First-principles predictions of the structural, electronic, optical and elastic properties of the zintl-phases AE3GaAs3 (AE = Sr, Ba)
We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the ternary gallium-arsenides Sr3GaAs3 and Ba3GaAs3. Calculated equilibrium structural parameters are in excellent agreement with the available...
Saved in:
| Published in: | Solid state sciences Vol. 114; p. 106563 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Masson SAS
01.04.2021
|
| Subjects: | |
| ISSN: | 1293-2558, 1873-3085 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the ternary gallium-arsenides Sr3GaAs3 and Ba3GaAs3. Calculated equilibrium structural parameters are in excellent agreement with the available experimental counterparts, providing evidence of the reliability of the reported results. Monocrystalline elastic constants are numerically estimated and analyzed. From the monocrystalline elastic constants, a set of related properties, viz. mechanical stability, anisotropic sound velocities, polycrystalline elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. Crystal direction dependences of the linear compressibility and Young's modulus are analyzed and visualized by plotting their spatial distributions. From analysis of the energy band dispersions, it is found that the title compounds are semiconductors with direct band gaps positioned in the visible sunlight spectrum in the energy window 1.271–1.285 eV. Origins of the electronic states composing the energy bands are determined using the PDOS diagrams. Effective masses of holes and electrons are numerically evaluated at the valence band and conduction band extremes towards the three major crystalline directions. Anisotropies of the hole and electron effective masses are visualized by plotting their dependencies on the crystalline direction. Frequency-dependent linear optical parameters are predicted in an energy window from 0 eV to 14 eV for incident electromagnetic radiation polarized parallel to the three principal crystalline directions.
[Display omitted]
•The fundamental physical properties of Sr3/Ba3GaAs3 are explored.•They are mechanically stable with moderate stiffness and a significant elastic anisotropy.•They are direct band gap semiconductors with mixed covalent-ionic bond characters.•They possess a high absorption band from the visible spectrum to Near-UV. |
|---|---|
| AbstractList | We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the ternary gallium-arsenides Sr3GaAs3 and Ba3GaAs3. Calculated equilibrium structural parameters are in excellent agreement with the available experimental counterparts, providing evidence of the reliability of the reported results. Monocrystalline elastic constants are numerically estimated and analyzed. From the monocrystalline elastic constants, a set of related properties, viz. mechanical stability, anisotropic sound velocities, polycrystalline elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. Crystal direction dependences of the linear compressibility and Young's modulus are analyzed and visualized by plotting their spatial distributions. From analysis of the energy band dispersions, it is found that the title compounds are semiconductors with direct band gaps positioned in the visible sunlight spectrum in the energy window 1.271–1.285 eV. Origins of the electronic states composing the energy bands are determined using the PDOS diagrams. Effective masses of holes and electrons are numerically evaluated at the valence band and conduction band extremes towards the three major crystalline directions. Anisotropies of the hole and electron effective masses are visualized by plotting their dependencies on the crystalline direction. Frequency-dependent linear optical parameters are predicted in an energy window from 0 eV to 14 eV for incident electromagnetic radiation polarized parallel to the three principal crystalline directions.
[Display omitted]
•The fundamental physical properties of Sr3/Ba3GaAs3 are explored.•They are mechanically stable with moderate stiffness and a significant elastic anisotropy.•They are direct band gap semiconductors with mixed covalent-ionic bond characters.•They possess a high absorption band from the visible spectrum to Near-UV. |
| ArticleNumber | 106563 |
| Author | Al-Douri, Y. Bin-Omran, S. Bouhemadou, A. Kushwaha, A.K. Khireddine, A. Guechi, N. Khenata, R. Alnujaim, S. Maabed, S. |
| Author_xml | – sequence: 1 givenname: A. surname: Khireddine fullname: Khireddine, A. organization: Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria – sequence: 2 givenname: A. surname: Bouhemadou fullname: Bouhemadou, A. email: a_bouhemadou@yahoo.fr, abdelmadjid_bouhemadou@univ-setif.dz organization: Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria – sequence: 3 givenname: S. surname: Alnujaim fullname: Alnujaim, S. organization: Department of Physics, College of Science, Majmaah University, Saudi Arabia – sequence: 4 givenname: N. surname: Guechi fullname: Guechi, N. organization: Laboratoire D'Etudes des Surfaces et Interfaces des Matériaux Solides, University Ferhat Abbas Setif 1, Setif, 19000, Algeria – sequence: 5 givenname: S. surname: Bin-Omran fullname: Bin-Omran, S. organization: Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia – sequence: 6 givenname: Y. surname: Al-Douri fullname: Al-Douri, Y. organization: Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia – sequence: 7 givenname: R. surname: Khenata fullname: Khenata, R. organization: Laboratoire de Physique Quantique de La Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000, Algeria – sequence: 8 givenname: S. surname: Maabed fullname: Maabed, S. organization: Département des Sciences de La Matière, Faculté des Sciences, Université Amar Telidji, BP 37G, Laghouat, 03000, Algeria – sequence: 9 givenname: A.K. surname: Kushwaha fullname: Kushwaha, A.K. organization: Department of Physics, K.N. Govt. P.G. College, Gyanpur, Bhadohi, 221304, India |
| BookMark | eNqVkE1LwzAYgIMouE3_Q44T1pk0bVIPgnNsUxl4UM8hS9-wjNqUJBP07v82Y8ODXvT0fj_wPn103LoWEBpSMqaE8svNOLjG1iGqCEFbaDWEcU5ymsa85OwI9WglWMZIVR6nPL9iWV6W1Snqh7AhhHAuih76nFsfYtZ522rbNRBw56G2OlrXBuwMjmvAIfqtjluvmhGGBnT0rrV6hF0XrVYNVm2d-iqkKp27Dny08H39YdvYZN1ahdSbzNhCTQLDw8kMX-MnP8K36uIMnRjVBDg_xAF6mc-ep3fZ8nFxP50sM82KPGariq90rYkwJRG1MCuVC05EbijlRClRCgZarGhhjCh5QUTJqBGkJspARZlhAzTfc7V3IXgwUtskMP0avbKNpETu5MqN_C1X7uTKvdwEuvkBSgZflX__D-Jhj4D08JsFLw9rtfVJsayd_TvsC-oEqOc |
