First-principles predictions of the structural, electronic, optical and elastic properties of the zintl-phases AE3GaAs3 (AE = Sr, Ba)

We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the ternary gallium-arsenides Sr3GaAs3 and Ba3GaAs3. Calculated equilibrium structural parameters are in excellent agreement with the available...

Full description

Saved in:
Bibliographic Details
Published in:Solid state sciences Vol. 114; p. 106563
Main Authors: Khireddine, A., Bouhemadou, A., Alnujaim, S., Guechi, N., Bin-Omran, S., Al-Douri, Y., Khenata, R., Maabed, S., Kushwaha, A.K.
Format: Journal Article
Language:English
Published: Elsevier Masson SAS 01.04.2021
Subjects:
ISSN:1293-2558, 1873-3085
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the ternary gallium-arsenides Sr3GaAs3 and Ba3GaAs3. Calculated equilibrium structural parameters are in excellent agreement with the available experimental counterparts, providing evidence of the reliability of the reported results. Monocrystalline elastic constants are numerically estimated and analyzed. From the monocrystalline elastic constants, a set of related properties, viz. mechanical stability, anisotropic sound velocities, polycrystalline elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. Crystal direction dependences of the linear compressibility and Young's modulus are analyzed and visualized by plotting their spatial distributions. From analysis of the energy band dispersions, it is found that the title compounds are semiconductors with direct band gaps positioned in the visible sunlight spectrum in the energy window 1.271–1.285 eV. Origins of the electronic states composing the energy bands are determined using the PDOS diagrams. Effective masses of holes and electrons are numerically evaluated at the valence band and conduction band extremes towards the three major crystalline directions. Anisotropies of the hole and electron effective masses are visualized by plotting their dependencies on the crystalline direction. Frequency-dependent linear optical parameters are predicted in an energy window from 0 eV to 14 eV for incident electromagnetic radiation polarized parallel to the three principal crystalline directions. [Display omitted] •The fundamental physical properties of Sr3/Ba3GaAs3 are explored.•They are mechanically stable with moderate stiffness and a significant elastic anisotropy.•They are direct band gap semiconductors with mixed covalent-ionic bond characters.•They possess a high absorption band from the visible spectrum to Near-UV.
AbstractList We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the ternary gallium-arsenides Sr3GaAs3 and Ba3GaAs3. Calculated equilibrium structural parameters are in excellent agreement with the available experimental counterparts, providing evidence of the reliability of the reported results. Monocrystalline elastic constants are numerically estimated and analyzed. From the monocrystalline elastic constants, a set of related properties, viz. mechanical stability, anisotropic sound velocities, polycrystalline elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. Crystal direction dependences of the linear compressibility and Young's modulus are analyzed and visualized by plotting their spatial distributions. From analysis of the energy band dispersions, it is found that the title compounds are semiconductors with direct band gaps positioned in the visible sunlight spectrum in the energy window 1.271–1.285 eV. Origins of the electronic states composing the energy bands are determined using the PDOS diagrams. Effective masses of holes and electrons are numerically evaluated at the valence band and conduction band extremes towards the three major crystalline directions. Anisotropies of the hole and electron effective masses are visualized by plotting their dependencies on the crystalline direction. Frequency-dependent linear optical parameters are predicted in an energy window from 0 eV to 14 eV for incident electromagnetic radiation polarized parallel to the three principal crystalline directions. [Display omitted] •The fundamental physical properties of Sr3/Ba3GaAs3 are explored.•They are mechanically stable with moderate stiffness and a significant elastic anisotropy.•They are direct band gap semiconductors with mixed covalent-ionic bond characters.•They possess a high absorption band from the visible spectrum to Near-UV.
ArticleNumber 106563
Author Al-Douri, Y.
Bin-Omran, S.
Bouhemadou, A.
Kushwaha, A.K.
Khireddine, A.
Guechi, N.
Khenata, R.
Alnujaim, S.
Maabed, S.
Author_xml – sequence: 1
  givenname: A.
  surname: Khireddine
  fullname: Khireddine, A.
  organization: Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
– sequence: 2
  givenname: A.
  surname: Bouhemadou
  fullname: Bouhemadou, A.
  email: a_bouhemadou@yahoo.fr, abdelmadjid_bouhemadou@univ-setif.dz
  organization: Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
– sequence: 3
  givenname: S.
  surname: Alnujaim
  fullname: Alnujaim, S.
  organization: Department of Physics, College of Science, Majmaah University, Saudi Arabia
– sequence: 4
  givenname: N.
  surname: Guechi
  fullname: Guechi, N.
  organization: Laboratoire D'Etudes des Surfaces et Interfaces des Matériaux Solides, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
– sequence: 5
  givenname: S.
  surname: Bin-Omran
  fullname: Bin-Omran, S.
  organization: Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
– sequence: 6
  givenname: Y.
  surname: Al-Douri
  fullname: Al-Douri, Y.
  organization: Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
– sequence: 7
  givenname: R.
  surname: Khenata
  fullname: Khenata, R.
  organization: Laboratoire de Physique Quantique de La Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000, Algeria
– sequence: 8
  givenname: S.
  surname: Maabed
  fullname: Maabed, S.
  organization: Département des Sciences de La Matière, Faculté des Sciences, Université Amar Telidji, BP 37G, Laghouat, 03000, Algeria
– sequence: 9
  givenname: A.K.
  surname: Kushwaha
  fullname: Kushwaha, A.K.
