bull. – volume: 293 start-page: 673 year: 2001 end-page: 676 ident: bib2 article-title: Optical response of high-dielectric-constant perovskite-related oxide publication-title: Science – volume: 11 year: 2021 ident: bib21 article-title: Dielectric properties and electrical response of yttrium-doped Bi publication-title: J. Adv. Dielect. – volume: 779 year: 2023 ident: bib42 article-title: Improved optical, dielectric, and nonlinear properties of CaCu publication-title: Thin Solid Films – volume: 5 year: 2018 ident: bib43 article-title: Impact of post-deposition annealing on RFsputtered calcium copper titanate thin film for memory application publication-title: Mater. Res. Express – volume: 91 year: 2007 ident: bib24 article-title: Tunable current–voltage characteristics in polycrystalline calcium copper titanate publication-title: Appl. Phys. Lett. – volume: 32 start-page: 751 year: 1976 end-page: 767 ident: bib30 article-title: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides publication-title: Acta Crystallogr. A – volume: 34 start-page: 3297 year: 2021 end-page: 3309 ident: bib41 article-title: Effects of Lu publication-title: J. Supercond. Nov. Magnetism – volume: 16 year: 2020 ident: bib28 article-title: Distinct roles between complex defect clusters and insulating grain boundary on dielectric loss behaviors of (In publication-title: Results Phys. – volume: 25 start-page: 477 year: 1990 end-page: 483 ident: bib34 article-title: Synthesis and structure of a perovskite related oxide, Bi publication-title: Mater. Res. Bull. – volume: 54 start-page: 2867 year: 2006 end-page: 2875 ident: bib35 article-title: Effects of Cu stoichiometry on the microstructure, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu publication-title: Acta Mater. – volume: 40 start-page: 4004 year: 2020 end-page: 4009 ident: bib19 article-title: Electric field-assisted flash sintering of Bi publication-title: J. Eur. Ceram. Soc. – volume: 92 start-page: 494 year: 2016 end-page: 498 ident: bib54 article-title: Improved dielectric properties of (Y + Mg) co-doped CaCu publication-title: Mater. Des. – volume: 95 start-page: 476 year: 2012 end-page: 479 ident: bib9 article-title: Voltage–current nonlinearity of CaCu publication-title: J. Am. Ceram. Soc. – volume: 151 start-page: 323 year: 2000 end-page: 325 ident: bib1 article-title: High dielectric constant in ACu publication-title: J. Solid State Chem. – volume: 46 start-page: 14425 year: 2020 end-page: 14430 ident: bib52 article-title: Grain engineering inducing high energy storage in CdCu publication-title: Ceram. Int. – volume: 48 start-page: 32156 year: 2022 end-page: 32163 ident: bib50 article-title: Electrodes influence on the characterization of the electrical properties of colossal permittivity CaCu publication-title: Ceram. Int. – volume: 79 year: 2009 ident: bib39 article-title: Vacancy defect positron lifetimes in strontium titanate publication-title: Phys. Rev. B – volume: 105 start-page: 3447 year: 2022 end-page: 3455 ident: bib26 article-title: Enhancing giant dielectric properties of Ta publication-title: J. Am. Ceram. Soc. – volume: 49 start-page: 134 year: 2023 end-page: 144 ident: bib12 article-title: Microstructural, dielectric, and nonlinear properties of Ca publication-title: Ceram. Int. – volume: 32 start-page: 2423 year: 2012 end-page: 2430 ident: bib25 article-title: Effects of Ta publication-title: J. Eur. Ceram. Soc. – volume: 35 start-page: 1441 year: 2015 end-page: 1447 ident: bib13 article-title: Na publication-title: J. Eur. Ceram. Soc. – volume: 66 year: 2002 ident: bib31 article-title: Raman spectroscopy of CaCu publication-title: Phys. Rev. B – volume: 14 start-page: 1321 year: 2002 ident: 10.1016/j.solidstatesciences.2024.107495_bib7 article-title: Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020916)14:18<1321::AID-ADMA1321>3.0.CO;2-P – volume: 26 start-page: 567 year: 2016 ident: 10.1016/j.solidstatesciences.2024.107495_bib18 article-title: Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route publication-title: Prog. Nat. Sci. doi: 10.1016/j.pnsc.2016.11.008 – volume: 32 start-page: 2423 year: 2012 ident: 10.1016/j.solidstatesciences.2024.107495_bib25 article-title: Effects of Ta5+ doping on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.02.048 – volume: 29 year: 2017 ident: 10.1016/j.solidstatesciences.2024.107495_bib47 article-title: Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture publication-title: Adv. Mater. doi: 10.1002/adma.201700400 – volume: 248 year: 2020 ident: 10.1016/j.solidstatesciences.2024.107495_bib29 article-title: Crystal structure refinement, optical properties, dielectric response, and impedance spectroscopy of Ni2+-Co2+ substituted bismuth copper titanate (BCTO) publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.122933 – volume: 293 start-page: 673 issue: 5530 year: 2001 ident: 10.1016/j.solidstatesciences.2024.107495_bib2 article-title: Optical response of high-dielectric-constant perovskite-related oxide publication-title: Science doi: 10.1126/science.1061655 – volume: 98 year: 2005 ident: 10.1016/j.solidstatesciences.2024.107495_bib10 article-title: Dielectric properties and Maxwell–Wagner relaxation of compounds ACu3Ti4O12 (A= Ca, Bi2/3, Y2/3, La2/3) publication-title: J. Appl. Phys. doi: 10.1063/1.2125117 – volume: 54 start-page: 2867 year: 2006 ident: 10.1016/j.solidstatesciences.2024.107495_bib35 article-title: Effects of Cu stoichiometry on the microstructure, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12 publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.02.037 – volume: 902 year: 2022 ident: 10.1016/j.solidstatesciences.2024.107495_bib6 article-title: Modification of Cu-deficient CaCu2.8Ti4O12 ceramics via Mg2+ substitution at Cu sites for improved dielectric properties and thermal stability publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.163643 – volume: 66 year: 2002 ident: 10.1016/j.solidstatesciences.2024.107495_bib31 article-title: Raman spectroscopy of CaCu3Ti4O12 publication-title: Phys. Rev. B – volume: 79 year: 2009 ident: 10.1016/j.solidstatesciences.2024.107495_bib39 article-title: Vacancy defect positron lifetimes in strontium titanate publication-title: Phys. Rev. B – volume: 105 start-page: 3447 issue: 5 year: 2022 ident: 10.1016/j.solidstatesciences.2024.107495_bib26 article-title: Enhancing giant dielectric properties of Ta5+-doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.18330 – volume: 49 start-page: 6932 year: 2023 ident: 10.1016/j.solidstatesciences.2024.107495_bib4 article-title: Exploring the dielectric and conduction characteristics of iodine substituted CaCu3Ti4O12-xIx publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.10.289 – volume: 40 start-page: 4004 year: 2020 ident: 10.1016/j.solidstatesciences.2024.107495_bib19 article-title: Electric field-assisted flash sintering of Bi2/3Cu3Ti4O12 starting from a multiphase precursor powder publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.04.053 – volume: 35 start-page: 1441 year: 2015 ident: 10.1016/j.solidstatesciences.2024.107495_bib13 article-title: Na1/3Ca1/3Bi1/3Cu3Ti4O12: a new giant dielectric perovskite ceramic in ACu3Ti4O12 compounds publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.11.028 – volume: 40 start-page: 4010 year: 2020 ident: 10.1016/j.solidstatesciences.2024.107495_bib23 article-title: A new perovskite-related ceramic with colossal permittivity and low dielectric loss publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.04.030 – volume: 902 year: 2022 ident: 10.1016/j.solidstatesciences.2024.107495_bib49 article-title: Modification of Cu-deficient CaCu2.8Ti4O12 ceramics via Mg2+ substitution at Cu sites for improved dielectric