Modelling the interaction between vegetation and infiltrated stormwater

•Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated stormwater.•Infiltration basins should be placed near waterways to increase baseflows. A major problem associated with sealing native soils with impervious...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 607; s. 127527
Hlavní autoři: Poozan, Abolfazl, William Western, Andrew, James Burns, Matthew, Arora, Meenakshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2022
Témata:
ISSN:0022-1694, 1879-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated stormwater.•Infiltration basins should be placed near waterways to increase baseflows. A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream baseflows which has serious implications for freshwater ecosystems. To address this problem, the use of stormwater infiltration systems is becoming increasingly common worldwide. There is, however, substantial uncertainty on the fate of infiltrated stormwater and its interactions with downslope vegetation. This study aimed to investigate the role of vegetation on the amount of infiltrated stormwater reaching the stream. A model using MIKE SHE was constructed, calibrated, and validated based on a real infiltration system which features extensive vegetation between the site of stormwater infiltration and the stream. We then used the calibrated model to predict the amount of infiltrated stormwater reaching the stream in the absence of vegetation. We also predicted the impact of infiltrated stormwater on the evapotranspiration downslope of the system. The results showed that the performance of the model was satisfactory, and the model captured the overall groundwater dynamic very well. The amount of infiltrated stormwater reaching the stream increased by about 17 percent in the absence of vegetation. The model also predicted that evapotranspiration would be 13 percent lower in the warmer months if stormwater was not infiltrated upslope. The results suggest that the choice of location of infiltration systems should consider the potential of vegetation to intercept infiltrated water and impact on achievement of the design objectives, which, in this case, included restoring baseflow. Where increasing the baseflows is not a priority, the increased evapotranspiration afforded by stormwater infiltration could provide important microclimate benefits.
AbstractList A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream baseflows which has serious implications for freshwater ecosystems. To address this problem, the use of stormwater infiltration systems is becoming increasingly common worldwide. There is, however, substantial uncertainty on the fate of infiltrated stormwater and its interactions with downslope vegetation. This study aimed to investigate the role of vegetation on the amount of infiltrated stormwater reaching the stream. A model using MIKE SHE was constructed, calibrated, and validated based on a real infiltration system which features extensive vegetation between the site of stormwater infiltration and the stream. We then used the calibrated model to predict the amount of infiltrated stormwater reaching the stream in the absence of vegetation. We also predicted the impact of infiltrated stormwater on the evapotranspiration downslope of the system. The results showed that the performance of the model was satisfactory, and the model captured the overall groundwater dynamic very well. The amount of infiltrated stormwater reaching the stream increased by about 17 percent in the absence of vegetation. The model also predicted that evapotranspiration would be 13 percent lower in the warmer months if stormwater was not infiltrated upslope. The results suggest that the choice of location of infiltration systems should consider the potential of vegetation to intercept infiltrated water and impact on achievement of the design objectives, which, in this case, included restoring baseflow. Where increasing the baseflows is not a priority, the increased evapotranspiration afforded by stormwater infiltration could provide important microclimate benefits.
•Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated stormwater.•Infiltration basins should be placed near waterways to increase baseflows. A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream baseflows which has serious implications for freshwater ecosystems. To address this problem, the use of stormwater infiltration systems is becoming increasingly common worldwide. There is, however, substantial uncertainty on the fate of infiltrated stormwater and its interactions with downslope vegetation. This study aimed to investigate the role of vegetation on the amount of infiltrated stormwater reaching the stream. A model using MIKE SHE was constructed, calibrated, and validated based on a real infiltration system which features extensive vegetation between the site of stormwater infiltration and the stream. We then used the calibrated model to predict the amount of infiltrated stormwater reaching the stream in the absence of vegetation. We also predicted the impact of infiltrated stormwater on the evapotranspiration downslope of the system. The results showed that the performance of the model was satisfactory, and the model captured the overall groundwater dynamic very well. The amount of infiltrated stormwater reaching the stream increased by about 17 percent in the absence of vegetation. The model also predicted that evapotranspiration would be 13 percent lower in the warmer months if stormwater was not infiltrated upslope. The results suggest that the choice of location of infiltration systems should consider the potential of vegetation to intercept infiltrated water and impact on achievement of the design objectives, which, in this case, included restoring baseflow. Where increasing the baseflows is not a priority, the increased evapotranspiration afforded by stormwater infiltration could provide important microclimate benefits.