  organization: Department of Physics, K.N. Govt. P.G. College, Gyanpur, Bhadohi, 221304, India
BookMark eNqVkE1LwzAYgIMouE3_Q44T1pk0bVIPgnNsUxl4UM8hS9-wjNqUJBP07v82Y8ODXvT0fj_wPn103LoWEBpSMqaE8svNOLjG1iGqCEFbaDWEcU5ymsa85OwI9WglWMZIVR6nPL9iWV6W1Snqh7AhhHAuih76nFsfYtZ522rbNRBw56G2OlrXBuwMjmvAIfqtjluvmhGGBnT0rrV6hF0XrVYNVm2d-iqkKp27Dny08H39YdvYZN1ahdSbzNhCTQLDw8kMX-MnP8K36uIMnRjVBDg_xAF6mc-ep3fZ8nFxP50sM82KPGariq90rYkwJRG1MCuVC05EbijlRClRCgZarGhhjCh5QUTJqBGkJspARZlhAzTfc7V3IXgwUtskMP0avbKNpETu5MqN_C1X7uTKvdwEuvkBSgZflX__D-Jhj4D08JsFLw9rtfVJsayd_TvsC-oEqOc
CitedBy_id crossref_primary_10_1016_j_chemphys_2024_112260
crossref_primary_10_1016_j_jmrt_2022_11_052
crossref_primary_10_1016_j_jpcs_2025_113086
crossref_primary_10_1016_j_chemphys_2023_112024
crossref_primary_10_1016_j_physb_2023_415131
crossref_primary_10_1016_j_mseb_2024_117183
crossref_primary_10_1016_j_physb_2023_415499
crossref_primary_10_1007_s10904_024_03081_9
crossref_primary_10_1016_j_jmmm_2021_168953
crossref_primary_10_1007_s12034_023_02890_x
crossref_primary_10_1016_j_chemphys_2022_111728
crossref_primary_10_1016_j_cocom_2023_e00850
crossref_primary_10_1016_j_comptc_2024_114947
crossref_primary_10_1016_j_physe_2021_115074
crossref_primary_10_1016_j_flatc_2024_100655
crossref_primary_10_1016_j_mseb_2022_115838
crossref_primary_10_1016_j_ijleo_2023_170960
crossref_primary_10_1002_slct_202502428
crossref_primary_10_1016_j_ijleo_2023_170565
crossref_primary_10_1016_j_jre_2023_04_012
crossref_primary_10_1016_j_cjph_2024_03_041
crossref_primary_10_1016_j_ssc_2023_115189
crossref_primary_10_1016_j_mssp_2024_109138
crossref_primary_10_1142_S0217984924501173
crossref_primary_10_1016_j_chemphys_2022_111585
crossref_primary_10_1016_j_cocom_2024_e00966
crossref_primary_10_1088_1402_4896_adc212
crossref_primary_10_1016_j_cocom_2022_e00684
crossref_primary_10_1016_j_cocom_2022_e00682
crossref_primary_10_1016_j_jpcs_2022_110705
crossref_primary_10_1016_j_mtcomm_2022_104302
crossref_primary_10_1016_j_cocom_2022_e00686
crossref_primary_10_1016_j_physb_2022_413881
crossref_primary_10_1016_j_heliyon_2023_e18407
crossref_primary_10_1016_j_ijleo_2023_171088
crossref_primary_10_1016_j_physe_2021_114790
crossref_primary_10_1080_08927022_2022_2124297
crossref_primary_10_1016_j_cplett_2022_139992
crossref_primary_10_1016_j_cjph_2023_08_001
crossref_primary_10_1016_j_comptc_2021_113506
crossref_primary_10_1016_j_inoche_2024_113043
crossref_primary_10_1016_j_mseb_2022_115781
crossref_primary_10_1016_j_mseb_2021_115269
crossref_primary_10_1088_1402_4896_acfbfe
crossref_primary_10_1016_j_chemphys_2022_111473
crossref_primary_10_1155_2022_3619600
crossref_primary_10_1007_s12648_022_02550_6
crossref_primary_10_1016_j_infrared_2022_104319
crossref_primary_10_1016_j_jmrt_2022_11_119
crossref_primary_10_1007_s10853_021_06168_7
crossref_primary_10_1088_1402_4896_ad6f77
crossref_primary_10_1016_j_comptc_2022_113833
crossref_primary_10_1016_j_mseb_2022_116228
crossref_primary_10_1016_j_comptc_2022_114006
crossref_primary_10_1016_j_matchemphys_2023_127422
crossref_primary_10_1016_j_matchemphys_2023_128115
crossref_primary_10_1007_s10948_023_06684_4
crossref_primary_10_1016_j_heliyon_2023_e23818
crossref_primary_10_1007_s11837_024_07072_6
crossref_primary_10_1016_j_mseb_2021_115379
crossref_primary_10_1016_j_jmmm_2022_170298
crossref_primary_10_1016_j_jpcs_2022_110719
crossref_primary_10_1016_j_physb_2024_416131
crossref_primary_10_1016_j_jmmm_2023_171605
crossref_primary_10_1515_ijmr_2021_8544
crossref_primary_10_1088_1402_4896_ad1737
crossref_primary_10_1088_1402_4896_ad7bfa
crossref_primary_10_1016_j_ssc_2023_115361
crossref_primary_10_1016_j_apsusc_2022_154739
crossref_primary_10_1016_j_vacuum_2024_113896
crossref_primary_10_1007_s10904_024_03060_0
crossref_primary_10_1016_j_solidstatesciences_2022_106964
crossref_primary_10_1080_08927022_2023_2165127
crossref_primary_10_1016_j_comptc_2022_113943
crossref_primary_10_1007_s11581_023_05172_y
crossref_primary_10_1016_j_jpcs_2021_110305
crossref_primary_10_1016_j_ijleo_2023_170850
crossref_primary_10_1016_j_comptc_2022_113928
crossref_primary_10_1016_j_ssc_2024_115532
crossref_primary_10_1016_j_inoche_2025_114312
crossref_primary_10_1016_j_spmi_2021_107132
crossref_primary_10_1016_j_jmmm_2023_170604
crossref_primary_10_1016_j_matchemphys_2021_125459
crossref_primary_10_1016_j_solener_2023_112199
crossref_primary_10_1088_1402_4896_acd3c4
crossref_primary_10_1007_s00894_024_05907_2
crossref_primary_10_1016_j_physb_2021_413554
crossref_primary_10_1016_j_cplett_2022_139680
crossref_primary_10_1080_08927022_2022_2078816
crossref_primary_10_1088_1402_4896_acf966
crossref_primary_10_1016_j_ssc_2022_114950
crossref_primary_10_1140_epjp_s13360_022_02843_z
crossref_primary_10_1016_j_cplett_2022_140254
crossref_primary_10_1155_2022_1440774
crossref_primary_10_1002_zaac_202500031
crossref_primary_10_1016_j_physb_2022_414252
crossref_primary_10_1016_j_comptc_2022_113766
crossref_primary_10_1016_j_cocom_2025_e01075
crossref_primary_10_1016_j_comptc_2021_113304
crossref_primary_10_1016_j_jpcs_2025_113221
crossref_primary_10_1088_1742_6596_2518_1_012012
crossref_primary_10_1016_j_mseb_2022_115983
crossref_primary_10_1016_j_apsusc_2024_161003
crossref_primary_10_1080_08927022_2023_2232887
crossref_primary_10_1007_s42247_023_00565_1
crossref_primary_10_1016_j_mssp_2024_108694
crossref_primary_10_1016_j_jpcs_2022_110878
crossref_primary_10_1016_j_mtcomm_2023_107501
crossref_primary_10_1016_j_jmmm_2022_169822
crossref_primary_10_1016_j_comptc_2022_113993
crossref_primary_10_1016_j_physe_2022_115171
crossref_primary_10_1016_j_physb_2023_414809
crossref_primary_10_1016_j_jpcs_2023_111231
crossref_primary_10_1080_00268976_2024_2390589
crossref_primary_10_1007_s10904_023_02881_9
crossref_primary_10_1016_j_ssc_2021_114396
crossref_primary_10_1007_s10948_024_06743_4
crossref_primary_10_1088_1402_4896_ad9da0
crossref_primary_10_1016_j_jpcs_2023_111232
crossref_primary_10_1016_j_mtcomm_2023_106001
crossref_primary_10_1016_j_comptc_2022_113624
Cites_doi 10.1103/PhysRevB.75.155104
10.1002/anie.197306941
10.1016/j.nanoen.2020.104771
10.1103/PhysRev.128.2093