| CitedBy_id | crossref_primary_10_1016_j_chemphys_2024_112260 crossref_primary_10_1016_j_jmrt_2022_11_052 crossref_primary_10_1016_j_jpcs_2025_113086 crossref_primary_10_1016_j_chemphys_2023_112024 crossref_primary_10_1016_j_physb_2023_415131 crossref_primary_10_1016_j_mseb_2024_117183 crossref_primary_10_1016_j_physb_2023_415499 crossref_primary_10_1007_s10904_024_03081_9 crossref_primary_10_1016_j_jmmm_2021_168953 crossref_primary_10_1007_s12034_023_02890_x crossref_primary_10_1016_j_chemphys_2022_111728 crossref_primary_10_1016_j_cocom_2023_e00850 crossref_primary_10_1016_j_comptc_2024_114947 crossref_primary_10_1016_j_physe_2021_115074 crossref_primary_10_1016_j_flatc_2024_100655 crossref_primary_10_1016_j_mseb_2022_115838 crossref_primary_10_1016_j_ijleo_2023_170960 crossref_primary_10_1002_slct_202502428 crossref_primary_10_1016_j_ijleo_2023_170565 crossref_primary_10_1016_j_jre_2023_04_012 crossref_primary_10_1016_j_cjph_2024_03_041 crossref_primary_10_1016_j_ssc_2023_115189 crossref_primary_10_1016_j_mssp_2024_109138 crossref_primary_10_1142_S0217984924501173 crossref_primary_10_1016_j_chemphys_2022_111585 crossref_primary_10_1016_j_cocom_2024_e00966 crossref_primary_10_1088_1402_4896_adc212 crossref_primary_10_1016_j_cocom_2022_e00684 crossref_primary_10_1016_j_cocom_2022_e00682 crossref_primary_10_1016_j_jpcs_2022_110705 crossref_primary_10_1016_j_mtcomm_2022_104302 crossref_primary_10_1016_j_cocom_2022_e00686 crossref_primary_10_1016_j_physb_2022_413881 crossref_primary_10_1016_j_heliyon_2023_e18407 crossref_primary_10_1016_j_ijleo_2023_171088 crossref_primary_10_1016_j_physe_2021_114790 crossref_primary_10_1080_08927022_2022_2124297 crossref_primary_10_1016_j_cplett_2022_139992 crossref_primary_10_1016_j_cjph_2023_08_001 crossref_primary_10_1016_j_comptc_2021_113506 crossref_primary_10_1016_j_inoche_2024_113043 crossref_primary_10_1016_j_mseb_2022_115781 crossref_primary_10_1016_j_mseb_2021_115269 crossref_primary_10_1088_1402_4896_acfbfe crossref_primary_10_1016_j_chemphys_2022_111473 crossref_primary_10_1155_2022_3619600 crossref_primary_10_1007_s12648_022_02550_6 crossref_primary_10_1016_j_infrared_2022_104319 crossref_primary_10_1016_j_jmrt_2022_11_119 crossref_primary_10_1007_s10853_021_06168_7 crossref_primary_10_1088_1402_4896_ad6f77 crossref_primary_10_1016_j_comptc_2022_113833 crossref_primary_10_1016_j_mseb_2022_116228 crossref_primary_10_1016_j_comptc_2022_114006 crossref_primary_10_1016_j_matchemphys_2023_127422 crossref_primary_10_1016_j_matchemphys_2023_128115 crossref_primary_10_1007_s10948_023_06684_4 crossref_primary_10_1016_j_heliyon_2023_e23818 crossref_primary_10_1007_s11837_024_07072_6 crossref_primary_10_1016_j_mseb_2021_115379 crossref_primary_10_1016_j_jmmm_2022_170298 crossref_primary_10_1016_j_jpcs_2022_110719 crossref_primary_10_1016_j_physb_2024_416131 crossref_primary_10_1016_j_jmmm_2023_171605 crossref_primary_10_1515_ijmr_2021_8544 crossref_primary_10_1088_1402_4896_ad1737 crossref_primary_10_1088_1402_4896_ad7bfa crossref_primary_10_1016_j_ssc_2023_115361 crossref_primary_10_1016_j_apsusc_2022_154739 crossref_primary_10_1016_j_vacuum_2024_113896 crossref_primary_10_1007_s10904_024_03060_0 crossref_primary_10_1016_j_solidstatesciences_2022_106964 crossref_primary_10_1080_08927022_2023_2165127 crossref_primary_10_1016_j_comptc_2022_113943 crossref_primary_10_1007_s11581_023_05172_y crossref_primary_10_1016_j_jpcs_2021_110305 crossref_primary_10_1016_j_ijleo_2023_170850 crossref_primary_10_1016_j_comptc_2022_113928 crossref_primary_10_1016_j_ssc_2024_115532 crossref_primary_10_1016_j_inoche_2025_114312 crossref_primary_10_1016_j_spmi_2021_107132 crossref_primary_10_1016_j_jmmm_2023_170604 crossref_primary_10_1016_j_matchemphys_2021_125459 crossref_primary_10_1016_j_solener_2023_112199 crossref_primary_10_1088_1402_4896_acd3c4 crossref_primary_10_1007_s00894_024_05907_2 crossref_primary_10_1016_j_physb_2021_413554 crossref_primary_10_1016_j_cplett_2022_139680 crossref_primary_10_1080_08927022_2022_2078816 crossref_primary_10_1088_1402_4896_acf966 crossref_primary_10_1016_j_ssc_2022_114950 crossref_primary_10_1140_epjp_s13360_022_02843_z crossref_primary_10_1016_j_cplett_2022_140254 crossref_primary_10_1155_2022_1440774 crossref_primary_10_1002_zaac_202500031 crossref_primary_10_1016_j_physb_2022_414252 crossref_primary_10_1016_j_comptc_2022_113766 crossref_primary_10_1016_j_cocom_2025_e01075 crossref_primary_10_1016_j_comptc_2021_113304 crossref_primary_10_1016_j_jpcs_2025_113221 crossref_primary_10_1088_1742_6596_2518_1_012012 crossref_primary_10_1016_j_mseb_2022_115983 crossref_primary_10_1016_j_apsusc_2024_161003 crossref_primary_10_1080_08927022_2023_2232887 crossref_primary_10_1007_s42247_023_00565_1 crossref_primary_10_1016_j_mssp_2024_108694 crossref_primary_10_1016_j_jpcs_2022_110878 crossref_primary_10_1016_j_mtcomm_2023_107501 crossref_primary_10_1016_j_jmmm_2022_169822 crossref_primary_10_1016_j_comptc_2022_113993 crossref_primary_10_1016_j_physe_2022_115171 crossref_primary_10_1016_j_physb_2023_414809 crossref_primary_10_1016_j_jpcs_2023_111231 crossref_primary_10_1080_00268976_2024_2390589 crossref_primary_10_1007_s10904_023_02881_9 crossref_primary_10_1016_j_ssc_2021_114396 crossref_primary_10_1007_s10948_024_06743_4 crossref_primary_10_1088_1402_4896_ad9da0 crossref_primary_10_1016_j_jpcs_2023_111232 crossref_primary_10_1016_j_mtcomm_2023_106001 crossref_primary_10_1016_j_comptc_2022_113624 |
| Cites_doi | 10.1103/PhysRevB.75.155104 10.1002/anie.197306941 10.1016/j.nanoen.2020.104771 10.1103/PhysRev.128.2093 10.1021/ic100940b 10.1021/cm901956r 10.1016/j.jallcom.2020.154232 10.1103/PhysRevB.94.125209 10.1103/PhysRevLett.101.055504 10.1021/cm0520362 10.1016/j.cpc.2006.03.007 10.1021/j100203a036 10.1080/14786440808520496 10.1016/j.jallcom.2020.155991 10.1103/PhysRevLett.85.1120 10.1080/14786435.2018.1425013 10.1016/j.jssc.2012.01.042 10.1016/j.solidstatesciences.2014.01.001 10.1016/j.jallcom.2008.10.080 10.1039/C8QI00366A 10.3390/cryst5040433 10.3390/ma12162554 10.1103/PhysRevB.90.224104 10.1080/09506608.2016.1183075 10.1524/zkri.220.5.567.65075 10.1016/j.jssc.2018.12.037 10.1021/ja020564y 10.1080/08957959.2016.1167202 10.1016/j.jssc.2019.07.050 10.1103/PhysRevB.65.144414 10.1103/PhysRevB.83.195134 10.1016/j.optmat.2015.03.059 10.1103/PhysRevLett.102.226401 10.1016/j.jallcom.2015.02.133 10.1103/PhysRevLett.100.136406 10.1021/ic100296x 10.1103/PhysRevB.41.7892 10.1039/C9QM00703B 10.1038/nmat2090 10.1002/cssc.201300518 10.1021/acsaem.0c00048 10.1039/c3dt53487a 10.1063/1.3702787 10.1088/0022-3727/44/15/155406 10.1016/j.cpc.2006.03.005 10.1016/j.commatsci.2009.12.017 10.1021/cm9704241 10.1016/j.mtphys.2017.06.003 10.1021/acs.chemmater.9b04131 10.1016/j.jallcom.2019.152384 10.1103/PhysRevB.13.5188 10.1016/j.ssc.2016.03.018 10.1002/ange.19390520102 10.1021/jacs.9b04712 10.1016/bs.hpcre.2016.05.003 10.1016/j.jssc.2012.09.029 10.1063/1.368733 10.1016/j.solidstatesciences.2017.06.007 10.1016/0022-3697(63)90067-2 10.1021/ja069261k 10.1021/jacs.6b05636 10.1016/j.jallcom.2013.07.003 10.1103/PhysRevB.82.205102 10.1039/b702266b 10.1039/C5RA09804A 10.1021/jz500480m 10.1088/0370-1298/65/5/307 10.1021/cm060261t 10.1016/j.poly.2009.06.031 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Masson SAS |
| Copyright_xml | – notice: 2021 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.solidstatesciences.2021.106563 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3085 |
| ExternalDocumentID | 10_1016_j_solidstatesciences_2021_106563 S1293255821000327 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSM SSZ T5K ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c342t-b86bcdc07f507d7fba276072f1160aa7573ec7b14ff756407531f70d0afe813f3 |