ArticleNumber 127527
Author James Burns, Matthew
Poozan, Abolfazl
Arora, Meenakshi
William Western, Andrew
Author_xml – sequence: 1
  givenname: Abolfazl
  surname: Poozan
  fullname: Poozan, Abolfazl
  email: apoozan@student.unimelb.edu.au
  organization: Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia
– sequence: 2
  givenname: Andrew
  surname: William Western
  fullname: William Western, Andrew
  organization: Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia
– sequence: 3
  givenname: Matthew
  surname: James Burns
  fullname: James Burns, Matthew
  organization: School of Ecosystem and Forest Sciences, University of Melbourne, Victoria 3121, Australia
– sequence: 4
  givenname: Meenakshi
  surname: Arora
  fullname: Arora, Meenakshi
  organization: Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia
BookMark eNqFkD9PwzAQxS1UJNrCR0DKyJLgP0kciwGhCgoSiAVmy3Eu4Cq1i21a9dtjSCeW3nKnu_dOer8ZmlhnAaFLgguCSX29Klaf-867oaCY0oJQXlF-gqak4SKnHPMJmuJ0yUktyjM0C2GFUzFWTtHyxXUwDMZ-ZPETMmMjeKWjcTZrIe4AbLaFD4jqb6VslyS9GaJXEbosROfXuzT6c3TaqyHAxaHP0fvD_dviMX9-XT4t7p5zzUoa85aznmjS1BXwVjR9hVvVaNFrDaxrCU3XJgl0WwNjIFRVQstFC4D7XjSCsDm6Gv9uvPv6hhDl2gSdEigL7jtIWrO6ZJyXIkmrUaq9C8FDLzferJXfS4LlLzi5kgdw8hecHMEl380_nzZj_pTaDEfdt6MbEoWtAS-DNmA1dMaDjrJz5siHH0XfkY0
CitedBy_id crossref_primary_10_3390_w16223335
crossref_primary_10_1007_s10653_023_01732_3
crossref_primary_10_1016_j_jhydrol_2024_130738
crossref_primary_10_1016_j_geosus_2025_100333
crossref_primary_10_1016_j_ufug_2023_128200
crossref_primary_10_1016_j_jhydrol_2023_129188
crossref_primary_10_1016_j_jhydrol_2024_131731
crossref_primary_10_3390_app15179516
crossref_primary_10_1016_j_uclim_2023_101643
crossref_primary_10_1016_j_cities_2025_105941
Cites_doi 10.1007/BF00939380
10.1007/s11252-012-0226-7
10.2175/106143012X13347678384729
10.1016/j.geoderma.2020.114243
10.1002/hyp.11266
10.1080/02723646.1981.10642213
10.1899/12-002.1
10.1002/hyp.13610
10.1007/s11069-009-9406-z
10.1016/j.landurbplan.2011.07.003
10.2136/sssaj1980.03615995004400050002x
10.1016/j.jhydrol.2012.10.043
10.1002/hyp.10808
10.1007/s10040-001-0177-1
10.1016/S0022-1694(02)00308-6
10.2166/nh.2018.110
10.1007/978-3-319-99867-1_6
10.1016/j.landurbplan.2018.06.002
10.1002/2016WR018663
10.1061/(ASCE)0733-9496(2009)135:6(512)
10.1016/j.ufug.2014.11.007
10.1007/s10457-005-5258-z
10.2166/nh.1975.0012
10.1016/j.jhydrol.2015.04.007
10.1016/S0309-1708(02)00092-1
10.1016/j.jhydrol.2016.11.030
10.5194/egusphere-egu2020-1928
10.1371/journal.pone.0045814
10.1007/s10040-008-0311-4
10.1016/S0022-1694(01)00466-8
10.1080/01944369608975688
10.1016/j.jhydrol.2018.04.022
10.1111/j.1752-1688.2009.00345.x
10.1016/j.advwatres.2012.09.001
10.1016/j.watres.2020.115597
10.1007/BF02187360
10.1016/j.jhydrol.2013.03.051
10.1007/s00267-002-2737-0
10.1029/2017WR021838
10.2166/wst.2014.013
10.1088/1748-9326/ac1c2a
10.1016/j.ecolind.2010.02.001
10.1002/hyp.218
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.127527
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_127527
S0022169422001020
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-b73f1c1865e7b98f50ba8c9fcce3db123f18f1ccb6e33e9a54eb79bee0ff98913
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790827500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Wed Oct 01 15:09:05 EDT 2025
Sat Nov 29 07:26:41 EST 2025
Tue Nov 18 20:54:30 EST 2025
Fri Feb 23 02:39:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stormwater infiltration
Urban
Baseflow
Modelling
Evapotranspiration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-b73f1c1865e7b98f50ba8c9fcce3db123f18f1ccb6e33e9a54eb79bee0ff98913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636437749
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636437749
crossref_primary_10_1016_j_jhydrol_2022_127527
crossref_citationtrail_10_1016_j_jhydrol_2022_127527
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_127527
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Poozan, A., Western, A., Arora, M., Burns, M., Fletcher, T., 2020. The fate of infiltrated stormwater from infiltration basins to the stream: quantifying the impact of the urban karst, in: EGU General Assembly Conference Abstracts. p. 1928.