10.1021/ic100940b
10.1021/cm901956r
10.1016/j.jallcom.2020.154232
10.1103/PhysRevB.94.125209
10.1103/PhysRevLett.101.055504
10.1021/cm0520362
10.1016/j.cpc.2006.03.007
10.1021/j100203a036
10.1080/14786440808520496
10.1016/j.jallcom.2020.155991
10.1103/PhysRevLett.85.1120
10.1080/14786435.2018.1425013
10.1016/j.jssc.2012.01.042
10.1016/j.solidstatesciences.2014.01.001
10.1016/j.jallcom.2008.10.080
10.1039/C8QI00366A
10.3390/cryst5040433
10.3390/ma12162554
10.1103/PhysRevB.90.224104
10.1080/09506608.2016.1183075
10.1524/zkri.220.5.567.65075
10.1016/j.jssc.2018.12.037
10.1021/ja020564y
10.1080/08957959.2016.1167202
10.1016/j.jssc.2019.07.050
10.1103/PhysRevB.65.144414
10.1103/PhysRevB.83.195134
10.1016/j.optmat.2015.03.059
10.1103/PhysRevLett.102.226401
10.1016/j.jallcom.2015.02.133
10.1103/PhysRevLett.100.136406
10.1021/ic100296x
10.1103/PhysRevB.41.7892
10.1039/C9QM00703B
10.1038/nmat2090
10.1002/cssc.201300518
10.1021/acsaem.0c00048
10.1039/c3dt53487a
10.1063/1.3702787
10.1088/0022-3727/44/15/155406
10.1016/j.cpc.2006.03.005
10.1016/j.commatsci.2009.12.017
10.1021/cm9704241
10.1016/j.mtphys.2017.06.003
10.1021/acs.chemmater.9b04131
10.1016/j.jallcom.2019.152384
10.1103/PhysRevB.13.5188
10.1016/j.ssc.2016.03.018
10.1002/ange.19390520102
10.1021/jacs.9b04712
10.1016/bs.hpcre.2016.05.003
10.1016/j.jssc.2012.09.029
10.1063/1.368733
10.1016/j.solidstatesciences.2017.06.007
10.1016/0022-3697(63)90067-2
10.1021/ja069261k
10.1021/jacs.6b05636
10.1016/j.jallcom.2013.07.003
10.1103/PhysRevB.82.205102
10.1039/b702266b
10.1039/C5RA09804A
10.1021/jz500480m
10.1088/0370-1298/65/5/307
10.1021/cm060261t
10.1016/j.poly.2009.06.031
ContentType Journal Article
Copyright 2021 Elsevier Masson SAS
Copyright_xml – notice: 2021 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.solidstatesciences.2021.106563
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3085
ExternalDocumentID 10_1016_j_solidstatesciences_2021_106563
S1293255821000327
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c342t-b86bcdc07f507d7fba276072f1160aa7573ec7b14ff756407531f70d0afe813f3
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695465500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1293-2558
IngestDate Tue Nov 18 22:02:20 EST 2025
Sat Nov 29 07:01:11 EST 2025
Fri Feb 23 02:48:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First-principles calculations
Band structure
Elastic parameters
Optical properties
Zintl phase
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-b86bcdc07f507d7fba276072f1160aa7573ec7b14ff756407531f70d0afe813f3
ParticipantIDs crossref_citationtrail_10_1016_j_solidstatesciences_2021_106563
crossref_primary_10_1016_j_solidstatesciences_2021_106563
elsevier_sciencedirect_doi_10_1016_j_solidstatesciences_2021_106563
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Solid state sciences
PublicationYear 2021
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Wang, Xia, Tao (bib2) 2013; 198
Hill (bib73) 1952; 65
Feng, Xiao (bib66) 2014; 5
Hu, Cerretti, Kunz Wille, Bux, Kauzlarich (bib22) 2019; 271
Toberer, May, Snyder (bib36) 2010; 22
Hu, Chen, Cao, Makhmudov, Grebenkemper, Abdusalyamova, Morosan, Kauzlarich (bib43) 2016; 138
Sánchez-Portal, Martin, Kauzlarich, Pickett (bib40) 2002; 65
Chan, Kauzlarich, Klavins, Shelton, Webb (bib38) 1997; 9
Shi, Feng, Yan, Wang (bib65) 2015; 5
Karazhanov, Ravindran, Kjekshus, Fjellvåg, Svensson (bib60) 2007; 75
Mouhat, Coudert (bib69) 2014; 90
Wang, Cai, Li, Wang, Zhou (bib3) 2009; 477
Kauzlarich, Brown, Snyder (bib35) 2007; 21
Xia, Bobev (bib34) 2007; 129
Fischer, Almlof (bib54) 1992; 96
Ravindran, Fast, Korzhavyi, Johansson, Eriksson (bib78) 1998; 84
Ambrosch-Draxl, Sofo (bib59) 2006; 175
Kauzlarich (bib27) 2019; 12
Weippert, Haffner, Stamatopoulos, Johrendt (bib63) 2019; 141
Bedjaoui, Bouhemadou, Bin-Omran (bib74) 2016; 36
Reuss, Angew (bib72) 1929; 9
Bedjaoui, Bouhemadou, Aloumi, Khenata, Bin-Omran, Al-Douri, Saad Saoud, Bensalem (bib55) 2017; 70
Guechi, Bouhemadou, Khenata, Bin-Omran, Chegaar, Al-Douri, Bourzami (bib7) 2014; 29
Guechi, Bouhemadou, Guechi, Reffas, Louail, Bourzami, Chegaar, Bin-Omran (bib8) 2013; 577
Ranganathan, Ostoja-Starzewski (bib79) 2008; 101
Toberer, May, Snyder (bib11) 2010; 22
Bouhemadou, Khenata, Bin-Omran, Murtaza, Al-Douri (bib14) 2015; 46
Alnujaim, Bouhemadou, Bedjaoui, Bin-Omran, Al-Douri, Khenata, Maabed (bib70) 2020; 843
Toberer, May, Snyder (bib30) 2010; 22
Fisher, Bud’Ko, Song, Canfield, Ozawa, Kauzlarich (bib44) 2000; 85
Saparov, Bobev (bib4) 2010; 49
Saha, Dutta (bib75) 2016; 94
Shuai, Mao, Song, Zhang, Chen, Ren (bib32) 2017; 1
Kazem, Kauzlarich (bib21) 2016; 50
Madsen, Singh (bib64) 2006; 175
Feng, Yang, Wang, Yan, Yang, Zhang (bib15) 2015; 636
He, Stearrett, Nowak, Bobev (bib1) 2010; 49
Tran, Blaha (bib56) 2009; 102
Singh (bib62) 2010; 82
(bib28) 1996
Monkhorst, Park (bib53) 1976; 13
Zevalkink, Pomrehn, Takagiwa, Swallow, Snyder (bib49) 2013; 6
Stoyko, Voss, He, Bobev Synthesis (bib10) 2015; 5
Chen, Li, Xue, Huang, Yao, Li, Zhang, Wang, Sui, Liu, Cao, Wang (bib37) 2020; 73
Yang, Zhang, Wang, Wang (bib13) 2016; 237
Kauzlarich, Payne, Webb (bib42) 2002
Vanderbilt (bib52) 1990; 41
Janka, Kauzlarich (bib26) 2013
Blaha, Schwarz, Madsen, Kvasnicka, Luitz, Laskowski, Tran, Marks (bib58) 2018
Pugh (bib76) 1954; 45
Anderson (bib77) 1963; 24
Ortiz, Gorai, Braden, Bensen, Wilson, Stefanović, E (bib16) 2020; 3
Shi, Chen, Uher (bib31) 2016; 61
Clark, Segall, Pickard, Hasnip, Probert, Refson, Payne (bib50) 2005; 220
Zevalkink, Takagiwa, Kitahara, Kimura, Jeffrey Snyder (bib48) 2014; 43
Guechi, Bouhemadou, Benaisti, Bin-Omran, Khenata, Al-Douri (bib20) 2020; 815
Singh, Schwingenschlögl (bib6) 2012; 100
Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib51) 2008; 100
Hamidani, Bennecer (bib68) 2010; 48
Schäfer, Eisenmann, Müller (bib25) 1973; 12
Ponnambalam, Lindsey, Xie, Thompson, Drymiotis, Tritt (bib9) 2011; 44
Jiang, Kauzlarich (bib39) 2006; 18
Brown, Kauzlarich, Gascoin, Snyder (bib33) 2006; 18
Holm, Kauzlarich, Morton, Waddill, Pickett, Tobin (bib41) 2002; 124
Ren, Liu, He, Lv, Gao, Xu (bib47) 2018; 5
Voigt (bib71) 1928