| ISICitedReferencesCount | 145 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695465500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1293-2558 |
| IngestDate | Tue Nov 18 22:02:20 EST 2025 Sat Nov 29 07:01:11 EST 2025 Fri Feb 23 02:48:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | First-principles calculations Band structure Elastic parameters Optical properties Zintl phase |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-b86bcdc07f507d7fba276072f1160aa7573ec7b14ff756407531f70d0afe813f3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_solidstatesciences_2021_106563 crossref_primary_10_1016_j_solidstatesciences_2021_106563 elsevier_sciencedirect_doi_10_1016_j_solidstatesciences_2021_106563 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Solid state sciences |
| PublicationYear | 2021 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Wang, Xia, Tao (bib2) 2013; 198 Hill (bib73) 1952; 65 Feng, Xiao (bib66) 2014; 5 Hu, Cerretti, Kunz Wille, Bux, Kauzlarich (bib22) 2019; 271 Toberer, May, Snyder (bib36) 2010; 22 Hu, Chen, Cao, Makhmudov, Grebenkemper, Abdusalyamova, Morosan, Kauzlarich (bib43) 2016; 138 Sánchez-Portal, Martin, Kauzlarich, Pickett (bib40) 2002; 65 Chan, Kauzlarich, Klavins, Shelton, Webb (bib38) 1997; 9 Shi, Feng, Yan, Wang (bib65) 2015; 5 Karazhanov, Ravindran, Kjekshus, Fjellvåg, Svensson (bib60) 2007; 75 Mouhat, Coudert (bib69) 2014; 90 Wang, Cai, Li, Wang, Zhou (bib3) 2009; 477 Kauzlarich, Brown, Snyder (bib35) 2007; 21 Xia, Bobev (bib34) 2007; 129 Fischer, Almlof (bib54) 1992; 96 Ravindran, Fast, Korzhavyi, Johansson, Eriksson (bib78) 1998; 84 Ambrosch-Draxl, Sofo (bib59) 2006; 175 Kauzlarich (bib27) 2019; 12 Weippert, Haffner, Stamatopoulos, Johrendt (bib63) 2019; 141 Bedjaoui, Bouhemadou, Bin-Omran (bib74) 2016; 36 Reuss, Angew (bib72) 1929; 9 Bedjaoui, Bouhemadou, Aloumi, Khenata, Bin-Omran, Al-Douri, Saad Saoud, Bensalem (bib55) 2017; 70 Guechi, Bouhemadou, Khenata, Bin-Omran, Chegaar, Al-Douri, Bourzami (bib7) 2014; 29 Guechi, Bouhemadou, Guechi, Reffas, Louail, Bourzami, Chegaar, Bin-Omran (bib8) 2013; 577 Ranganathan, Ostoja-Starzewski (bib79) 2008; 101 Toberer, May, Snyder (bib11) 2010; 22 Bouhemadou, Khenata, Bin-Omran, Murtaza, Al-Douri (bib14) 2015; 46 Alnujaim, Bouhemadou, Bedjaoui, Bin-Omran, Al-Douri, Khenata, Maabed (bib70) 2020; 843 Toberer, May, Snyder (bib30) 2010; 22 Fisher, Bud’Ko, Song, Canfield, Ozawa, Kauzlarich (bib44) 2000; 85 Saparov, Bobev (bib4) 2010; 49 Saha, Dutta (bib75) 2016; 94 Shuai, Mao, Song, Zhang, Chen, Ren (bib32) 2017; 1 Kazem, Kauzlarich (bib21) 2016; 50 Madsen, Singh (bib64) 2006; 175 Feng, Yang, Wang, Yan, Yang, Zhang (bib15) 2015; 636 He, Stearrett, Nowak, Bobev (bib1) 2010; 49 Tran, Blaha (bib56) 2009; 102 Singh (bib62) 2010; 82 (bib28) 1996 Monkhorst, Park (bib53) 1976; 13 Zevalkink, Pomrehn, Takagiwa, Swallow, Snyder (bib49) 2013; 6 Stoyko, Voss, He, Bobev Synthesis (bib10) 2015; 5 Chen, Li, Xue, Huang, Yao, Li, Zhang, Wang, Sui, Liu, Cao, Wang (bib37) 2020; 73 Yang, Zhang, Wang, Wang (bib13) 2016; 237 Kauzlarich, Payne, Webb (bib42) 2002 Vanderbilt (bib52) 1990; 41 Janka, Kauzlarich (bib26) 2013 Blaha, Schwarz, Madsen, Kvasnicka, Luitz, Laskowski, Tran, Marks (bib58) 2018 Pugh (bib76) 1954; 45 Anderson (bib77) 1963; 24 Ortiz, Gorai, Braden, Bensen, Wilson, Stefanović, E (bib16) 2020; 3 Shi, Chen, Uher (bib31) 2016; 61 Clark, Segall, Pickard, Hasnip, Probert, Refson, Payne (bib50) 2005; 220 Zevalkink, Takagiwa, Kitahara, Kimura, Jeffrey Snyder (bib48) 2014; 43 Guechi, Bouhemadou, Benaisti, Bin-Omran, Khenata, Al-Douri (bib20) 2020; 815 Singh, Schwingenschlögl (bib6) 2012; 100 Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib51) 2008; 100 Hamidani, Bennecer (bib68) 2010; 48 Schäfer, Eisenmann, Müller (bib25) 1973; 12 Ponnambalam, Lindsey, Xie, Thompson, Drymiotis, Tritt (bib9) 2011; 44 Jiang, Kauzlarich (bib39) 2006; 18 Brown, Kauzlarich, Gascoin, Snyder (bib33) 2006; 18 Holm, Kauzlarich, Morton, Waddill, Pickett, Tobin (bib41) 2002; 124 Ren, Liu, He, Lv, Gao, Xu (bib47) 2018; 5 Voigt (bib71) 1928 Chen, Li, Xue, Huang, Yao, Li, Zhang, Wang, Sui, Liu, Cao, Wang (bib19) 2020; 73 Radzieowski, Stegemann, Klenner, Zhang, Fokwa, Janka (bib17) 2020; 4 Zhou, Feng, Mao, Jiang, Zhu, Singh, Wang, Ren (bib18) 2020; 32 Saparov, Broda, Ramanujachary, Bobev (bib5) 2010; 29 Snyder, Toberer (bib29) 2008; 7 Penn (bib67) 1962; 128 Nye (bib80) 1985 Zintl (bib24) 1939; 52 Toberer, May, Snyder (bib46) 2009; 22 Childs, Baranets, Bobev (bib45) 2019; 278 Koller, Tran, Blaha (bib57) 2011; 83 Benahmed, Bouhemadou, Alqarni, Guechi, Al-Douri, Khenata, Bin-Omran (bib23) 2018; 98 He, Tyson, Saito, Bobev (bib12) 2012; 188 Rudysh, Shchepanskyi, Fedorchuk, Brik, Ma, Myronchuk, Piasecki (bib61) 2020; 826 Ambrosch-Draxl (10.1016/j.solidstatesciences.2021.106563_bib59) 2006; 175 Feng (10.1016/j.solidstatesciences.2021.106563_bib66) 2014; 5 Feng (10.1016/j.solidstatesciences.2021.106563_bib15) 2015; 636 Shi (10.1016/j.solidstatesciences.2021.106563_bib31) 2016; 61 Shuai (10.1016/j.solidstatesciences.2021.106563_bib32) 2017; 1 Toberer (10.1016/j.solidstatesciences.2021.106563_bib36) 2010; 22 Alnujaim (10.1016/j.solidstatesciences.2021.106563_bib70) 2020; 843 Fischer (10.1016/j.solidstatesciences.2021.106563_bib54) 1992; 96 Ponnambalam (10.1016/j.solidstatesciences.2021.106563_bib9) 2011; 44 Koller (10.1016/j.solidstatesciences.2021.106563_bib57) 2011; 83 Rudysh (10.1016/j.solidstatesciences.2021.106563_bib61) 2020; 826 Clark (10.1016/j.solidstatesciences.2021.106563_bib50) 2005; 220 Zhou (10.1016/j.solidstatesciences.2021.106563_bib18) 2020; 32 Monkhorst (10.1016/j.solidstatesciences.2021.106563_bib53) 1976; 13 Singh (10.1016/j.solidstatesciences.2021.106563_bib6) 2012; 100 Sánchez-Portal (10.1016/j.solidstatesciences.2021.106563_bib40) 2002; 65 Kazem (10.1016/j.solidstatesciences.2021.106563_bib21) 2016; 50 Ranganathan (10.1016/j.solidstatesciences.2021.106563_bib79) 2008; 101 Toberer (10.1016/j.solidstatesciences.2021.106563_bib11) 2010; 22 Shi (10.1016/j.solidstatesciences.2021.106563_bib65) 2015; 5 Voigt (10.1016/j.solidstatesciences.2021.106563_bib71) 1928 Chan (10.1016/j.solidstatesciences.2021.106563_bib38) 1997; 9 Saparov (10.1016/j.solidstatesciences.2021.106563_bib5) 2010; 29 Guechi (10.1016/j.solidstatesciences.2021.106563_bib7) 2014; 29 Madsen (10.1016/j.solidstatesciences.2021.106563_bib64) 2006; 175 Kauzlarich (10.1016/j.solidstatesciences.2021.106563_bib27) 2019; 12 Ren (10.1016/j.solidstatesciences.2021.106563_bib47) 2018; 5 Guechi (10.1016/j.solidstatesciences.2021.106563_bib20) 2020; 815 Blaha (10.1016/j.solidstatesciences.2021.106563_bib58) 2018 Benahmed (10.1016/j.solidstatesciences.2021.106563_bib23) 2018; 98 Ravindran (10.1016/j.solidstatesciences.2021.106563_bib78) 1998; 84 Yang (10.1016/j.solidstatesciences.2021.106563_bib13) 2016; 237 Toberer (10.1016/j.solidstatesciences.2021.106563_bib30) 2010; 22 Xia (10.1016/j.solidstatesciences.2021.106563_bib34) 2007; 129 Snyder (10.1016/j.solidstatesciences.2021.106563_bib29) 2008; 7 Zevalkink (10.1016/j.solidstatesciences.2021.106563_bib49) 2013; 6 Chen (10.1016/j.solidstatesciences.2021.106563_bib19) 2020; 73 Ortiz (10.1016/j.solidstatesciences.2021.106563_bib16) 2020; 3 Schäfer (10.1016/j.solidstatesciences.2021.106563_bib25) 1973; 12 Hamidani (10.1016/j.solidstatesciences.2021.106563_bib68) 2010; 48 Stoyko (10.1016/j.solidstatesciences.2021.106563_bib10) 2015; 5 Radzieowski (10.1016/j.solidstatesciences.2021.106563_bib17) 2020; 4 Saparov (10.1016/j.solidstatesciences.2021.106563_bib4) 2010; 49 Bedjaoui (10.1016/j.solidstatesciences.2021.106563_bib74) 2016; 36 Reuss (10.1016/j.solidstatesciences.2021.106563_bib72) 1929; 9 Hill (10.1016/j.solidstatesciences.2021.106563_bib73) 1952; 65 Zevalkink (10.1016/j.solidstatesciences.2021.106563_bib48) 2014; 43 Karazhanov (10.1016/j.solidstatesciences.2021.106563_bib60) 2007; 75 Hu (10.1016/j.solidstatesciences.2021.106563_bib22) 2019; 271 Brown (10.1016/j.solidstatesciences.2021.106563_bib33) 2006; 18 Toberer (10.1016/j.solidstatesciences.2021.106563_bib46) 2009; 22 Bouhemadou (10.1016/j.solidstatesciences.2021.106563_bib14) 2015; 46 Janka (10.1016/j.solidstatesciences.2021.106563_bib26) 2013 Anderson (10.1016/j.solidstatesciences.2021.106563_bib77) 1963; 24 Vanderbilt (10.1016/j.solidstatesciences.2021.106563_bib52) 1990; 41 Fisher (10.1016/j.solidstatesciences.2021.106563_bib44) 2000; 85 Childs (10.1016/j.solidstatesciences.2021.106563_bib45) 2019; 278 He (10.1016/j.solidstatesciences.2021.106563_bib1) 2010; 49 Zintl (10.1016/j.solidstatesciences.2021.106563_bib24) 1939; 52 (10.1016/j.solidstatesciences.2021.106563_bib28) 1996 Kauzlarich (10.1016/j.solidstatesciences.2021.106563_bib35) 2007; 21 Mouhat (10.1016/j.solidstatesciences.2021.106563_bib69) 2014; 90 Wang (10.1016/j.solidstatesciences.2021.106563_bib2) 2013; 198 Saha (10.1016/j.solidstatesciences.2021.106563_bib75) 2016; 94 Bedjaoui (10.1016/j.solidstatesciences.2021.106563_bib55) 2017; 70 Chen (10.1016/j.solidstatesciences.2021.106563_bib37) 2020; 73 Kauzlarich (10.1016/j.solidstatesciences.2021.106563_bib42) 2002 Singh (10.1016/j.solidstatesciences.2021.106563_bib62) 2010; 82 Perdew (10.1016/j.solidstatesciences.2021.106563_bib51) 2008; 100 Penn (10.1016/j.solidstatesciences.2021.106563_bib67) 1962; 128 Guechi (10.1016/j.solidstatesciences.2021.106563_bib8) 2013; 577 Pugh (10.1016/j.solidstatesciences.2021.106563_bib76) 1954; 45 Hu (10.1016/j.solidstatesciences.2021.106563_bib43) 2016; 138 Nye (10.1016/j.solidstatesciences.2021.106563_bib80) 1985 Tran (10.1016/j.solidstatesciences.2021.106563_bib56) 2009; 102 He (10.1016/j.solidstatesciences.2021.106563_bib12) 2012; 188 Holm (10.1016/j.solidstatesciences.2021.106563_bib41) 2002; 124 Weippert (10.1016/j.solidstatesciences.2021.106563_bib63) 2019; 141 Jiang (10.1016/j.solidstatesciences.2021.106563_bib39) 2006; 18 Wang (10.1016/j.solidstatesciences.2021.106563_bib3) 2009; 477 |
| References_xml | – volume: 46 start-page: 122 year: 2015 end-page: 130 ident: bib14 article-title: Structural, elastic, electronic and optical properties of new layered semiconductor Baga publication-title: Opt. Mater. – volume: 141 start-page: 11245 year: 2019 end-page: 11252 ident: bib63 article-title: Supertetrahedral layers based on GaAs or InAs publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 104771 year: 2020 end-page: 104778 ident: bib37 article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu publication-title: Nanomater. Energy – volume: 12 year: 2019 ident: bib27 article-title: Advances in Zintl phases publication-title: Mater – volume: 90 year: 2014 ident: bib69 article-title: Necessary and sufficient elastic stability conditions in various crystal systems publication-title: Phys. Rev. B – volume: 22 start-page: 624 year: 2010 end-page: 634 ident: bib36 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. – volume: 188 start-page: 59 year: 2012 end-page: 65 ident: bib12 article-title: Synthesis and structural characterization of the ternary Zintl phases publication-title: J. Solid State Chem. – volume: 1 start-page: 74 year: 2017 end-page: 95 ident: bib32 article-title: Recent progress and future challenges on thermoelectric Zintl materials publication-title: Mater. Today Phys. – volume: 5 start-page: 2380 year: 2018 end-page: 2398 ident: bib47 article-title: Recent advances in inorganic material thermoelectrics publication-title: Inorg. Chem. Front. – volume: 4 start-page: 1231 year: 2020 end-page: 1248 ident: bib17 article-title: On the divalent character of the Eu atoms in the ternary Zintl phases Eu publication-title: Mater. Chem. Front. – volume: 18 start-page: 1873 year: 2006 end-page: 1877 ident: bib33 article-title: Yb publication-title: Chem. Mater. – volume: 101 year: 2008 ident: bib79 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. – volume: 100 year: 2012 ident: bib6 article-title: High Eu 4f low-energy oscillator strength in the isostructural rare-earth Zintl compounds EuIn publication-title: Appl. Phys. Lett. – volume: 198 start-page: 6 year: 2013 end-page: 9 ident: bib2 article-title: Syntheses, crystal structure and physical properties of new Zintl phases Ba publication-title: J. Solid State Chem. – volume: 124 start-page: 9894 year: 2002 end-page: 9898 ident: bib41 article-title: XMCD characterization of the ferromagnetic state of Yb publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 9768 year: 1992 end-page: 9774 ident: bib54 article-title: General methods for geometry and wave function optimization publication-title: J. Phys. Chem. – volume: 12 start-page: 694 year: 1973 end-page: 712 ident: bib25 article-title: Zintl phases: transitions between metallic and ionic bonding publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 379 year: 2016 end-page: 415 ident: bib31 article-title: Recent advances in high-performance bulk thermoelectric materials publication-title: Int. Mater. Rev. – volume: 102 start-page: 226401 year: 2009 end-page: 226404 ident: bib56 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. – volume: 175 start-page: 1 year: 2006 end-page: 14 ident: bib59 article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method publication-title: Comput. Phys. Commun. – year: 1928 ident: bib71 article-title: Lehrbuch der Kristallphysik (Textbook of crystal physics) – volume: 477 start-page: 519 year: 2009 end-page: 522 ident: bib3 article-title: Synthesis and thermoelectric properties of BaMn publication-title: J. Alloys Compd. – volume: 29 start-page: 12 year: 2014 end-page: 23 ident: bib7 article-title: Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn publication-title: Solid State Sci. – volume: 98 start-page: 1217 year: 2018 end-page: 1240 ident: bib23 article-title: Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase publication-title: Philos. Mag. A – volume: 29 start-page: 456 year: 2010 end-page: 462 ident: bib5 article-title: New quaternary Zintl phases – synthesis, crystal and electronic structures of KA publication-title: Polyhedron – volume: 6 start-page: 2316 year: 2013 end-page: 2321 ident: bib49 article-title: Thermoelectric properties and electronic structure of the zintl-phase Sr publication-title: ChemSusChem – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: bib52 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B – volume: 48 start-page: 115 year: 2010 end-page: 123 ident: bib68 article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se) publication-title: Comput. Mater. Sci. – year: 2013 ident: bib26 article-title: Zintl Compounds, Encyclopedia of Inorganic and Bioinorganic Chemistry – volume: 73 start-page: 104771 year: 2020 end-page: 104778 ident: bib19 article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu publication-title: Nanomater. Energy – volume: 7 start-page: 105 year: 2008 end-page: 114 ident: bib29 article-title: Complex thermoelectric materials publication-title: Nat. Mater. – volume: 815 year: 2020 ident: bib20 article-title: Temperature and doping effects on the transport properties of SrIn publication-title: J. Alloys Compd. – volume: 237 start-page: 28 year: 2016 end-page: 33 ident: bib13 article-title: The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba publication-title: Solid State Commun. – volume: 271 start-page: 88 year: 2019 end-page: 102 ident: bib22 article-title: The remarkable crystal chemistry of the Ca publication-title: J. Solid State Chem. – volume: 826 start-page: 154232 year: 2020 end-page: 154238 ident: bib61 article-title: First-principles analysis of physical properties anisotropy for the Ag publication-title: J. Alloys Compd. – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: bib50 article-title: First-principles methods using CASTEP publication-title: Z. Kristallogr. – volume: 129 start-page: 4049 year: 2007 end-page: 4057 ident: bib34 article-title: Cation-anion interactions as structure directing factors: structure and bonding of Ca publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 909 year: 1963 end-page: 917 ident: bib77 article-title: A simplified method for calculating the Debye temperature from elastic constants publication-title: J. Phys. Chem. Solid. – year: 1985 ident: bib80 article-title: Properties of Crystals – year: 1996 ident: bib28 publication-title: Chemistry, Structure and Bonding of Zintl Phases and Ions: Selected Topics and Recent Advances – volume: 9 start-page: 3132 year: 1997 end-page: 3135 ident: bib38 article-title: Colossal magnetoresistance in the transition-metal Zintl compound Eu publication-title: Chem. Mater. – start-page: 37 year: 2002 end-page: 62 ident: bib42 article-title: Magnetism and magnetotransport properties of transition metal Zintl isotypes publication-title: Magnetism: Molecules to Materials III – volume: 21 start-page: 2099 year: 2007 end-page: 2107 ident: bib35 article-title: Zintl phases for thermoelectric devices publication-title: Dalton Trans. – volume: 3 start-page: 2182 year: 2020 end-page: 2191 ident: bib16 article-title: Toberer discovery of n-type Zintl phases RbAlSb publication-title: ACS Appl. Energy Mater. – volume: 13 year: 1976 ident: bib53 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 22 start-page: 624 year: 2010 end-page: 634 ident: bib11 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. – volume: 85 start-page: 1120 year: 2000 end-page: 1123 ident: bib44 article-title: Yb publication-title: Phys. Rev. Lett. – volume: 82 start-page: 205102 year: 2010 end-page: 205110 ident: bib62 article-title: Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional publication-title: Phys. Rev. B – volume: 843 year: 2020 ident: bib70 article-title: Ab initio prediction of the elastic, electronic and optical properties of a new family of diamond-like semiconductors, Li publication-title: J. Alloys Compd. – volume: 49 start-page: 7935 year: 2010 end-page: 7940 ident: bib1 article-title: Baga publication-title: Inorg. Chem. – volume: 32 start-page: 776 year: 2020 end-page: 784 ident: bib18 article-title: Thermoelectric properties of Zintl phase YbMg publication-title: Chem. Mater. – volume: 22 start-page: 624 year: 2009 end-page: 634 ident: bib46 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. – volume: 83 year: 2011 ident: bib57 article-title: Merits and limits of the modified Becke-Johnson exchange potential publication-title: Phys. Rev. B – volume: 128 start-page: 2093 year: 1962 end-page: 2097 ident: bib67 article-title: Wave-number-dependent dielectric function of semiconductors publication-title: Phys. Rev. – volume: 278 year: 2019 ident: bib45 article-title: Five new ternary indium-arsenides discovered. Synthesis and structural characterization of the Zintl phases Sr publication-title: J. Solid State Chem. – volume: 5 start-page: 65133 year: 2015 end-page: 65138 ident: bib65 article-title: Electronic structure and thermoelectric properties of Zintl compounds A publication-title: RSC Adv. – volume: 84 year: 1998 ident: bib78 article-title: Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi publication-title: J. Appl. Phys. – volume: 577 start-page: 587 year: 2013 end-page: 599 ident: bib8 article-title: First-principles prediction of the structural, elastic, electronic and optical properties of the Zintl phases MIn publication-title: J. Alloys Compd. – volume: 22 start-page: 624 year: 2010 end-page: 634 ident: bib30 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. – volume: 18 start-page: 435 year: 2006 end-page: 441 ident: bib39 article-title: Colossal magnetoresistance in a rare earth Zintl compound with a new structure Type: EuIn publication-title: Chem. Mater. – volume: 636 start-page: 387 year: 2015 end-page: 394 ident: bib15 article-title: Origin of different thermoelectric properties between Zintl compounds Ba publication-title: J. Alloys Compd. – volume: 43 start-page: 4720 year: 2014 end-page: 4725 ident: bib48 article-title: Thermoelectric properties and electronic structure of the Zintl phase Sr publication-title: Dalton Trans. – volume: 138 start-page: 12422 year: 2016 end-page: 12431 ident: bib43 article-title: Tuning magnetism of [MnSb4] publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 177 year: 2016 end-page: 208 ident: bib21 article-title: Thermoelectric properties of Zintl antimonides publication-title: Handb. Phys. Chem. Rare Earths – volume: 175 start-page: 67 year: 2006 end-page: 71 ident: bib64 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. Phys. Commun – volume: 45 start-page: 823 year: 1954 end-page: 843 ident: bib76 article-title: Relations between the elastic moduli and plastic properties of polycrystalline pure metals publication-title: Philos. Mag. A – volume: 65 start-page: 144414 year: 2002 end-page: 144415 ident: bib40 article-title: Bonding, moment formation, and magnetic interactions in Ca publication-title: Phys. Rev. B – volume: 9 start-page: 49 year: 1929 end-page: 58 ident: bib72 article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals publication-title: Math. Mech. – volume: 52 start-page: 1 year: 1939 end-page: 6 ident: bib24 article-title: Intermetallische verbindungen “intermetallic compounds” publication-title: Angew. Chem. – volume: 