Mullaney, Lucke, Trueman (b0165) 2015; 14
Keßler, Meyer, Seeling, Tressel, Krein (b0110) 2012; 84
Peterson, Western (b0185) 2018; 54
Arnold, Gibbons (b0005) 1996; 62
Kidmose, Troldborg, Refsgaard, Bischoff (b0115) 2015; 525
Shuster, Rhea (b0215) 2013; 485
Azarnivand, Camporese, Alaghmand, Daly (b0010) 2020; 34
Leopold (b0125) 1968
Walsh, Fletcher, Burns, Gilbert (b0245) 2012; 7
Fanelli, Prestegaard, Palmer (b0065) 2017; 31
Grey, Livesley, Fletcher, Szota (b0085) 2018; 178
Menció, Mas-Pla (b0150) 2010; 10
(b0095) 2002
Dean, Camporese, Webb, Grover, Dresel, Daly (b0045) 2016; 52
Thom, Szota, Coutts, Fletcher, Livesley (b0230) 2020; 173
Duan, Gupta, Sorooshian (b0050) 1993; 76
Erickson, Stefan (b0055) 2009; 135
Smith, Allen, Pereira (b0220) 1998
Lerner (b0130) 2002; 10
Locatelli, Mark, Mikkelsen, Arnbjerg-Nielsen, Deletic, Roldin, Binning (b0140) 2017; 544
Behroozi, Arora, Fletcher, Western (b0020) 2020; 367
Rolls, Leigh, Sheldon (b0200) 2012; 31
Refsgaard, J.C., Storm, B., 1995. MIKE SHE, in: Computer Models of Watershed Hydrology.
Gharun, Turnbull, Adams (b0080) 2013; 492
Hardison, E.C., O’Driscoll, M.A., Deloatch, J.P., Howard, R.J., Brinson, M.M., 2009. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. J. Am. Water Resour. Assoc. 10.1111/j.1752-1688.2009.00345.x.
van Genuchten (b0235) 1980
Falkiner, Nambiar, Polglase, Theiveyanathan, Stewart (b0060) 2006; 67
Fletcher, Andrieu, Hamel (b0075) 2013; 51
Bonneau, J., Fletcher, T.D., Costelloe, J.F., Poelsma, P.J., James, R.B., Burns, M.J., 2018b. Where does infiltrated stormwater go? Interactions with vegetation and subsurface anthropogenic features. J. Hydrol. 10.1016/j.jhydrol.2018.10.006.
Madsen (b0145) 2003; 26
Bonneau, Burns, Fletcher, Witt, Drysdale, Costelloe (b0030) 2018; 561
Baker, Attiwill (b0015) 1987; 4
Zhou, Shepherd (b0260) 2010; 52
Mitchell, Benyon, Lane (b0155) 2010
Rose, Peters (b0205) 2001; 15
Tallis, Taylor, Sinnett, Freer-Smith (b0225) 2011; 103
Li, Liang, Li, Lei, Zhou (b0135) 2019; 50
Jaber, Shukla (b0100) 2012
Schaap, Leij, van Genuchten (b0210) 2001; 251
Western, Arora, Burns, Bonneau, Thom, Yong, James, Poelsma, Fletcher (b0250) 2021; 16
Ngan, G., 2012. Stormwater Source Control Design Guidelines 2012.
Moustadraf, Razack, Sinan (b0160) 2008; 16
Willmott (b0255) 1981; 2
Bunn, Arthington (b0040) 2002; 30
Bhaskar, Hogan, Archfield (b0025) 2016; 30
Payne, Pham, Cook, Fletcher, Hatt, Deletic (b0180) 2014; 69
Kaushal, Belt (b0105) 2012; 15
Kristensen, Jensen (b0120) 1975
Nolan, Lane, Benyon, Bradstock, Mitchell (b0175) 2014
Vázquez, Feyen (b0240) 2003; 270
Faúndez Urbina, den Berg, Dam, Tang, Ritsema (b0070) 2020; 19
Western (10.1016/j.jhydrol.2022.127527_b0250) 2021; 16
Kristensen (10.1016/j.jhydrol.2022.127527_b0120) 1975
Peterson (10.1016/j.jhydrol.2022.127527_b0185) 2018; 54
Kidmose (10.1016/j.jhydrol.2022.127527_b0115) 2015; 525
Li (10.1016/j.jhydrol.2022.127527_b0135) 2019; 50
Madsen (10.1016/j.jhydrol.2022.127527_b0145) 2003; 26
10.1016/j.jhydrol.2022.127527_b0090
Behroozi (10.1016/j.jhydrol.2022.127527_b0020) 2020; 367
Keßler (10.1016/j.jhydrol.2022.127527_b0110) 2012; 84
10.1016/j.jhydrol.2022.127527_b0170
Jaber (10.1016/j.jhydrol.2022.127527_b0100) 2012
Vázquez (10.1016/j.jhydrol.2022.127527_b0240) 2003; 270
Leopold (10.1016/j.jhydrol.2022.127527_b0125) 1968
Mullaney (10.1016/j.jhydrol.2022.127527_b0165) 2015; 14
Rolls (10.1016/j.jhydrol.2022.127527_b0200) 2012; 31