Chen, Li, Xue, Huang, Yao, Li, Zhang, Wang, Sui, Liu, Cao, Wang (bib19) 2020; 73
Radzieowski, Stegemann, Klenner, Zhang, Fokwa, Janka (bib17) 2020; 4
Zhou, Feng, Mao, Jiang, Zhu, Singh, Wang, Ren (bib18) 2020; 32
Saparov, Broda, Ramanujachary, Bobev (bib5) 2010; 29
Snyder, Toberer (bib29) 2008; 7
Penn (bib67) 1962; 128
Nye (bib80) 1985
Zintl (bib24) 1939; 52
Toberer, May, Snyder (bib46) 2009; 22
Childs, Baranets, Bobev (bib45) 2019; 278
Koller, Tran, Blaha (bib57) 2011; 83
Benahmed, Bouhemadou, Alqarni, Guechi, Al-Douri, Khenata, Bin-Omran (bib23) 2018; 98
He, Tyson, Saito, Bobev (bib12) 2012; 188
Rudysh, Shchepanskyi, Fedorchuk, Brik, Ma, Myronchuk, Piasecki (bib61) 2020; 826
Ambrosch-Draxl (10.1016/j.solidstatesciences.2021.106563_bib59) 2006; 175
Feng (10.1016/j.solidstatesciences.2021.106563_bib66) 2014; 5
Feng (10.1016/j.solidstatesciences.2021.106563_bib15) 2015; 636
Shi (10.1016/j.solidstatesciences.2021.106563_bib31) 2016; 61
Shuai (10.1016/j.solidstatesciences.2021.106563_bib32) 2017; 1
Toberer (10.1016/j.solidstatesciences.2021.106563_bib36) 2010; 22
Alnujaim (10.1016/j.solidstatesciences.2021.106563_bib70) 2020; 843
Fischer (10.1016/j.solidstatesciences.2021.106563_bib54) 1992; 96
Ponnambalam (10.1016/j.solidstatesciences.2021.106563_bib9) 2011; 44
Koller (10.1016/j.solidstatesciences.2021.106563_bib57) 2011; 83
Rudysh (10.1016/j.solidstatesciences.2021.106563_bib61) 2020; 826
Clark (10.1016/j.solidstatesciences.2021.106563_bib50) 2005; 220
Zhou (10.1016/j.solidstatesciences.2021.106563_bib18) 2020; 32
Monkhorst (10.1016/j.solidstatesciences.2021.106563_bib53) 1976; 13
Singh (10.1016/j.solidstatesciences.2021.106563_bib6) 2012; 100
Sánchez-Portal (10.1016/j.solidstatesciences.2021.106563_bib40) 2002; 65
Kazem (10.1016/j.solidstatesciences.2021.106563_bib21) 2016; 50
Ranganathan (10.1016/j.solidstatesciences.2021.106563_bib79) 2008; 101
Toberer (10.1016/j.solidstatesciences.2021.106563_bib11) 2010; 22
Shi (10.1016/j.solidstatesciences.2021.106563_bib65) 2015; 5
Voigt (10.1016/j.solidstatesciences.2021.106563_bib71) 1928
Chan (10.1016/j.solidstatesciences.2021.106563_bib38) 1997; 9
Saparov (10.1016/j.solidstatesciences.2021.106563_bib5) 2010; 29
Guechi (10.1016/j.solidstatesciences.2021.106563_bib7) 2014; 29
Madsen (10.1016/j.solidstatesciences.2021.106563_bib64) 2006; 175
Kauzlarich (10.1016/j.solidstatesciences.2021.106563_bib27) 2019; 12
Ren (10.1016/j.solidstatesciences.2021.106563_bib47) 2018; 5
Guechi (10.1016/j.solidstatesciences.2021.106563_bib20) 2020; 815
Blaha (10.1016/j.solidstatesciences.2021.106563_bib58) 2018
Benahmed (10.1016/j.solidstatesciences.2021.106563_bib23) 2018; 98
Ravindran (10.1016/j.solidstatesciences.2021.106563_bib78) 1998; 84
Yang (10.1016/j.solidstatesciences.2021.106563_bib13) 2016; 237
Toberer (10.1016/j.solidstatesciences.2021.106563_bib30) 2010; 22
Xia (10.1016/j.solidstatesciences.2021.106563_bib34) 2007; 129
Snyder (10.1016/j.solidstatesciences.2021.106563_bib29) 2008; 7
Zevalkink (10.1016/j.solidstatesciences.2021.106563_bib49) 2013; 6
Chen (10.1016/j.solidstatesciences.2021.106563_bib19) 2020; 73
Ortiz (10.1016/j.solidstatesciences.2021.106563_bib16) 2020; 3
Schäfer (10.1016/j.solidstatesciences.2021.106563_bib25) 1973; 12
Hamidani (10.1016/j.solidstatesciences.2021.106563_bib68) 2010; 48
Stoyko (10.1016/j.solidstatesciences.2021.106563_bib10) 2015; 5
Radzieowski (10.1016/j.solidstatesciences.2021.106563_bib17) 2020; 4
Saparov (10.1016/j.solidstatesciences.2021.106563_bib4) 2010; 49
Bedjaoui (10.1016/j.solidstatesciences.2021.106563_bib74) 2016; 36
Reuss (10.1016/j.solidstatesciences.2021.106563_bib72) 1929; 9
Hill (10.1016/j.solidstatesciences.2021.106563_bib73) 1952; 65
Zevalkink (10.1016/j.solidstatesciences.2021.106563_bib48) 2014; 43
Karazhanov (10.1016/j.solidstatesciences.2021.106563_bib60) 2007; 75
Hu (10.1016/j.solidstatesciences.2021.106563_bib22) 2019; 271
Brown (10.1016/j.solidstatesciences.2021.106563_bib33) 2006; 18
Toberer (10.1016/j.solidstatesciences.2021.106563_bib46) 2009; 22
Bouhemadou (10.1016/j.solidstatesciences.2021.106563_bib14) 2015; 46
Janka (10.1016/j.solidstatesciences.2021.106563_bib26) 2013
Anderson (10.1016/j.solidstatesciences.2021.106563_bib77) 1963; 24
Vanderbilt (10.1016/j.solidstatesciences.2021.106563_bib52) 1990; 41
Fisher (10.1016/j.solidstatesciences.2021.106563_bib44) 2000; 85
Childs (10.1016/j.solidstatesciences.2021.106563_bib45) 2019; 278
He (10.1016/j.solidstatesciences.2021.106563_bib1) 2010; 49
Zintl (10.1016/j.solidstatesciences.2021.106563_bib24) 1939; 52
(10.1016/j.solidstatesciences.2021.106563_bib28) 1996
Kauzlarich (10.1016/j.solidstatesciences.2021.106563_bib35) 2007; 21
Mouhat (10.1016/j.solidstatesciences.2021.106563_bib69) 2014; 90
Wang (10.1016/j.solidstatesciences.2021.106563_bib2) 2013; 198
Saha (10.1016/j.solidstatesciences.2021.106563_bib75) 2016; 94
Bedjaoui (10.1016/j.solidstatesciences.2021.106563_bib55) 2017; 70
Chen (10.1016/j.solidstatesciences.2021.106563_bib37) 2020; 73
Kauzlarich (10.1016/j.solidstatesciences.2021.106563_bib42) 2002
Singh (10.1016/j.solidstatesciences.2021.106563_bib62) 2010; 82
Perdew (10.1016/j.solidstatesciences.2021.106563_bib51) 2008; 100
Penn (10.1016/j.solidstatesciences.2021.106563_bib67) 1962; 128
Guechi (10.1016/j.solidstatesciences.2021.106563_bib8) 2013; 577
Pugh (10.1016/j.solidstatesciences.2021.106563_bib76) 1954; 45
Hu (10.1016/j.solidstatesciences.2021.106563_bib43) 2016; 138
Nye (10.1016/j.solidstatesciences.2021.106563_bib80) 1985
Tran (10.1016/j.solidstatesciences.2021.106563_bib56) 2009; 102
He (10.1016/j.solidstatesciences.2021.106563_bib12) 2012; 188
Holm (10.1016/j.solidstatesciences.2021.106563_bib41) 2002; 124
Weippert (10.1016/j.solidstatesciences.2021.106563_bib63) 2019; 141
Jiang (10.1016/j.solidstatesciences.2021.106563_bib39) 2006; 18
Wang (10.1016/j.solidstatesciences.2021.106563_bib3) 2009; 477
References_xml – volume: 46
  start-page: 122
  year: 2015
  end-page: 130
  ident: bib14
  article-title: Structural, elastic, electronic and optical properties of new layered semiconductor Baga
  publication-title: Opt. Mater.