properties and thermal stability publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.163643 – volume: 46 start-page: 14425 year: 2020 ident: 10.1016/j.solidstatesciences.2024.107495_bib52 article-title: Grain engineering inducing high energy storage in CdCu3Ti4O12 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.239 – volume: 151 start-page: 323 issue: 2 year: 2000 ident: 10.1016/j.solidstatesciences.2024.107495_bib1 article-title: High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases publication-title: J. Solid State Chem. doi: 10.1006/jssc.2000.8703 – volume: 97 start-page: 1785 year: 2014 ident: 10.1016/j.solidstatesciences.2024.107495_bib53 article-title: Improved dielectric and nonlinear electrical properties of fine-grained CaCu3Ti4O12 ceramics prepared by a glycine-nitrate process publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12812 – volume: 48 start-page: 32156 year: 2022 ident: 10.1016/j.solidstatesciences.2024.107495_bib50 article-title: Electrodes influence on the characterization of the electrical properties of colossal permittivity CaCu3Ti4O12 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.07.157 – volume: 112 year: 2012 ident: 10.1016/j.solidstatesciences.2024.107495_bib48 article-title: The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.4768468 – volume: 80 start-page: 2153 year: 2002 ident: 10.1016/j.solidstatesciences.2024.107495_bib40 article-title: CaCu3Ti4O12: one-step internal barrier layer capacitor publication-title: Appl. Phys. Lett. doi: 10.1063/1.1463211 – volume: 24 start-page: 3284 year: 2013 ident: 10.1016/j.solidstatesciences.2024.107495_bib45 article-title: Optical and electrical properties of Ba1-xSrxTiO3 nanopowders at different Sr2+ ion content publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-013-1244-9 – volume: 30 year: 2020 ident: 10.1016/j.solidstatesciences.2024.107495_bib3 article-title: Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910020 – volume: 64 start-page: 216 year: 2015 ident: 10.1016/j.solidstatesciences.2024.107495_bib22 article-title: Electrical properties and high-temperature dielectric relaxation behaviors of NaxBi(2-x)/3Cu3Ti4O12 ceramics publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2014.12.060 – volume: 15 start-page: 3173 year: 2022 ident: 10.1016/j.solidstatesciences.2024.107495_bib17 article-title: Dielectric properties of Bi2/3Cu3Ti4O12 ceramics prepared by mechanical ball milling and low temperature conventional sintering publication-title: Materials doi: 10.3390/ma15093173 – volume: 30 start-page: 413 year: 1999 ident: 10.1016/j.solidstatesciences.2024.107495_bib32 article-title: Raman spectra of CuO nanocrystals publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N – volume: 34 start-page: 3297 year: 2021 ident: 10.1016/j.solidstatesciences.2024.107495_bib41 article-title: Effects of Lu3+ doping on microstructures and electrical properties of CaCu3Ti4O12 ceramics publication-title: J. Supercond. Nov. Magnetism doi: 10.1007/s10948-021-05978-9 – volume: 13 year: 2023 ident: 10.1016/j.solidstatesciences.2024.107495_bib51 article-title: Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics publication-title: RSC Adv. doi: 10.1039/D3RA00743J – volume: 42 start-page: 16287 issue: 14 year: 2016 ident: 10.1016/j.solidstatesciences.2024.107495_bib11 article-title: Effects of Mg2+ doping ions on giant dielectric properties and electrical responses of Na1/2Y1/2Cu3Ti4O12 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.07.167 – volume: 92 start-page: 2937 issue: 12 year: 2009 ident: 10.1016/j.solidstatesciences.2024.107495_bib36 article-title: Giant dielectric-permittivity phenomena of compositionally and structurally CaCu3Ti4O12 -like oxide ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03298.x – volume: 177 start-page: 4494 year: 2004 ident: 10.1016/j.solidstatesciences.2024.107495_bib37 