Payne (10.1016/j.jhydrol.2022.127527_b0180) 2014; 69
Fanelli (10.1016/j.jhydrol.2022.127527_b0065) 2017; 31
Bhaskar (10.1016/j.jhydrol.2022.127527_b0025) 2016; 30
Dean (10.1016/j.jhydrol.2022.127527_b0045) 2016; 52
Falkiner (10.1016/j.jhydrol.2022.127527_b0060) 2006; 67
Moustadraf (10.1016/j.jhydrol.2022.127527_b0160) 2008; 16
Locatelli (10.1016/j.jhydrol.2022.127527_b0140) 2017; 544
Bunn (10.1016/j.jhydrol.2022.127527_b0040) 2002; 30
Nolan (10.1016/j.jhydrol.2022.127527_b0175) 2014
Smith (10.1016/j.jhydrol.2022.127527_b0220) 1998
van Genuchten (10.1016/j.jhydrol.2022.127527_b0235) 1980
Grey (10.1016/j.jhydrol.2022.127527_b0085) 2018; 178
Rose (10.1016/j.jhydrol.2022.127527_b0205) 2001; 15
Erickson (10.1016/j.jhydrol.2022.127527_b0055) 2009; 135
Mitchell (10.1016/j.jhydrol.2022.127527_b0155) 2010
10.1016/j.jhydrol.2022.127527_b0035
Duan (10.1016/j.jhydrol.2022.127527_b0050) 1993; 76
Thom (10.1016/j.jhydrol.2022.127527_b0230) 2020; 173
Shuster (10.1016/j.jhydrol.2022.127527_b0215) 2013; 485
Lerner (10.1016/j.jhydrol.2022.127527_b0130) 2002; 10
Baker (10.1016/j.jhydrol.2022.127527_b0015) 1987; 4
Menció (10.1016/j.jhydrol.2022.127527_b0150) 2010; 10
10.1016/j.jhydrol.2022.127527_b0190
Azarnivand (10.1016/j.jhydrol.2022.127527_b0010) 2020; 34
10.1016/j.jhydrol.2022.127527_b0195
Bonneau (10.1016/j.jhydrol.2022.127527_b0030) 2018; 561
Walsh (10.1016/j.jhydrol.2022.127527_b0245) 2012; 7
Faúndez Urbina (10.1016/j.jhydrol.2022.127527_b0070) 2020; 19
Tallis (10.1016/j.jhydrol.2022.127527_b0225) 2011; 103
Kaushal (10.1016/j.jhydrol.2022.127527_b0105) 2012; 15
Willmott (10.1016/j.jhydrol.2022.127527_b0255) 1981; 2
Fletcher (10.1016/j.jhydrol.2022.127527_b0075) 2013; 51
(10.1016/j.jhydrol.2022.127527_b0095) 2002
Zhou (10.1016/j.jhydrol.2022.127527_b0260) 2010; 52
Arnold (10.1016/j.jhydrol.2022.127527_b0005) 1996; 62
Gharun (10.1016/j.jhydrol.2022.127527_b0080) 2013; 492
Schaap (10.1016/j.jhydrol.2022.127527_b0210) 2001; 251
References_xml – volume: 54
  start-page: 4663
  year: 2018
  end-page: 4680
  ident: b0185
  article-title: Statistical Interpolation of Groundwater Hydrographs
  publication-title: Water Resour. Res.
– volume: 84
  start-page: 441
  year: 2012
  end-page: 451
  ident: b0110
  article-title: Influence of near-to-nature stormwater management on the local water balance using the example of an urban development area
  publication-title: Water Environ. Res.
– reference: Bonneau, J., Fletcher, T.D., Costelloe, J.F., Poelsma, P.J., James, R.B., Burns, M.J., 2018b. Where does infiltrated stormwater go? Interactions with vegetation and subsurface anthropogenic features. J. Hydrol. 10.1016/j.jhydrol.2018.10.006.
– reference: Refsgaard, J.C., Storm, B., 1995. MIKE SHE, in: Computer Models of Watershed Hydrology.
– volume: 30
  start-page: 3156
  year: 2016
  end-page: 3171
  ident: b0025
  article-title: Urban base flow with low impact development
  publication-title: Hydrol. Process.
– volume: 178
  start-page: 122
  year: 2018
  end-page: 129
  ident: b0085
  article-title: Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided
  publication-title: Landscape and Urban Planning
– reference: Ngan, G., 2012. Stormwater Source Control Design Guidelines 2012.
– year: 1980
  ident: b0235
  article-title: CLOSED-FORM EQUATION FOR PREDICTING THE HYDRAULIC CONDUCTIVITY OF UNSATURATED SOILS
  publication-title: Soil Sci. Soc. Am. J.