– volume: 141
  start-page: 11245
  year: 2019
  end-page: 11252
  ident: bib63
  article-title: Supertetrahedral layers based on GaAs or InAs
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 104771
  year: 2020
  end-page: 104778
  ident: bib37
  article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu
  publication-title: Nanomater. Energy
– volume: 12
  year: 2019
  ident: bib27
  article-title: Advances in Zintl phases
  publication-title: Mater
– volume: 90
  year: 2014
  ident: bib69
  article-title: Necessary and sufficient elastic stability conditions in various crystal systems
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 624
  year: 2010
  end-page: 634
  ident: bib36
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
– volume: 188
  start-page: 59
  year: 2012
  end-page: 65
  ident: bib12
  article-title: Synthesis and structural characterization of the ternary Zintl phases
  publication-title: J. Solid State Chem.
– volume: 1
  start-page: 74
  year: 2017
  end-page: 95
  ident: bib32
  article-title: Recent progress and future challenges on thermoelectric Zintl materials
  publication-title: Mater. Today Phys.
– volume: 5
  start-page: 2380
  year: 2018
  end-page: 2398
  ident: bib47
  article-title: Recent advances in inorganic material thermoelectrics
  publication-title: Inorg. Chem. Front.
– volume: 4
  start-page: 1231
  year: 2020
  end-page: 1248
  ident: bib17
  article-title: On the divalent character of the Eu atoms in the ternary Zintl phases Eu
  publication-title: Mater. Chem. Front.
– volume: 18
  start-page: 1873
  year: 2006
  end-page: 1877
  ident: bib33
  article-title: Yb
  publication-title: Chem. Mater.
– volume: 101
  year: 2008
  ident: bib79
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
– volume: 100
  year: 2012
  ident: bib6
  article-title: High Eu 4f low-energy oscillator strength in the isostructural rare-earth Zintl compounds EuIn
  publication-title: Appl. Phys. Lett.
– volume: 198
  start-page: 6
  year: 2013
  end-page: 9
  ident: bib2
  article-title: Syntheses, crystal structure and physical properties of new Zintl phases Ba
  publication-title: J. Solid State Chem.
– volume: 124
  start-page: 9894
  year: 2002
  end-page: 9898
  ident: bib41
  article-title: XMCD characterization of the ferromagnetic state of Yb
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 9768
  year: 1992
  end-page: 9774
  ident: bib54
  article-title: General methods for geometry and wave function optimization
  publication-title: J. Phys. Chem.
– volume: 12
  start-page: 694
  year: 1973
  end-page: 712
  ident: bib25
  article-title: Zintl phases: transitions between metallic and ionic bonding
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  start-page: 379
  year: 2016
  end-page: 415
  ident: bib31
  article-title: Recent advances in high-performance bulk thermoelectric materials
  publication-title: Int. Mater. Rev.
– volume: 102
  start-page: 226401
  year: 2009
  end-page: 226404
  ident: bib56
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
– volume: 175
  start-page: 1
  year: 2006
  end-page: 14
  ident: bib59
  article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method
  publication-title: Comput. Phys. Commun.
– year: 1928
  ident: bib71
  article-title: Lehrbuch der Kristallphysik (Textbook of crystal physics)
– volume: 477
  start-page: 519
  year: 2009
  end-page: 522
  ident: bib3
  article-title: Synthesis and thermoelectric properties of BaMn
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 12
  year: 2014
  end-page: 23
  ident: bib7
  article-title: Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn
  publication-title: Solid State Sci.
– volume: 98
  start-page: 1217
  year: 2018
  end-page: 1240
  ident: bib23
  article-title: Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase
  publication-title: Philos. Mag. A
– volume: 29
  start-page: 456
  year: 2010
  end-page: 462
  ident: bib5
  article-title: New quaternary Zintl phases – synthesis, crystal and electronic structures of KA
  publication-title: Polyhedron
– volume: 6
  start-page: 2316
  year: 2013
  end-page: 2321
  ident: bib49
  article-title: Thermoelectric properties and electronic structure of the zintl-phase Sr
  publication-title: ChemSusChem
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: bib52
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 115
  year: 2010
  end-page: 123
  ident: bib68
  article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se)
  publication-title: Comput. Mater. Sci.
– year: 2013
  ident: bib26
  article-title: Zintl Compounds, Encyclopedia of Inorganic and Bioinorganic Chemistry
– volume: 73
  start-page: 104771
  year: 2020
  end-page: 104778
  ident: bib19
  article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu
  publication-title: Nanomater. Energy
– volume: 7
  start-page: 105
  year: 2008
  end-page: 114
  ident: bib29
  article-title: Complex thermoelectric materials
  publication-title: Nat. Mater.
– volume: 815
  year: 2020
  ident: bib20
  article-title: Temperature and doping effects on the transport properties of SrIn
  publication-title: J. Alloys Compd.
– volume: 237
  start-page: 28
  year: 2016
  end-page: 33
  ident: bib13
  article-title: The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba
  publication-title: Solid State Commun.
– volume: 271
  start-page: 88
  year: 2019
  end-page: 102
  ident: bib22
  article-title: The remarkable crystal chemistry of the Ca
  publication-title: J. Solid State Chem.
– volume: 826
  start-page: 154232
  year: 2020
  end-page: 154238
  ident: bib61
  article-title: First-principles analysis of physical properties anisotropy for the Ag
  publication-title: J. Alloys Compd.
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: bib50
  article-title: First-principles methods using CASTEP
  publication-title: Z. Kristallogr.
– volume: 129
  start-page: 4049
  year: 2007
  end-page: 4057
  ident: bib34
  article-title: Cation-anion interactions as structure directing factors: structure and bonding of Ca
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 909
  year: 1963
  end-page: 917
  ident: bib77
  article-title: A simplified method for calculating the Debye temperature from elastic constants
  publication-title: J. Phys. Chem. Solid.
– year: 1985
  ident: bib80
  article-title: Properties of Crystals
– year: 1996
  ident: bib28
  publication-title: Chemistry, Structure and Bonding of Zintl Phases and Ions: Selected Topics and Recent Advances
– volume: 9
  start-page: 3132
  year: 1997
  end-page: 3135
  ident: bib38
  article-title: Colossal magnetoresistance in the transition-metal Zintl compound Eu
  publication-title: Chem. Mater.
– start-page: 37
  year: 2002
  end-page: 62
  ident: bib42
  article-title: Magnetism and magnetotransport properties of transition metal Zintl isotypes
  publication-title: Magnetism: Molecules to Materials III
– volume: 21
  start-page: 2099
  year: 2007
  end-page: 2107
  ident: bib35
  article-title: Zintl phases for thermoelectric devices
  publication-title: Dalton Trans.
– volume: 3
  start-page: 2182
  year: 2020
  end-page: 2191
  ident: bib16
  article-title: Toberer discovery of n-type Zintl phases RbAlSb
  publication-title: ACS Appl. Energy Mater.
– volume: 13
  year: 1976
  ident: bib53
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 624
  year: 2010
  end-page: 634
  ident: bib11
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
– volume: 85
  start-page: 1120
  year: 2000
  end-page: 1123
  ident: bib44
  article-title: Yb
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 205102
  year: 2010
  end-page: 205110
  ident: bib62
  article-title: Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional
  publication-title: Phys. Rev. B
– volume: 843
  year: 2020
  ident: bib70
  article-title: Ab initio prediction of the elastic, electronic and optical properties of a new family of diamond-like semiconductors, Li
  publication-title: J. Alloys Compd.
– volume: 49
  start-page: 7935
  year: 2010
  end-page: 7940
  ident: bib1
  article-title: Baga
  publication-title: Inorg. Chem.
– volume: 32
  start-page: 776
  year: 2020
  end-page: 784
  ident: bib18
  article-title: Thermoelectric properties of Zintl phase YbMg
  publication-title: Chem. Mater.
– volume: 22
  start-page: 624
  year: 2009
  end-page: 634
  ident: bib46
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
– volume: 83
  year: 2011
  ident: bib57
  article-title: Merits and limits of the modified Becke-Johnson exchange potential
  publication-title: Phys. Rev. B
– volume: 128
  start-page: 2093
  year: 1962
  end-page: 2097
  ident: bib67
  article-title: Wave-number-dependent dielectric function of semiconductors
  publication-title: Phys. Rev.