article-title: Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2004.09.009 – volume: 45 start-page: 15077 year: 2019 ident: 10.1016/j.solidstatesciences.2024.107495_bib44 article-title: Effect of Ar: N2 flow rate on morphology, optical and electrical properties of CCTO thin films deposited by RF magnetron sputtering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.04.245 – volume: 91 year: 2007 ident: 10.1016/j.solidstatesciences.2024.107495_bib24 article-title: Tunable current–voltage characteristics in polycrystalline calcium copper titanate publication-title: Appl. Phys. Lett. doi: 10.1063/1.2777184 – volume: 779 year: 2023 ident: 10.1016/j.solidstatesciences.2024.107495_bib42 article-title: Improved optical, dielectric, and nonlinear properties of CaCu3Ti4O12 thin films by chromium doping publication-title: Thin Solid Films doi: 10.1016/j.tsf.2023.139940 – volume: 92 start-page: 494 year: 2016 ident: 10.1016/j.solidstatesciences.2024.107495_bib54 article-title: Improved dielectric properties of (Y + Mg) co-doped CaCu3Ti4O12 ceramics by controlling geometric and intrinsic properties of grain boundaries publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.042 – volume: 70 year: 2004 ident: 10.1016/j.solidstatesciences.2024.107495_bib14 article-title: Large dielectric constant and Maxwell–Wagner relaxation in Bi2/3Cu3Ti4O12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.144106 – volume: 70 issue: 17 year: 2004 ident: 10.1016/j.solidstatesciences.2024.107495_bib5 article-title: Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.172102 – volume: 16 year: 2020 ident: 10.1016/j.solidstatesciences.2024.107495_bib28 article-title: Distinct roles between complex defect clusters and insulating grain boundary on dielectric loss behaviors of (In3+/Ta5+) co-doped CaCu3Ti4O12 ceramics publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102886 – volume: 49 start-page: 134 year: 2023 ident: 10.1016/j.solidstatesciences.2024.107495_bib12 article-title: Microstructural, dielectric, and nonlinear properties of Ca1–xCdxCu3Ti4O12 thin films publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.08.321 – volume: 76 start-page: 124 year: 2016 ident: 10.1016/j.solidstatesciences.2024.107495_bib27 article-title: Effect of doping ions on the structural defect and the electrical behavior of CaCu3Ti4O12 ceramics publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.12.020 – volume: 95 start-page: 476 year: 2012 ident: 10.1016/j.solidstatesciences.2024.107495_bib9 article-title: Voltage–current nonlinearity of CaCu3Ti4O12 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.05025.x – volume: 735 start-page: 2384 year: 2018 ident: 10.1016/j.solidstatesciences.2024.107495_bib16 article-title: Effect of conventional and laser sintering on the (micro)structural and dielectric properties of Bi2/3Cu3Ti4O12 synthesized through a polymeric precursor route publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.140 – volume: 85 start-page: 1583 year: 2013 ident: 10.1016/j.solidstatesciences.2024.107495_bib38 article-title: Defect identification in semiconductors with positron annihilation: Experiment and theory publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1583 – volume: 11 year: 2021 ident: 10.1016/j.solidstatesciences.2024.107495_bib21 article-title: Dielectric properties and electrical response of yttrium-doped Bi2/3Cu3Ti4O12 ceramics publication-title: J. Adv. Dielect. doi: 10.1142/S2010135X21500077 – volume: 5 year: 2018 ident: 10.1016/j.solidstatesciences.2024.107495_bib43 article-title: Impact of post-deposition annealing on RFsputtered calcium copper titanate thin film for memory application publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aab87d – volume: 42 start-page: 2526 year: 2016 ident: 10.1016/j.solidstatesciences.2024.107495_bib15 article-title: Dielectric constant versus voltage and non-Ohmic characteristics of Bi2/3Cu3Ti4O12 ceramics prepared by different methods publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.10.054 – volume: 38 start-page: 5002 year: 2018 ident: 10.1016/j.solidstatesciences.2024.107495_bib46 article-title: Probing the effects of oxygen-related defects on the optical and luminescence properties in CaCu3Ti4O12 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.06.045 – volume: 3 start-page: 774 issue: 11 year: 2004 ident: 10.1016/j.solidstatesciences.2024.107495_bib8 article-title: Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate publication-title: Nat. Mater. doi: 10.1038/nmat1238 – volume: 32 start-page: 751 year: 1976 ident: 10.1016/j.solidstatesciences.2024.107495_bib30 article-title: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides publication-title: Acta Crystallogr. A doi: 10.1107/S0567739476001551 – volume: 105 start-page: 225 year: 2022 ident: 10.1016/j.solidstatesciences.2024.107495_bib33 article-title: Ta2O5 nanocrystals strengthened linear, nonlinear, and faraday properties of heavy metal oxide diamagnetic material publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.18066 – volume: 24 start-page: 194 year: 2023 ident: 10.1016/j.solidstatesciences.2024.107495_bib20 article-title: The effect of rare earth metal doping in Bi2/3Cu3Ti4O12 ceramic on microstructure, dielectric and electrical properties publication-title: Trans. Electr. Electro. doi: 10.1007/s42341-023-00435-x – volume: 25 start-page: 477 year: 1990 ident: 10.1016/j.solidstatesciences.2024.107495_bib34 article-title: Synthesis and structure of a perovskite related oxide, Bi2/3Cu3Ti4O12 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(90)90183-3 |
| SSID | ssj0006674 |
| Score | 2.5263488 |
| Snippet | In this paper, Ta-doped Bi2/3Cu3Ti4O12 (BCTO) ceramics are prepared by solid-state method. Phase structure, microstructure, optical, dielectric, and non-Ohmic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107495 |
| SubjectTerms | Bi2/3Cu3Ti4O12 Dielectric loss Non-Ohmic properties Optical band gap Positron lifetime spectroscopy |
| Title | Enhanced optical, dielectric, and non-Ohmic properties in Ta-doped Bi2/3Cu3Ti4O12 ceramics |
| URI | https://dx.doi.org/10.1016/j.solidstatesciences.2024.107495 |
| Volume | 150 |
| WOSCitedRecordID | wos001219743200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQIuiFdFeckHDkjbLHnbOaGyWlQQapFYIOIS-VVtqlWy2kfV8jf4w4xjO9lShLZCXKzESSZ25otnPB7PIPRSBqHQTkxeEKXci3nCPMZPdCF4IkHiZ80K_teP5OiI5nn2qdf76fbCnM1IVdHz82z-X1kNdcBsvXX2GuxuiUIFHAPToQS2Q7kV48fV1Kzq1_PGTq0_oixNuptSOG9NmPV7x1PtGD_X5viFjquqbR8T5kk4l4O3pY6ZGo3W0aSMj4NwINRC565fbqqzn-tZKQfNpqSBlaWtjp6vleFf9WNaW_loLNS1MQasL1hXDae6Ni9Zvdy4-5s1Zx-y8sLi2Joowk3PFjOqgk7hwdyFXhp2TcBZO3Bqv1CTbfPKmG7MC6fDpe5S0yPXoaF-2bB79HI47d_EXOt86PzaTourFAtNsTAUb6CdkCQZ7aOdg_fj_EMr4NO0Ce7d9uoWetW5Df69lX_WfjY0msk9dNdORfCBgdB91FPVA3R75DIAPkTfHZSwhdI-7oC0jwFGuIUR7mCEywo7GGGA0esORNiB6BH68m48GR16NheHJ6I4XHmcCkkyn_tZSGQqiAKlJpHKP1GggFNOfKkEiaI45ilVoNUTQpkiAuYDPE1jX0W7qA9NUo8RFkRyImmqAh1-MmAsClSi92tzRlmYBXvojftGhbCB6nW-lFmxLef2UNZSmJugLdd4duTYUtjrRrksAI9bU3nyDy14iu50P9Ez1F8t1uo5uinOVuVy8cKC8RezrrZm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+optical%2C+dielectric%2C+and+non-Ohmic+properties+in+Ta-doped+Bi2%2F3Cu3Ti4O12+ceramics&rft.jtitle=Solid+state+sciences&rft.au=Xue%2C+Renzhong&rft.au=Zhao%2C+Liuyang&rft.au=Liu%2C+Xiaosong&rft.au=Wang%2C+Haiyan&rft.date=2024-04-01&rft.issn=1293-2558&rft.volume=150&rft.spage=107495&rft_id=info:doi/10.1016%2Fj.solidstatesciences.2024.107495&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solidstatesciences_2024_107495 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1293-2558&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1293-2558&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1293-2558&client=summon |