– volume: 15
  start-page: 409
  year: 2012
  end-page: 435
  ident: b0105
  article-title: The urban watershed continuum: Evolving spatial and temporal dimensions
  publication-title: Urban Ecosyst
– volume: 544
  start-page: 524
  year: 2017
  end-page: 537
  ident: b0140
  article-title: Hydrologic impact of urbanization with extensive stormwater infiltration
  publication-title: J. Hydrol.
– volume: 103
  start-page: 129
  year: 2011
  end-page: 138
  ident: b0225
  article-title: Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments
  publication-title: Landscape and Urban Planning
– volume: 492
  start-page: 219
  year: 2013
  end-page: 227
  ident: b0080
  article-title: Validation of canopy transpiration in a mixed-species foothill eucalypt forest using a soil-plant-atmosphere model
  publication-title: J. Hydrol.
– volume: 10
  start-page: 143
  year: 2002
  end-page: 152
  ident: b0130
  article-title: Identifying and quantifying urban recharge: A review
  publication-title: Hydrogeol. J.
– year: 1975
  ident: b0120
  article-title: MODEL FOR ESTIMATING ACTUAL EVAPOTRANSPIRATION FROM POTENTIAL EVAPOTRANSPIRATION
  publication-title: Nord Hydrol
– volume: 26
  start-page: 205
  year: 2003
  end-page: 216
  ident: b0145
  article-title: Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives
  publication-title: Adv. Water Resour.
– volume: 16
  start-page: 104014
  year: 2021
  ident: b0250
  article-title: Impacts of stormwater infiltration on downslope soil moisture and tree water use
  publication-title: Environ. Res. Lett.
– volume: 561
  start-page: 413
  year: 2018
  end-page: 426
  ident: b0030
  article-title: The impact of urbanization on subsurface flow paths – A paired-catchment isotopic study
  publication-title: J. Hydrol.
– volume: 69
  start-page: 1312
  year: 2014
  end-page: 1319
  ident: b0180
  article-title: Biofilter design for effective nitrogen removal from stormwater – Influence of plant species, inflow hydrology and use of a saturated zone
  publication-title: Water Sci. Technol.
– volume: 525
  start-page: 506
  year: 2015
  end-page: 520
  ident: b0115
  article-title: Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration
  publication-title: J. Hydrol.
– volume: 19
  year: 2020
  ident: b0070
  article-title: Parameter sensitivity of SWAP–PEARL models for pesticide leaching in macroporous soils
  publication-title: Vadose Zo. J.
– volume: 485
  start-page: 177
  year: 2013
  end-page: 187
  ident: b0215
  article-title: Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)
  publication-title: J. Hydrol.
– volume: 251
  start-page: 163
  year: 2001
  end-page: 176
  ident: b0210
  article-title: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
  publication-title: J. Hydrol.
– volume: 51
  start-page: 261
  year: 2013
  end-page: 279
  ident: b0075
  article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
  publication-title: Adv. Water Resour.
– year: 2010
  ident: b0155
  article-title: Water use of mixed species eucalypt forests
– reference: Hardison, E.C., O’Driscoll, M.A., Deloatch, J.P., Howard, R.J., Brinson, M.M., 2009. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. J. Am. Water Resour. Assoc. 10.1111/j.1752-1688.2009.00345.x.
– year: 2012
  ident: b0100
  article-title: MIKE SHE: MODEL USE, CALIBRATION
– volume: 30
  start-page: 492
  year: 2002
  end-page: 507
  ident: b0040
  article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity
  publication-title: Environ. Manage.
– volume: 10
  start-page: 915
  year: 2010
  end-page: 926
  ident: b0150
  article-title: Influence of groundwater exploitation on the ecological status of streams in a Mediterranean system (Selva Basin
  publication-title: Ecological Indicators
– volume: 31
  start-page: 1163
  year: 2012
  end-page: 1186
  ident: b0200
  article-title: Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration
  publication-title: Freshwater Science
– volume: 62
  start-page: 243
  year: 1996
  end-page: 258
  ident: b0005
  article-title: Impervious Surface Coverage: The Emergence of a Key Environmental Indicator
  publication-title: J. Am. Plan. Assoc.
– volume: 7
  start-page: e45814
  year: 2012
  ident: b0245
  article-title: Urban Stormwater Runoff: A New Class of Environmental Flow Problem
  publication-title: PLoS One
– volume: 135
  start-page: 512
  year: 2009
  end-page: 520
  ident: b0055
  article-title: Natural Groundwater Recharge Response to Urbanization: Vermillion River Watershed
  publication-title: J. Water Resour. Plann. Manage.
– volume: 4
  start-page: 27
  year: 1987
  end-page: 39
  ident: b0015
  article-title: Fluxes of elements in rain passing through forest canopies in south-eastern Australia
  publication-title: Biogeochemistry
– year: 1968
  ident: b0125
  article-title: Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use
– volume: 15
  start-page: 1441
  year: 2001
  end-page: 1457
  ident: b0205
  article-title: Effects of urbanization on streamflow in the Atlanta area (Georgia
  publication-title: Hydrol. Process.