– volume: 278
  year: 2019
  ident: bib45
  article-title: Five new ternary indium-arsenides discovered. Synthesis and structural characterization of the Zintl phases Sr
  publication-title: J. Solid State Chem.
– volume: 5
  start-page: 65133
  year: 2015
  end-page: 65138
  ident: bib65
  article-title: Electronic structure and thermoelectric properties of Zintl compounds A
  publication-title: RSC Adv.
– volume: 84
  year: 1998
  ident: bib78
  article-title: Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi
  publication-title: J. Appl. Phys.
– volume: 577
  start-page: 587
  year: 2013
  end-page: 599
  ident: bib8
  article-title: First-principles prediction of the structural, elastic, electronic and optical properties of the Zintl phases MIn
  publication-title: J. Alloys Compd.
– volume: 22
  start-page: 624
  year: 2010
  end-page: 634
  ident: bib30
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
– volume: 18
  start-page: 435
  year: 2006
  end-page: 441
  ident: bib39
  article-title: Colossal magnetoresistance in a rare earth Zintl compound with a new structure Type: EuIn
  publication-title: Chem. Mater.
– volume: 636
  start-page: 387
  year: 2015
  end-page: 394
  ident: bib15
  article-title: Origin of different thermoelectric properties between Zintl compounds Ba
  publication-title: J. Alloys Compd.
– volume: 43
  start-page: 4720
  year: 2014
  end-page: 4725
  ident: bib48
  article-title: Thermoelectric properties and electronic structure of the Zintl phase Sr
  publication-title: Dalton Trans.
– volume: 138
  start-page: 12422
  year: 2016
  end-page: 12431
  ident: bib43
  article-title: Tuning magnetism of [MnSb4]
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 177
  year: 2016
  end-page: 208
  ident: bib21
  article-title: Thermoelectric properties of Zintl antimonides
  publication-title: Handb. Phys. Chem. Rare Earths
– volume: 175
  start-page: 67
  year: 2006
  end-page: 71
  ident: bib64
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Comput. Phys. Commun. Phys. Commun
– volume: 45
  start-page: 823
  year: 1954
  end-page: 843
  ident: bib76
  article-title: Relations between the elastic moduli and plastic properties of polycrystalline pure metals
  publication-title: Philos. Mag. A
– volume: 65
  start-page: 144414
  year: 2002
  end-page: 144415
  ident: bib40
  article-title: Bonding, moment formation, and magnetic interactions in Ca
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 49
  year: 1929
  end-page: 58
  ident: bib72
  article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals
  publication-title: Math. Mech.
– volume: 52
  start-page: 1
  year: 1939
  end-page: 6
  ident: bib24
  article-title: Intermetallische verbindungen “intermetallic compounds”
  publication-title: Angew. Chem.
– volume: 5
  start-page: 1278
  year: 2014
  end-page: 1282
  ident: bib66
  article-title: Crystal structures, optical properties, and effective mass tensors of CH
  publication-title: J. Phys. Chem. Lett.
– volume: 44
  year: 2011
  ident: bib9
  article-title: High Seebeck coefficient AMXP
  publication-title: J. Phys. D Appl. Phys.
– year: 2018
  ident: bib58
  article-title: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn
– volume: 100
  year: 2008
  ident: bib51
  article-title: Restoring the density-gradient expansion for exchange in solids and surfaces
  publication-title: Phys. Rev. Lett.
– volume: 94
  year: 2016
  ident: bib75
  article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 5173
  year: 2010
  end-page: 5179
  ident: bib4
  article-title: Isolated
  publication-title: Inorg. Chem.
– volume: 65
  start-page: 349
  year: 1952
  end-page: 354
  ident: bib73
  article-title: The elastic behavior of a crystalline aggregate
  publication-title: Proc. Phys. Soc.
– volume: 36
  start-page: 198
  year: 2016
  end-page: 219
  ident: bib74
  article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr
  publication-title: High Pres. Res.
– volume: 70
  start-page: 21
  year: 2017
  end-page: 35
  ident: bib55
  article-title: Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu
  publication-title: Solid State Sci.
– volume: 5
  start-page: 433
  year: 2015
  end-page: 446
  ident: bib10
  article-title: Crystal and electronic structures of the pnictides
  publication-title: Crystals
– volume: 75
  start-page: 155104
  year: 2007
  end-page: 155114
  ident: bib60
  article-title: Electronic structure and optical properties of ZnX (X = O, S, Se, Te): a density functional study
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 155104
  year: 2007
  ident: 10.1016/j.solidstatesciences.2021.106563_bib60
  article-title: Electronic structure and optical properties of ZnX (X = O, S, Se, Te): a density functional study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.155104
– volume: 12
  start-page: 694
  year: 1973
  ident: 10.1016/j.solidstatesciences.2021.106563_bib25
  article-title: Zintl phases: transitions between metallic and ionic bonding
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.197306941
– volume: 73
  start-page: 104771
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib37
  article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase Author links open overlay panel
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2020.104771
– volume: 128
  start-page: 2093
  year: 1962
  ident: 10.1016/j.solidstatesciences.2021.106563_bib67
  article-title: Wave-number-dependent dielectric function of semiconductors
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2093
– volume: 49
  start-page: 7935
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib1
  article-title: Baga2Pn2 (Pn = P, as): new semiconducting phosphides and arsenides with layered structures
  publication-title: Inorg. Chem.
  doi: 10.1021/ic100940b
– volume: 22
  start-page: 624
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib36
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm901956r
– volume: 826
  start-page: 154232
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib61
  article-title: First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154232
– volume: 94
  year: 2016
  ident: 10.1016/j.solidstatesciences.2021.106563_bib75
  article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.125209
– volume: 101
  year: 2008
  ident: 10.1016/j.solidstatesciences.2021.106563_bib79
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.055504
– volume: 18
  start-page: 435
  year: 2006
  ident: 10.1016/j.solidstatesciences.2021.106563_bib39
  article-title: Colossal magnetoresistance in a rare earth Zintl compound with a new structure Type: EuIn2P2
  publication-title: Chem. Mater.
  doi: 10.1021/cm0520362
– volume: 175
  start-page: 67
  year: 2006
  ident: 10.1016/j.solidstatesciences.2021.106563_bib64
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Comput. Phys. Commun. Phys. Commun
  doi: 10.1016/j.cpc.2006.03.007
– volume: 96
  start-page: 9768
  year: 1992
  ident: 10.1016/j.solidstatesciences.2021.106563_bib54
  article-title: General methods for geometry and wave function optimization
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100203a036
– volume: 45
  start-page: 823
  year: 1954
  ident: 10.1016/j.solidstatesciences.2021.106563_bib76
  article-title: Relations between the elastic moduli and plastic properties of polycrystalline pure metals
  publication-title: Philos. Mag. A
  doi: 10.1080/14786440808520496
– volume: 843
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib70
  article-title: Ab initio prediction of the elastic, electronic and optical properties of a new family of diamond-like semiconductors, Li2HgMS4 (M = Si, Ge and Sn)
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155991
– volume: 85
  start-page: 1120
  year: 2000
  ident: 10.1016/j.solidstatesciences.2021.106563_bib44
  article-title: Yb14ZnSb11: charge balance in Zintl compounds as a route to intermediate Yb valence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1120
– volume: 98
  start-page: 1217
  year: 2018
  ident: 10.1016/j.solidstatesciences.2021.106563_bib23
  article-title: Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba)
  publication-title: Philos. Mag. A
  doi: 10.1080/14786435.2018.1425013
– volume: 188
  start-page: 59
  year: 2012
  ident: 10.1016/j.solidstatesciences.2021.106563_bib12
  article-title: Synthesis and structural characterization of the ternary Zintl phases AE3Al2Pn4 and AE3Ga2Pn4 (AE=Ca, Sr, Ba, Eu; Pn=P, As)
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2012.01.042
– year: 1928
  ident: 10.1016/j.solidstatesciences.2021.106563_bib71
– volume: 29
  start-page: 12
  year: 2014
  ident: 10.1016/j.solidstatesciences.2021.106563_bib7
  article-title: Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2014.01.001
– volume: 477
  start-page: 519
  year: 2009
  ident: 10.1016/j.solidstatesciences.2021.106563_bib3
  article-title: Synthesis and thermoelectric properties of BaMn2Sb2 single crystals
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.10.080
– year: 2013
  ident: 10.1016/j.solidstatesciences.2021.106563_bib26
– volume: 5
  start-page: 2380
  year: 2018
  ident: 10.1016/j.solidstatesciences.2021.106563_bib47
  article-title: Recent advances in inorganic material thermoelectrics
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00366A
– year: 1985
  ident: 10.1016/j.solidstatesciences.2021.106563_bib80
– volume: 5
  start-page: 433
  year: 2015
  ident: 10.1016/j.solidstatesciences.2021.106563_bib10
  article-title: Crystal and electronic structures of the pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, as)
  publication-title: Crystals
  doi: 10.3390/cryst5040433
– volume: 12
  year: 2019
  ident: 10.1016/j.solidstatesciences.2021.106563_bib27
  article-title: Advances in Zintl phases
  publication-title: Mater
  doi: 10.3390/ma12162554
– year: 2018
  ident: 10.1016/j.solidstatesciences.2021.106563_bib58
– volume: 73
  start-page: 104771
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib19
  article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase Author links open overlay panel
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2020.104771
– volume: 9
  start-page: 49
  year: 1929
  ident: 10.1016/j.solidstatesciences.2021.106563_bib72
  article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals
  publication-title: Math. Mech.
– volume: 90
  year: 2014
  ident: 10.1016/j.solidstatesciences.2021.106563_bib69
  article-title: Necessary and sufficient elastic stability conditions in various crystal systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.224104
– volume: 61
  start-page: 379
  year: 2016
  ident: 10.1016/j.solidstatesciences.2021.106563_bib31
  article-title: Recent advances in high-performance bulk thermoelectric materials
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1183075
– volume: 220
  start-page: 567
  year: 2005
  ident: 10.1016/j.solidstatesciences.2021.106563_bib50
  article-title: First-principles methods using CASTEP
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 271
  start-page: 88
  year: 2019
  ident: 10.1016/j.solidstatesciences.2021.106563_bib22
  article-title: The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.12.037
– volume: 124
  start-page: 9894
  year: 2002
  ident: 10.1016/j.solidstatesciences.2021.106563_bib41
  article-title: XMCD characterization of the ferromagnetic state of Yb14MnSb11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020564y
– start-page: 37
  year: 2002
  ident: 10.1016/j.solidstatesciences.2021.106563_bib42
  article-title: Magnetism and magnetotransport properties of transition metal Zintl isotypes
– volume: 36
  start-page: 198
  year: 2016
  ident: 10.1016/j.solidstatesciences.2021.106563_bib74
  article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation
  publication-title: High Pres. Res.
  doi: 10.1080/08957959.2016.1167202
– volume: 278
  year: 2019
  ident: 10.1016/j.solidstatesciences.2021.106563_bib45
  article-title: Five new ternary indium-arsenides discovered. Synthesis and structural characterization of the Zintl phases Sr3In2As4, Ba3In2As4, Eu3In2As4, Sr5In2As6 and Eu5In2As6
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.07.050
– volume: 65
  start-page: 144414
  year: 2002
  ident: 10.1016/j.solidstatesciences.2021.106563_bib40
  article-title: Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba4MnBi11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.144414
– volume: 83
  year: 2011
  ident: 10.1016/j.solidstatesciences.2021.106563_bib57
  article-title: Merits and limits of the modified Becke-Johnson exchange potential
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195134
– volume: 46
  start-page: 122
  year: 2015
  ident: 10.1016/j.solidstatesciences.2021.106563_bib14
  article-title: Structural, elastic, electronic and optical properties of new layered semiconductor Baga2P2
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2015.03.059
– volume: 102
  start-page: 226401
  year: 2009
  ident: 10.1016/j.solidstatesciences.2021.106563_bib56
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.226401
– volume: 636
  start-page: 387
  year: 2015
  ident: 10.1016/j.solidstatesciences.2021.106563_bib15
  article-title: Origin of different thermoelectric properties between Zintl compounds Ba3Al3P5 and Ba3Ga3P5: a first-principles study
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.02.133
– volume: 100
  year: 2008
  ident: 10.1016/j.solidstatesciences.2021.106563_bib51
  article-title: Restoring the density-gradient expansion for exchange in solids and surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 49
  start-page: 5173
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib4
  article-title: Isolated [ZnPn2]4−∞1 Chains in the Zintl Phases Ba2ZnPn2 (Pn = As, Sb, Bi); Synthesis, Structure, and Bonding
  publication-title: Inorg. Chem.
  doi: 10.1021/ic100296x
– volume: 41
  start-page: 7892
  year: 1990
  ident: 10.1016/j.solidstatesciences.2021.106563_bib52
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 4
  start-page: 1231
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib17
  article-title: On the divalent character of the Eu atoms in the ternary Zintl phases Eu5In2Pn6 and Eu3MAs3 (Pn = as-Bi; M = Al, Ga)
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00703B
– volume: 7
  start-page: 105
  year: 2008
  ident: 10.1016/j.solidstatesciences.2021.106563_bib29
  article-title: Complex thermoelectric materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 22
  start-page: 624
  year: 2009
  ident: 10.1016/j.solidstatesciences.2021.106563_bib46
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm901956r
– volume: 6
  start-page: 2316
  year: 2013
  ident: 10.1016/j.solidstatesciences.2021.106563_bib49
  article-title: Thermoelectric properties and electronic structure of the zintl-phase Sr3AlSb3
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300518
– volume: 3
  start-page: 2182
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib16
  article-title: Toberer discovery of n-type Zintl phases RbAlSb4, RbGaSb4, CsAlSb4, and CsGaSb4
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00048
– volume: 43
  start-page: 4720
  year: 2014
  ident: 10.1016/j.solidstatesciences.2021.106563_bib48
  article-title: Thermoelectric properties and electronic structure of the Zintl phase Sr5Al2Sb6
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt53487a
– volume: 100
  year: 2012
  ident: 10.1016/j.solidstatesciences.2021.106563_bib6
  article-title: High Eu 4f low-energy oscillator strength in the isostructural rare-earth Zintl compounds EuIn2X2 (X = P, As)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3702787
– volume: 22
  start-page: 624
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib30
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm901956r
– volume: 44
  year: 2011
  ident: 10.1016/j.solidstatesciences.2021.106563_bib9
  article-title: High Seebeck coefficient AMXP2 (A = Ca and Yb; M, X = Zn, Cu and Mn) Zintl phosphides as high-temperature thermoelectric materials
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/44/15/155406
– volume: 175
  start-page: 1
  year: 2006
  ident: 10.1016/j.solidstatesciences.2021.106563_bib59
  article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.005
– volume: 48
  start-page: 115
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib68
  article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se)
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.12.017
– volume: 9
  start-page: 3132
  year: 1997
  ident: 10.1016/j.solidstatesciences.2021.106563_bib38
  article-title: Colossal magnetoresistance in the transition-metal Zintl compound Eu14MnSb11
  publication-title: Chem. Mater.