5 start-page: 1278 year: 2014 end-page: 1282 ident: bib66 article-title: Crystal structures, optical properties, and effective mass tensors of CH publication-title: J. Phys. Chem. Lett. – volume: 44 year: 2011 ident: bib9 article-title: High Seebeck coefficient AMXP publication-title: J. Phys. D Appl. Phys. – year: 2018 ident: bib58 article-title: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn – volume: 100 year: 2008 ident: bib51 article-title: Restoring the density-gradient expansion for exchange in solids and surfaces publication-title: Phys. Rev. Lett. – volume: 94 year: 2016 ident: bib75 article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe publication-title: Phys. Rev. B – volume: 49 start-page: 5173 year: 2010 end-page: 5179 ident: bib4 article-title: Isolated publication-title: Inorg. Chem. – volume: 65 start-page: 349 year: 1952 end-page: 354 ident: bib73 article-title: The elastic behavior of a crystalline aggregate publication-title: Proc. Phys. Soc. – volume: 36 start-page: 198 year: 2016 end-page: 219 ident: bib74 article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr publication-title: High Pres. Res. – volume: 70 start-page: 21 year: 2017 end-page: 35 ident: bib55 article-title: Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu publication-title: Solid State Sci. – volume: 5 start-page: 433 year: 2015 end-page: 446 ident: bib10 article-title: Crystal and electronic structures of the pnictides publication-title: Crystals – volume: 75 start-page: 155104 year: 2007 end-page: 155114 ident: bib60 article-title: Electronic structure and optical properties of ZnX (X = O, S, Se, Te): a density functional study publication-title: Phys. Rev. B – volume: 75 start-page: 155104 year: 2007 ident: 10.1016/j.solidstatesciences.2021.106563_bib60 article-title: Electronic structure and optical properties of ZnX (X = O, S, Se, Te): a density functional study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.155104 – volume: 12 start-page: 694 year: 1973 ident: 10.1016/j.solidstatesciences.2021.106563_bib25 article-title: Zintl phases: transitions between metallic and ionic bonding publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.197306941 – volume: 73 start-page: 104771 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib37 article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase Author links open overlay panel publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2020.104771 – volume: 128 start-page: 2093 year: 1962 ident: 10.1016/j.solidstatesciences.2021.106563_bib67 article-title: Wave-number-dependent dielectric function of semiconductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2093 – volume: 49 start-page: 7935 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib1 article-title: Baga2Pn2 (Pn = P, as): new semiconducting phosphides and arsenides with layered structures publication-title: Inorg. Chem. doi: 10.1021/ic100940b – volume: 22 start-page: 624 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib36 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. doi: 10.1021/cm901956r – volume: 826 start-page: 154232 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib61 article-title: First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154232 – volume: 94 year: 2016 ident: 10.1016/j.solidstatesciences.2021.106563_bib75 article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.125209 – volume: 101 year: 2008 ident: 10.1016/j.solidstatesciences.2021.106563_bib79 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.055504 – volume: 18 start-page: 435 year: 2006 ident: 10.1016/j.solidstatesciences.2021.106563_bib39 article-title: Colossal magnetoresistance in a rare earth Zintl compound with a new structure Type: EuIn2P2 publication-title: Chem. Mater. doi: 10.1021/cm0520362 – volume: 175 start-page: 67 year: 2006 ident: 10.1016/j.solidstatesciences.2021.106563_bib64 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. Phys. Commun doi: 10.1016/j.cpc.2006.03.007 – volume: 96 start-page: 9768 year: 1992 ident: 10.1016/j.solidstatesciences.2021.106563_bib54 article-title: General methods for geometry and wave function optimization publication-title: J. Phys. Chem. doi: 10.1021/j100203a036 – volume: 45 start-page: 823 year: 1954 ident: 10.1016/j.solidstatesciences.2021.106563_bib76 article-title: Relations between the elastic moduli and plastic properties of polycrystalline pure metals publication-title: Philos. Mag. A doi: 10.1080/14786440808520496 – volume: 843 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib70 article-title: Ab initio prediction of the elastic, electronic and optical properties of a new family of diamond-like semiconductors, Li2HgMS4 (M = Si, Ge and Sn) publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155991 – volume: 85 start-page: 1120 year: 2000 ident: 10.1016/j.solidstatesciences.2021.106563_bib44 article-title: Yb14ZnSb11: charge balance in Zintl compounds as a route to intermediate Yb valence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1120 – volume: 98 start-page: 1217 year: 2018 ident: 10.1016/j.solidstatesciences.2021.106563_bib23 article-title: Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) publication-title: Philos. Mag. A doi: 10.1080/14786435.2018.1425013 – volume: 188 start-page: 59 year: 2012 ident: 10.1016/j.solidstatesciences.2021.106563_bib12 article-title: Synthesis and structural characterization of the ternary Zintl phases AE3Al2Pn4 and AE3Ga2Pn4 (AE=Ca, Sr, Ba, Eu; Pn=P, As) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2012.01.042 – year: 1928 ident: 10.1016/j.solidstatesciences.2021.106563_bib71 – volume: 29 start-page: 12 year: 2014 ident: 10.1016/j.solidstatesciences.2021.106563_bib7 article-title: Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2014.01.001 – volume: 477 start-page: 519 year: 2009 ident: 10.1016/j.solidstatesciences.2021.106563_bib3 article-title: Synthesis and thermoelectric properties of BaMn2Sb2 single crystals publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.10.080 – year: 2013 ident: 10.1016/j.solidstatesciences.2021.106563_bib26 – volume: 5 start-page: 2380 year: 2018 ident: 10.1016/j.solidstatesciences.2021.106563_bib47 article-title: Recent advances in inorganic material thermoelectrics publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00366A – year: 1985 ident: 10.1016/j.solidstatesciences.2021.106563_bib80 – volume: 5 start-page: 433 year: 2015 ident: 10.1016/j.solidstatesciences.2021.106563_bib10 article-title: Crystal and electronic structures of the pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, as) publication-title: Crystals doi: 10.3390/cryst5040433 – volume: 12 year: 2019 ident: 10.1016/j.solidstatesciences.2021.106563_bib27 article-title: Advances in Zintl phases publication-title: Mater doi: 10.3390/ma12162554 – year: 2018 ident: 10.1016/j.solidstatesciences.2021.106563_bib58 – volume: 73 start-page: 104771 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib19 article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase Author links open overlay panel publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2020.104771 – volume: 9 start-page: 49 year: 1929 ident: 10.1016/j.solidstatesciences.2021.106563_bib72 article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals publication-title: Math. Mech. – volume: 90 year: 2014 ident: 10.1016/j.solidstatesciences.2021.106563_bib69 article-title: Necessary and sufficient elastic stability conditions in various crystal systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.224104 – volume: 61 start-page: 379 year: 2016 ident: 10.1016/j.solidstatesciences.2021.106563_bib31 article-title: Recent advances in high-performance bulk thermoelectric materials publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1183075 – volume: 220 start-page: 567 year: 2005 ident: 10.1016/j.solidstatesciences.2021.106563_bib50 article-title: First-principles methods using CASTEP publication-title: Z. Kristallogr. doi: 10.1524/zkri.220.5.567.65075 – volume: 271 start-page: 88 year: 2019 ident: 10.1016/j.solidstatesciences.2021.106563_bib22 article-title: The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.12.037 – volume: 124 start-page: 9894 year: 2002 ident: 10.1016/j.solidstatesciences.2021.106563_bib41 article-title: XMCD characterization of the ferromagnetic state of Yb14MnSb11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020564y – start-page: 37 year: 2002 ident: 10.1016/j.solidstatesciences.2021.106563_bib42 article-title: Magnetism and magnetotransport properties of transition metal Zintl isotypes – volume: 36 start-page: 198 year: 2016 ident: 10.1016/j.solidstatesciences.2021.106563_bib74 article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation publication-title: High Pres. Res. doi: 10.1080/08957959.2016.1167202 – volume: 278 year: 2019 ident: 10.1016/j.solidstatesciences.2021.106563_bib45 article-title: Five new ternary indium-arsenides discovered. Synthesis and structural characterization of the Zintl phases Sr3In2As4, Ba3In2As4, Eu3In2As4, Sr5In2As6 and Eu5In2As6 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.07.050 – volume: 65 start-page: 144414 year: 2002 ident: 10.1016/j.solidstatesciences.2021.106563_bib40 article-title: Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba4MnBi11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.144414 – volume: 83 year: 2011 ident: 10.1016/j.solidstatesciences.2021.106563_bib57 article-title: Merits and limits of the modified Becke-Johnson exchange potential publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195134 – volume: 46 start-page: 122 year: 2015 ident: 10.1016/j.solidstatesciences.2021.106563_bib14 article-title: Structural, elastic, electronic and optical properties of new layered semiconductor Baga2P2 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2015.03.059 – volume: 102 start-page: 226401 year: 2009 ident: 10.1016/j.solidstatesciences.2021.106563_bib56 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 636 start-page: 387 year: 2015 ident: 10.1016/j.solidstatesciences.2021.106563_bib15 article-title: Origin of different thermoelectric properties between Zintl compounds Ba3Al3P5 and Ba3Ga3P5: a first-principles study publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.02.133 – volume: 100 year: 2008 ident: 10.1016/j.solidstatesciences.2021.106563_bib51 article-title: Restoring the density-gradient expansion for exchange in solids and surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 49 start-page: 5173 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib4 article-title: Isolated [ZnPn2]4−∞1 Chains in the Zintl Phases Ba2ZnPn2 (Pn = As, Sb, Bi); Synthesis, Structure, and Bonding publication-title: Inorg. Chem. doi: 10.1021/ic100296x – volume: 41 start-page: 7892 year: 1990 ident: 10.1016/j.solidstatesciences.2021.106563_bib52 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 4 start-page: 1231 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib17 article-title: On the divalent character of the Eu atoms in the ternary Zintl phases Eu5In2Pn6 and Eu3MAs3 (Pn = as-Bi; M = Al, Ga) publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00703B – volume: 7 start-page: 105 year: 2008 ident: 10.1016/j.solidstatesciences.2021.106563_bib29 article-title: Complex thermoelectric materials publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 22 start-page: 624 year: 2009 ident: 10.1016/j.solidstatesciences.2021.106563_bib46 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. doi: 10.1021/cm901956r – volume: 6 start-page: 2316 year: 2013 ident: 10.1016/j.solidstatesciences.2021.106563_bib49 article-title: Thermoelectric properties and electronic structure of the zintl-phase Sr3AlSb3 publication-title: ChemSusChem doi: 10.1002/cssc.201300518 – volume: 3 start-page: 2182 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib16 article-title: Toberer discovery of n-type Zintl phases RbAlSb4, RbGaSb4, CsAlSb4, and CsGaSb4 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00048 – volume: 43 start-page: 4720 year: 2014 ident: 10.1016/j.solidstatesciences.2021.106563_bib48 article-title: Thermoelectric properties and electronic structure of the Zintl phase Sr5Al2Sb6 publication-title: Dalton Trans. doi: 10.1039/c3dt53487a – volume: 100 year: 2012 ident: 10.1016/j.solidstatesciences.2021.106563_bib6 article-title: High Eu 4f low-energy oscillator strength in the isostructural rare-earth Zintl compounds EuIn2X2 (X = P, As) publication-title: Appl. Phys. Lett. doi: 10.1063/1.3702787 – volume: 22 start-page: 624 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib30 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. doi: 10.1021/cm901956r – volume: 44 year: 2011 ident: 10.1016/j.solidstatesciences.2021.106563_bib9 article-title: High Seebeck coefficient AMXP2 (A = Ca and Yb; M, X = Zn, Cu and Mn) Zintl phosphides as high-temperature thermoelectric materials publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/44/15/155406 – volume: 175 start-page: 1 year: 2006 ident: 10.1016/j.solidstatesciences.2021.106563_bib59 article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.005 – volume: 48 start-page: 115 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib68 article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se) publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2009.12.017 – volume: 9 start-page: 3132 year: 1997 ident: 10.1016/j.solidstatesciences.2021.106563_bib38 article-title: Colossal magnetoresistance in the transition-metal Zintl compound Eu14MnSb11 publication-title: Chem. Mater. doi: 10.1021/cm9704241 – volume: 1 start-page: 74 year: 2017 ident: 10.1016/j.solidstatesciences.2021.106563_bib32 article-title: Recent progress and future challenges on thermoelectric Zintl materials publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2017.06.003 – volume: 32 start-page: 776 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib18 article-title: Thermoelectric properties of Zintl phase YbMg2Sb2 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04131 – volume: 815 year: 