– year: 2002
  ident: b0095
  publication-title: Current Problems of Hydrogeology in Urban Areas, Urban Agglomerates and Industrial Centres
– start-page: n/a
  year: 2014
  end-page: n/a
  ident: b0175
  article-title: Changes in evapotranspiration following wildfire in resprouting eucalypt forests
  publication-title: Ecohydrology
– volume: 367
  start-page: 114243
  year: 2020
  ident: b0020
  article-title: Sorption and transport behavior of zinc in the soil
  publication-title: Geoderma
– volume: 76
  start-page: 501
  year: 1993
  end-page: 521
  ident: b0050
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Optim. Theory Appl.
– volume: 16
  start-page: 1411
  year: 2008
  end-page: 1426
  ident: b0160
  article-title: Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modelingEvaluation des impacts du changement climatique sur l’aquifère côtier de la Chaouïa,Maroc, en utilisant la modélisation numériqueEvaluación de los impactos de cambios climáticos en el acuífero costero Chaouia,Marruecos, usando modelación numérica
  publication-title: Hydrogeol. J.
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: b0255
  article-title: On the validation of models
  publication-title: Phys. Geogr.
– volume: 52
  start-page: 639
  year: 2010
  end-page: 668
  ident: b0260
  article-title: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies
  publication-title: Nat. Hazards.
– volume: 50
  start-page: 644
  year: 2019
  end-page: 654
  ident: b0135
  article-title: Multi-objective calibration of MIKE SHE with SMAP soil moisture datasets
  publication-title: Hydrol. Res.
– volume: 67
  start-page: 279
  year: 2006
  end-page: 291
  ident: b0060
  article-title: Root distribution of Eucalyptus grandis and Corymbia maculata in degraded saline soils of south-eastern Australia
  publication-title: Agrofor. Syst.
– volume: 173
  start-page: 115597
  year: 2020
  ident: b0230
  article-title: Transpiration by established trees could increase the efficiency of stormwater control measures
  publication-title: Water Res
– reference: Poozan, A., Western, A., Arora, M., Burns, M., Fletcher, T., 2020. The fate of infiltrated stormwater from infiltration basins to the stream: quantifying the impact of the urban karst, in: EGU General Assembly Conference Abstracts. p. 1928.
– year: 1998
  ident: b0220
  article-title: Revised FAO methodology for crop-water requirements
– volume: 34
  start-page: 615
  year: 2020
  end-page: 632
  ident: b0010
  article-title: Simulated response of an intermittent stream to rainfall frequency patterns
  publication-title: Hydrol. Process.
– volume: 270
  start-page: 309
  year: 2003
  end-page: 327
  ident: b0240
  article-title: Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment
  publication-title: J. Hydrol.
– volume: 52
  start-page: 4713
  year: 2016
  end-page: 4729
  ident: b0045
  article-title: Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 3306
  year: 2017
  end-page: 3319
  ident: b0065
  article-title: Evaluation of infiltration-based stormwater management to restore hydrological processes in urban headwater streams
  publication-title: Hydrol. Process.
– volume: 14
  start-page: 19
  year: 2015
  end-page: 29
  ident: b0165
  article-title: The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees
  publication-title: Urban Forestry & Urban Greening
– volume: 76
  start-page: 501
  issue: 3
  year: 1993
  ident: 10.1016/j.jhydrol.2022.127527_b0050
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939380
– volume: 15
  start-page: 409
  issue: 2
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127527_b0105
  article-title: The urban watershed continuum: Evolving spatial and temporal dimensions
  publication-title: Urban Ecosyst
  doi: 10.1007/s11252-012-0226-7
– volume: 84
  start-page: 441
  issue: 5
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127527_b0110
  article-title: Influence of near-to-nature stormwater management on the local water balance using the example of an urban development area
  publication-title: Water Environ. Res.