  doi: 10.1021/cm9704241
– volume: 1
  start-page: 74
  year: 2017
  ident: 10.1016/j.solidstatesciences.2021.106563_bib32
  article-title: Recent progress and future challenges on thermoelectric Zintl materials
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2017.06.003
– volume: 32
  start-page: 776
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib18
  article-title: Thermoelectric properties of Zintl phase YbMg2Sb2
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04131
– volume: 815
  year: 2020
  ident: 10.1016/j.solidstatesciences.2021.106563_bib20
  article-title: Temperature and doping effects on the transport properties of SrIn2P2 Zintl compound
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152384
– volume: 13
  year: 1976
  ident: 10.1016/j.solidstatesciences.2021.106563_bib53
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 237
  start-page: 28
  year: 2016
  ident: 10.1016/j.solidstatesciences.2021.106563_bib13
  article-title: The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba3Al2As4
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2016.03.018
– volume: 52
  start-page: 1
  year: 1939
  ident: 10.1016/j.solidstatesciences.2021.106563_bib24
  article-title: Intermetallische verbindungen “intermetallic compounds”
  publication-title: Angew. Chem.
  doi: 10.1002/ange.19390520102
– volume: 141
  start-page: 11245
  year: 2019
  ident: 10.1016/j.solidstatesciences.2021.106563_bib63
  article-title: Supertetrahedral layers based on GaAs or InAs
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04712
– volume: 50
  start-page: 177
  year: 2016
  ident: 10.1016/j.solidstatesciences.2021.106563_bib21
  article-title: Thermoelectric properties of Zintl antimonides
  publication-title: Handb. Phys. Chem. Rare Earths
  doi: 10.1016/bs.hpcre.2016.05.003
– volume: 198
  start-page: 6
  year: 2013
  ident: 10.1016/j.solidstatesciences.2021.106563_bib2
  article-title: Syntheses, crystal structure and physical properties of new Zintl phases Ba3T2As4 (T=Zn, Cd)
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2012.09.029
– volume: 84
  year: 1998
  ident: 10.1016/j.solidstatesciences.2021.106563_bib78
  article-title: Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368733
– volume: 70
  start-page: 21
  year: 2017
  ident: 10.1016/j.solidstatesciences.2021.106563_bib55
  article-title: Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2017.06.007
– volume: 24
  start-page: 909
  year: 1963
  ident: 10.1016/j.solidstatesciences.2021.106563_bib77
  article-title: A simplified method for calculating the Debye temperature from elastic constants
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/0022-3697(63)90067-2
– volume: 129
  start-page: 4049
  year: 2007
  ident: 10.1016/j.solidstatesciences.2021.106563_bib34
  article-title: Cation-anion interactions as structure directing factors: structure and bonding of Ca2CdSb2 and Yb2CdSb2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja069261k
– volume: 138
  start-page: 12422
  year: 2016
  ident: 10.1016/j.solidstatesciences.2021.106563_bib43
  article-title: Tuning magnetism of [MnSb4]9- cluster in Yb14MnSb11 through chemical substitutions on Yb sites: appearance and disappearance of spin reorientation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05636
– volume: 577
  start-page: 587
  year: 2013
  ident: 10.1016/j.solidstatesciences.2021.106563_bib8
  article-title: First-principles prediction of the structural, elastic, electronic and optical properties of the Zintl phases MIn2P2 (M = Ca, Sr)
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.07.003
– volume: 82
  start-page: 205102
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib62
  article-title: Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.205102
– volume: 21
  start-page: 2099
  year: 2007
  ident: 10.1016/j.solidstatesciences.2021.106563_bib35
  article-title: Zintl phases for thermoelectric devices
  publication-title: Dalton Trans.
  doi: 10.1039/b702266b
– volume: 5
  start-page: 65133
  year: 2015
  ident: 10.1016/j.solidstatesciences.2021.106563_bib65
  article-title: Electronic structure and thermoelectric properties of Zintl compounds A3AlSb3 (A = Ca and Sr): first-principles study
  publication-title: RSC Adv.
  doi: 10.1039/C5RA09804A
– volume: 22
  start-page: 624
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib11
  article-title: Zintl chemistry for designing high efficiency thermoelectric materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm901956r
– volume: 5
  start-page: 1278
  year: 2014
  ident: 10.1016/j.solidstatesciences.2021.106563_bib66
  article-title: Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500480m
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.solidstatesciences.2021.106563_bib73
  article-title: The elastic behavior of a crystalline aggregate
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1298/65/5/307
– volume: 18
  start-page: 1873
  year: 2006
  ident: 10.1016/j.solidstatesciences.2021.106563_bib33
  article-title: Yb14MnSb11: new high efficiency thermoelectric material for power generation
  publication-title: Chem. Mater.
  doi: 10.1021/cm060261t
– year: 1996
  ident: 10.1016/j.solidstatesciences.2021.106563_bib28
– volume: 29
  start-page: 456
  year: 2010
  ident: 10.1016/j.solidstatesciences.2021.106563_bib5
  article-title: New quaternary Zintl phases – synthesis, crystal and electronic structures of KA2Cd2Sb3 (A = Ca, Sr, Ba, Eu, Yb)
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.06.031
SSID ssj0006674
Score 2.6135917
Snippet We report results of a detailed first-principles study of physical parameters associated with the structural, electronic, optical and elastic properties of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106563
SubjectTerms Band structure
Elastic parameters
First-principles calculations
Optical properties
Zintl phase
Title First-principles predictions of the structural, electronic, optical and elastic properties of the zintl-phases AE3GaAs3 (AE = Sr, Ba)
URI https://dx.doi.org/10.1016/j.solidstatesciences.2021.106563
Volume 114
WOSCitedRecordID wos000695465500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA_rnagv4ieeX-RB4aTbpW22TfsgUte9U8FF2BPuraRNg12WbtmP4_Dd_8g_0Jmmaasncgf6UrppmzT9_TYzmWRmCHmRKsmdiDs2SPPQxlT3tggiYXtynDqZIwPPUXWyCT6bhaen0efB4IfxhTlb8rIMz8-j6r9CDWUANrrOXgHutlIogHMAHY4AOxwvBfxRAQqdXRkj-gbDAMgia3e8oaapo8ZixA38xF0qHPy1qrZtBIEcdGuM6FqhyX6NsVdNDd-Kcru0q68gBDdWPGXHIt4wVFfjqfWSvbPm2gogjKVhYbyBl4W0ai8mqxG-3WoS2smlLBob66i1FKx2GFlWrna_lsfLcrcQOhv0vC093uVZnajYmo36Jg3P7e2Eqe1sxtfmE8wfcNSM570RGvQTG-ZBetDOdVnImc0cnfunHda1c-oFEaGtFYvRBjtc99d0d4TvAjeAiss68dhuWpxj09iyh2sizOPXyL7H_QjG0v34w_T0Y6sBBEEd_bt91RvksNtX-Pd2_6we9VSekzvkdjNXobHm2F0yyMt75ObEpAi8T77_zjXa4xpdKQpMoR3XhrRj2pA2PKPAM9rwjHY8M0_3eUYNz-hhPKWv6Xw9pG_Fqwfky9H0ZPLebvJ62Bkbe1s7DYM0k5nDFUxGJFep8HjgcE-5buAIwX3O8oyn7lgp7uNCM8gJxR3pCJWHLlPsIdkrV2X-iFC0wYHqkPpBlI5dL4gin_luoDJXuDzg_IC8MZ8zyZqg95h7ZZmY3Y2L5CIgCQKSaEAOSNTWUOkAMFd4dmIQTJrrWlFNgIyXruXxP6nlCbnV_dWekj3APn9Grmdn22Kzft4w-CcEg9Is
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principles+predictions+of+the+structural%2C+electronic%2C+optical+and+elastic+properties+of+the+zintl-phases+AE3GaAs3+%28AE+%3D+Sr%2C+Ba%29&rft.jtitle=Solid+state+sciences&rft.au=Khireddine%2C+A.&rft.au=Bouhemadou%2C+A.&rft.au=Alnujaim%2C+S.&rft.au=Guechi%2C+N.&rft.date=2021-04-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1293-2558&rft.eissn=1873-3085&rft.volume=114&rft_id=info:doi/10.1016%2Fj.solidstatesciences.2021.106563&rft.externalDocID=S1293255821000327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1293-2558&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1293-2558&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1293-2558&client=summon