2020 ident: 10.1016/j.solidstatesciences.2021.106563_bib20 article-title: Temperature and doping effects on the transport properties of SrIn2P2 Zintl compound publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152384 – volume: 13 year: 1976 ident: 10.1016/j.solidstatesciences.2021.106563_bib53 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 237 start-page: 28 year: 2016 ident: 10.1016/j.solidstatesciences.2021.106563_bib13 article-title: The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba3Al2As4 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2016.03.018 – volume: 52 start-page: 1 year: 1939 ident: 10.1016/j.solidstatesciences.2021.106563_bib24 article-title: Intermetallische verbindungen “intermetallic compounds” publication-title: Angew. Chem. doi: 10.1002/ange.19390520102 – volume: 141 start-page: 11245 year: 2019 ident: 10.1016/j.solidstatesciences.2021.106563_bib63 article-title: Supertetrahedral layers based on GaAs or InAs publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04712 – volume: 50 start-page: 177 year: 2016 ident: 10.1016/j.solidstatesciences.2021.106563_bib21 article-title: Thermoelectric properties of Zintl antimonides publication-title: Handb. Phys. Chem. Rare Earths doi: 10.1016/bs.hpcre.2016.05.003 – volume: 198 start-page: 6 year: 2013 ident: 10.1016/j.solidstatesciences.2021.106563_bib2 article-title: Syntheses, crystal structure and physical properties of new Zintl phases Ba3T2As4 (T=Zn, Cd) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2012.09.029 – volume: 84 year: 1998 ident: 10.1016/j.solidstatesciences.2021.106563_bib78 article-title: Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2 publication-title: J. Appl. Phys. doi: 10.1063/1.368733 – volume: 70 start-page: 21 year: 2017 ident: 10.1016/j.solidstatesciences.2021.106563_bib55 article-title: Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2017.06.007 – volume: 24 start-page: 909 year: 1963 ident: 10.1016/j.solidstatesciences.2021.106563_bib77 article-title: A simplified method for calculating the Debye temperature from elastic constants publication-title: J. Phys. Chem. Solid. doi: 10.1016/0022-3697(63)90067-2 – volume: 129 start-page: 4049 year: 2007 ident: 10.1016/j.solidstatesciences.2021.106563_bib34 article-title: Cation-anion interactions as structure directing factors: structure and bonding of Ca2CdSb2 and Yb2CdSb2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja069261k – volume: 138 start-page: 12422 year: 2016 ident: 10.1016/j.solidstatesciences.2021.106563_bib43 article-title: Tuning magnetism of [MnSb4]9- cluster in Yb14MnSb11 through chemical substitutions on Yb sites: appearance and disappearance of spin reorientation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05636 – volume: 577 start-page: 587 year: 2013 ident: 10.1016/j.solidstatesciences.2021.106563_bib8 article-title: First-principles prediction of the structural, elastic, electronic and optical properties of the Zintl phases MIn2P2 (M = Ca, Sr) publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.07.003 – volume: 82 start-page: 205102 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib62 article-title: Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.205102 – volume: 21 start-page: 2099 year: 2007 ident: 10.1016/j.solidstatesciences.2021.106563_bib35 article-title: Zintl phases for thermoelectric devices publication-title: Dalton Trans. doi: 10.1039/b702266b – volume: 5 start-page: 65133 year: 2015 ident: 10.1016/j.solidstatesciences.2021.106563_bib65 article-title: Electronic structure and thermoelectric properties of Zintl compounds A3AlSb3 (A = Ca and Sr): first-principles study publication-title: RSC Adv. doi: 10.1039/C5RA09804A – volume: 22 start-page: 624 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib11 article-title: Zintl chemistry for designing high efficiency thermoelectric materials publication-title: Chem. Mater. doi: 10.1021/cm901956r – volume: 5 start-page: 1278 year: 2014 ident: 10.1016/j.solidstatesciences.2021.106563_bib66 article-title: Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500480m – volume: 65 start-page: 349 year: 1952 ident: 10.1016/j.solidstatesciences.2021.106563_bib73 article-title: The elastic behavior of a crystalline aggregate publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1298/65/5/307 – volume: 18 start-page: 1873 year: 2006 ident: 10.1016/j.solidstatesciences.2021.106563_bib33 article-title: Yb14MnSb11: new high efficiency thermoelectric material for power generation publication-title: Chem. Mater. doi: 10.1021/cm060261t – year: 1996 ident: 10.1016/j.solidstatesciences.2021.106563_bib28 – volume: 29 start-page: 456 year: 2010 ident: 10.1016/j.solidstatesciences.2021.106563_bib5 article-title: New quaternary Zintl phases – synthesis, crystal and electronic structures of KA2Cd2Sb3 (A = Ca, Sr, Ba, Eu, Yb) publication-title: Polyhedron doi: 10.1016/j.poly.2009.06.031 |
| SSID | ssj0006674 |
| Score | 2.6135917 |
| Snippet | We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106563 |
| SubjectTerms | Band structure Elastic parameters First-principles calculations Optical properties Zintl phase |
| Title | First-principles predictions of the structural, electronic, optical and elastic properties of the zintl-phases AE3GaAs3 (AE = Sr, Ba) |
| URI | https://dx.doi.org/10.1016/j.solidstatesciences.2021.106563 |
| Volume | 114 |
| WOSCitedRecordID | wos000695465500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA_rnagv4ieeX-RB4aTbpW22TfsgUte9U8FF2BPuraRNg12WbtmP4_Dd_8g_0Jmmaasncgf6UrppmzT9_TYzmWRmCHmRKsmdiDs2SPPQxlT3tggiYXtynDqZIwPPUXWyCT6bhaen0efB4IfxhTlb8rIMz8-j6r9CDWUANrrOXgHutlIogHMAHY4AOxwvBfxRAQqdXRkj-gbDAMgia3e8oaapo8ZixA38xF0qHPy1qrZtBIEcdGuM6FqhyX6NsVdNDd-Kcru0q68gBDdWPGXHIt4wVFfjqfWSvbPm2gogjKVhYbyBl4W0ai8mqxG-3WoS2smlLBob66i1FKx2GFlWrna_lsfLcrcQOhv0vC093uVZnajYmo36Jg3P7e2Eqe1sxtfmE8wfcNSM570RGvQTG-ZBetDOdVnImc0cnfunHda1c-oFEaGtFYvRBjtc99d0d4TvAjeAiss68dhuWpxj09iyh2sizOPXyL7H_QjG0v34w_T0Y6sBBEEd_bt91RvksNtX-Pd2_6we9VSekzvkdjNXobHm2F0yyMt75ObEpAi8T77_zjXa4xpdKQpMoR3XhrRj2pA2PKPAM9rwjHY8M0_3eUYNz-hhPKWv6Xw9pG_Fqwfky9H0ZPLebvJ62Bkbe1s7DYM0k5nDFUxGJFep8HjgcE-5buAIwX3O8oyn7lgp7uNCM8gJxR3pCJWHLlPsIdkrV2X-iFC0wYHqkPpBlI5dL4gin_luoDJXuDzg_IC8MZ8zyZqg95h7ZZmY3Y2L5CIgCQKSaEAOSNTWUOkAMFd4dmIQTJrrWlFNgIyXruXxP6nlCbnV_dWekj3APn9Grmdn22Kzft4w-CcEg9Is |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principles+predictions+of+the+structural%2C+electronic%2C+optical+and+elastic+properties+of+the+zintl-phases+AE3GaAs3+%28AE+%3D+Sr%2C+Ba%29&rft.jtitle=Solid+state+sciences&rft.au=Khireddine%2C+A.&rft.au=Bouhemadou%2C+A.&rft.au=Alnujaim%2C+S.&rft.au=Guechi%2C+N.&rft.date=2021-04-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1293-2558&rft.eissn=1873-3085&rft.volume=114&rft_id=info:doi/10.1016%2Fj.solidstatesciences.2021.106563&rft.externalDocID=S1293255821000327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1293-2558&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1293-2558&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1293-2558&client=summon |