  doi: 10.2175/106143012X13347678384729
– volume: 367
  start-page: 114243
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127527_b0020
  article-title: Sorption and transport behavior of zinc in the soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114243
– year: 2002
  ident: 10.1016/j.jhydrol.2022.127527_b0095
– volume: 31
  start-page: 3306
  issue: 19
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127527_b0065
  article-title: Evaluation of infiltration-based stormwater management to restore hydrological processes in urban headwater streams
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11266
– volume: 2
  start-page: 184
  issue: 2
  year: 1981
  ident: 10.1016/j.jhydrol.2022.127527_b0255
  article-title: On the validation of models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
– volume: 31
  start-page: 1163
  issue: 4
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127527_b0200
  article-title: Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration
  publication-title: Freshwater Science
  doi: 10.1899/12-002.1
– volume: 34
  start-page: 615
  issue: 3
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127527_b0010
  article-title: Simulated response of an intermittent stream to rainfall frequency patterns
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13610
– ident: 10.1016/j.jhydrol.2022.127527_b0170
– volume: 52
  start-page: 639
  issue: 3
  year: 2010
  ident: 10.1016/j.jhydrol.2022.127527_b0260
  article-title: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-009-9406-z
– volume: 103
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.jhydrol.2022.127527_b0225
  article-title: Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2011.07.003
– year: 1980
  ident: 10.1016/j.jhydrol.2022.127527_b0235
  article-title: CLOSED-FORM EQUATION FOR PREDICTING THE HYDRAULIC CONDUCTIVITY OF UNSATURATED SOILS
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 485
  start-page: 177
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127527_b0215
  article-title: Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.10.043
– volume: 30
  start-page: 3156
  issue: 18
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127527_b0025
  article-title: Urban base flow with low impact development
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10808
– volume: 10
  start-page: 143
  issue: 1
  year: 2002
  ident: 10.1016/j.jhydrol.2022.127527_b0130
  article-title: Identifying and quantifying urban recharge: A review
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-001-0177-1
– volume: 270
  start-page: 309
  issue: 3-4
  year: 2003
  ident: 10.1016/j.jhydrol.2022.127527_b0240
  article-title: Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00308-6
– year: 1968
  ident: 10.1016/j.jhydrol.2022.127527_b0125
– volume: 50
  start-page: 644
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127527_b0135
  article-title: Multi-objective calibration of MIKE SHE with SMAP soil moisture datasets
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2018.110
– ident: 10.1016/j.jhydrol.2022.127527_b0035
  doi: 10.1007/978-3-319-99867-1_6
– volume: 178
  start-page: 122
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127527_b0085
  article-title: Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2018.06.002
– start-page: n/a
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127527_b0175
  article-title: Changes in evapotranspiration following wildfire in resprouting eucalypt forests
  publication-title: Ecohydrology
– year: 1998
  ident: 10.1016/j.jhydrol.2022.127527_b0220
– volume: 52
  start-page: 4713
  issue: 6
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127527_b0045
  article-title: Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR018663
– volume: 135
  start-page: 512
  issue: 6
  year: 2009
  ident: 10.1016/j.jhydrol.2022.127527_b0055
  article-title: Natural Groundwater Recharge Response to Urbanization: Vermillion River Watershed
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)0733-9496(2009)135:6(512)
– volume: 14
  start-page: 19
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127527_b0165
  article-title: The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees
  publication-title: Urban Forestry & Urban Greening
  doi: 10.1016/j.ufug.2014.11.007
– volume: 67
  start-page: 279
  issue: 3
  year: 2006
  ident: 10.1016/j.jhydrol.2022.127527_b0060
  article-title: Root distribution of Eucalyptus grandis and Corymbia maculata in degraded saline soils of south-eastern Australia
  publication-title: Agrofor. Syst.
  doi: 10.1007/s10457-005-5258-z
– year: 1975
  ident: 10.1016/j.jhydrol.2022.127527_b0120
  article-title: MODEL FOR ESTIMATING ACTUAL EVAPOTRANSPIRATION FROM POTENTIAL EVAPOTRANSPIRATION
  publication-title: Nord Hydrol
  doi: 10.2166/nh.1975.0012
– volume: 525
  start-page: 506
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127527_b0115
  article-title: Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.04.007
– year: 2010
  ident: 10.1016/j.jhydrol.2022.127527_b0155
– volume: 26
  start-page: 205
  issue: 2
  year: 2003
  ident: 10.1016/j.jhydrol.2022.127527_b0145
  article-title: Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(02)00092-1
– volume: 544
  start-page: 524
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127527_b0140
  article-title: Hydrologic impact of urbanization with extensive stormwater infiltration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.030
– ident: 10.1016/j.jhydrol.2022.127527_b0190
  doi: 10.5194/egusphere-egu2020-1928
– volume: 7
  start-page: e45814
  issue: 9
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127527_b0245
  article-title: Urban Stormwater Runoff: A New Class of Environmental Flow Problem
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045814
– volume: 16
  start-page: 1411
  issue: 7
  year: 2008
  ident: 10.1016/j.jhydrol.2022.127527_b0160
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-008-0311-4
– volume: 251
  start-page: 163
  issue: 3-4
  year: 2001
  ident: 10.1016/j.jhydrol.2022.127527_b0210
  article-title: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00466-8
– volume: 62
  start-page: 243
  issue: 2
  year: 1996
  ident: 10.1016/j.jhydrol.2022.127527_b0005
  article-title: Impervious Surface Coverage: The Emergence of a Key Environmental Indicator
  publication-title: J. Am. Plan. Assoc.
  doi: 10.1080/01944369608975688
– volume: 561
  start-page: 413
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127527_b0030
  article-title: The impact of urbanization on subsurface flow paths – A paired-catchment isotopic study
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.022
– ident: 10.1016/j.jhydrol.2022.127527_b0090
  doi: 10.1111/j.1752-1688.2009.00345.x
– volume: 51
  start-page: 261
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127527_b0075
  article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.09.001
– volume: 19
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127527_b0070
  article-title: Parameter sensitivity of SWAP–PEARL models for pesticide leaching in macroporous soils
  publication-title: Vadose Zo. J.
– ident: 10.1016/j.jhydrol.2022.127527_b0195
– year: 2012
  ident: 10.1016/j.jhydrol.2022.127527_b0100
– volume: 173
  start-page: 115597
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127527_b0230
  article-title: Transpiration by established trees could increase the efficiency of stormwater control measures
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115597
– volume: 4
  start-page: 27
  issue: 1
  year: 1987
  ident: 10.1016/j.jhydrol.2022.127527_b0015
  article-title: Fluxes of elements in rain passing through forest canopies in south-eastern Australia
  publication-title: Biogeochemistry
  doi: 10.1007/BF02187360
– volume: 492
  start-page: 219
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127527_b0080
  article-title: Validation of canopy transpiration in a mixed-species foothill eucalypt forest using a soil-plant-atmosphere model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.03.051
– volume: 30
  start-page: 492
  issue: 4
  year: 2002
  ident: 10.1016/j.jhydrol.2022.127527_b0040
  article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-002-2737-0
– volume: 54
  start-page: 4663
  issue: 7
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127527_b0185
  article-title: Statistical Interpolation of Groundwater Hydrographs
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR021838
– volume: 69
  start-page: 1312
  issue: 6
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127527_b0180
  article-title: Biofilter design for effective nitrogen removal from stormwater – Influence of plant species, inflow hydrology and use of a saturated zone
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2014.013
– volume: 16
  start-page: 104014
  issue: 10
  year: 2021
  ident: 10.1016/j.jhydrol.2022.127527_b0250
  article-title: Impacts of stormwater infiltration on downslope soil moisture and tree water use
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac1c2a
– volume: 10
  start-page: 915
  issue: 5
  year: 2010
  ident: 10.1016/j.jhydrol.2022.127527_b0150
  article-title: Influence of groundwater exploitation on the ecological status of streams in a Mediterranean system (Selva Basin
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2010.02.001
– volume: 15
  start-page: 1441
  issue: 8
  year: 2001
  ident: 10.1016/j.jhydrol.2022.127527_b0205
  article-title: Effects of urbanization on streamflow in the Atlanta area (Georgia
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.218
SSID ssj0000334
Score 2.4405918
Snippet •Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated...
A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127527
SubjectTerms base flow
Baseflow
Evapotranspiration
freshwater
groundwater
groundwater recharge
microclimate
model validation
Modelling
stormwater
Stormwater infiltration
streams
uncertainty
Urban
vegetation
Title Modelling the interaction between vegetation and infiltrated stormwater
URI https://dx.doi.org/10.1016/j.jhydrol.2022.127527
https://www.proquest.com/docview/2636437749
Volume 607
WOSCitedRecordID wos000790827500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4IXxKcYXwoS4qVKSeo0iR8L6vhQVfbQQd8s27G3VV1S2m5s--u5i-2kGkMbD7xEVeRL0ruf7PPd-XeEvKVa9yMVy1AUohcmIpdhrgVsVeIiTuI4ZaIOXXwfZeNxPp2yPRfKXtXtBLKyzM_O2OK_mhrugbHx6Ow_mLt5KNyA32B0uILZ4Xojw2N3M0u0jT4l0kEsXT9wX5N1qg98kaHlXjJH85qktuhgreTxL-Frdv_0Wg_Pi6WlbQLXdHCMNAsFYqqJJ-xV1YUNqg5kNTfioinhcKGdzg9LznCpnNL3Yel8gHfZELhtRd5Csqp7Irn4rYtUwCa3LXBpTw6A-ZPN2TeNss6iizTzvSy8ck634YVZd2b_YRcf7QTaRcwn7sff-O7-aMQnw-nk3eJniO3FMA3veq3cJtsgyGD62x58GU6_tos2pYknlsdPbA97vb_yzX9zYy4t6LWXMnlA7jtDBQMLi4fkli4fkbuu0_3h-WPyqYFHAMoNNuAROHgELTwCgEewAY-ghccTsr87nHz8HLpmGqGiSW8dyoyaWMV52teZZLnpR1LkihmlNC0k-C8mzmGAkqmmVDPRT7TMmNQ6MoZhLvsp2SqrUj8jAeb-qWC429SJEqmQMDbSpqBSFeAS7ZDE64YrxzSPDU_m3JcUzrhTKUeVcqvSHdJtxBaWauU6gdwrnjt_0fqBHKBznegbbygO8ykmyUSpq5MV76UUc9lZwp7fYMwLcq9F-kuytV6e6FfkjjpdH62Wrx3IfgM6xJyQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+interaction+between+vegetation+and+infiltrated+stormwater&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Poozan%2C+Abolfazl&rft.au=William+Western%2C+Andrew&rft.au=James+Burns%2C+Matthew&rft.au=Arora%2C+M&rft.date=2022-04-01&rft.issn=0022-1694&rft.volume=607+p.127527-&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.127527&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon