Modelling the interaction between vegetation and infiltrated stormwater
•Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated stormwater.•Infiltration basins should be placed near waterways to increase baseflows. A major problem associated with sealing native soils with impervious...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 607; s. 127527 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2022
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated stormwater.•Infiltration basins should be placed near waterways to increase baseflows.
A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream baseflows which has serious implications for freshwater ecosystems. To address this problem, the use of stormwater infiltration systems is becoming increasingly common worldwide. There is, however, substantial uncertainty on the fate of infiltrated stormwater and its interactions with downslope vegetation. This study aimed to investigate the role of vegetation on the amount of infiltrated stormwater reaching the stream. A model using MIKE SHE was constructed, calibrated, and validated based on a real infiltration system which features extensive vegetation between the site of stormwater infiltration and the stream. We then used the calibrated model to predict the amount of infiltrated stormwater reaching the stream in the absence of vegetation. We also predicted the impact of infiltrated stormwater on the evapotranspiration downslope of the system. The results showed that the performance of the model was satisfactory, and the model captured the overall groundwater dynamic very well. The amount of infiltrated stormwater reaching the stream increased by about 17 percent in the absence of vegetation. The model also predicted that evapotranspiration would be 13 percent lower in the warmer months if stormwater was not infiltrated upslope. The results suggest that the choice of location of infiltration systems should consider the potential of vegetation to intercept infiltrated water and impact on achievement of the design objectives, which, in this case, included restoring baseflow. Where increasing the baseflows is not a priority, the increased evapotranspiration afforded by stormwater infiltration could provide important microclimate benefits. |
|---|---|
| AbstractList | A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream baseflows which has serious implications for freshwater ecosystems. To address this problem, the use of stormwater infiltration systems is becoming increasingly common worldwide. There is, however, substantial uncertainty on the fate of infiltrated stormwater and its interactions with downslope vegetation. This study aimed to investigate the role of vegetation on the amount of infiltrated stormwater reaching the stream. A model using MIKE SHE was constructed, calibrated, and validated based on a real infiltration system which features extensive vegetation between the site of stormwater infiltration and the stream. We then used the calibrated model to predict the amount of infiltrated stormwater reaching the stream in the absence of vegetation. We also predicted the impact of infiltrated stormwater on the evapotranspiration downslope of the system. The results showed that the performance of the model was satisfactory, and the model captured the overall groundwater dynamic very well. The amount of infiltrated stormwater reaching the stream increased by about 17 percent in the absence of vegetation. The model also predicted that evapotranspiration would be 13 percent lower in the warmer months if stormwater was not infiltrated upslope. The results suggest that the choice of location of infiltration systems should consider the potential of vegetation to intercept infiltrated water and impact on achievement of the design objectives, which, in this case, included restoring baseflow. Where increasing the baseflows is not a priority, the increased evapotranspiration afforded by stormwater infiltration could provide important microclimate benefits. •Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated stormwater.•Infiltration basins should be placed near waterways to increase baseflows. A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream baseflows which has serious implications for freshwater ecosystems. To address this problem, the use of stormwater infiltration systems is becoming increasingly common worldwide. There is, however, substantial uncertainty on the fate of infiltrated stormwater and its interactions with downslope vegetation. This study aimed to investigate the role of vegetation on the amount of infiltrated stormwater reaching the stream. A model using MIKE SHE was constructed, calibrated, and validated based on a real infiltration system which features extensive vegetation between the site of stormwater infiltration and the stream. We then used the calibrated model to predict the amount of infiltrated stormwater reaching the stream in the absence of vegetation. We also predicted the impact of infiltrated stormwater on the evapotranspiration downslope of the system. The results showed that the performance of the model was satisfactory, and the model captured the overall groundwater dynamic very well. The amount of infiltrated stormwater reaching the stream increased by about 17 percent in the absence of vegetation. The model also predicted that evapotranspiration would be 13 percent lower in the warmer months if stormwater was not infiltrated upslope. The results suggest that the choice of location of infiltration systems should consider the potential of vegetation to intercept infiltrated water and impact on achievement of the design objectives, which, in this case, included restoring baseflow. Where increasing the baseflows is not a priority, the increased evapotranspiration afforded by stormwater infiltration could provide important microclimate benefits. |
| ArticleNumber | 127527 |
| Author | James Burns, Matthew Poozan, Abolfazl Arora, Meenakshi William Western, Andrew |
| Author_xml | – sequence: 1 givenname: Abolfazl surname: Poozan fullname: Poozan, Abolfazl email: apoozan@student.unimelb.edu.au organization: Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia – sequence: 2 givenname: Andrew surname: William Western fullname: William Western, Andrew organization: Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia – sequence: 3 givenname: Matthew surname: James Burns fullname: James Burns, Matthew organization: School of Ecosystem and Forest Sciences, University of Melbourne, Victoria 3121, Australia – sequence: 4 givenname: Meenakshi surname: Arora fullname: Arora, Meenakshi organization: Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia |
| BookMark | eNqFkD9PwzAQxS1UJNrCR0DKyJLgP0kciwGhCgoSiAVmy3Eu4Cq1i21a9dtjSCeW3nKnu_dOer8ZmlhnAaFLgguCSX29Klaf-867oaCY0oJQXlF-gqak4SKnHPMJmuJ0yUktyjM0C2GFUzFWTtHyxXUwDMZ-ZPETMmMjeKWjcTZrIe4AbLaFD4jqb6VslyS9GaJXEbosROfXuzT6c3TaqyHAxaHP0fvD_dviMX9-XT4t7p5zzUoa85aznmjS1BXwVjR9hVvVaNFrDaxrCU3XJgl0WwNjIFRVQstFC4D7XjSCsDm6Gv9uvPv6hhDl2gSdEigL7jtIWrO6ZJyXIkmrUaq9C8FDLzferJXfS4LlLzi5kgdw8hecHMEl380_nzZj_pTaDEfdt6MbEoWtAS-DNmA1dMaDjrJz5siHH0XfkY0 |
| CitedBy_id | crossref_primary_10_3390_w16223335 crossref_primary_10_1007_s10653_023_01732_3 crossref_primary_10_1016_j_jhydrol_2024_130738 crossref_primary_10_1016_j_geosus_2025_100333 crossref_primary_10_1016_j_ufug_2023_128200 crossref_primary_10_1016_j_jhydrol_2023_129188 crossref_primary_10_1016_j_jhydrol_2024_131731 crossref_primary_10_3390_app15179516 crossref_primary_10_1016_j_uclim_2023_101643 crossref_primary_10_1016_j_cities_2025_105941 |
| Cites_doi | 10.1007/BF00939380 10.1007/s11252-012-0226-7 10.2175/106143012X13347678384729 10.1016/j.geoderma.2020.114243 10.1002/hyp.11266 10.1080/02723646.1981.10642213 10.1899/12-002.1 10.1002/hyp.13610 10.1007/s11069-009-9406-z 10.1016/j.landurbplan.2011.07.003 10.2136/sssaj1980.03615995004400050002x 10.1016/j.jhydrol.2012.10.043 10.1002/hyp.10808 10.1007/s10040-001-0177-1 10.1016/S0022-1694(02)00308-6 10.2166/nh.2018.110 10.1007/978-3-319-99867-1_6 10.1016/j.landurbplan.2018.06.002 10.1002/2016WR018663 10.1061/(ASCE)0733-9496(2009)135:6(512) 10.1016/j.ufug.2014.11.007 10.1007/s10457-005-5258-z 10.2166/nh.1975.0012 10.1016/j.jhydrol.2015.04.007 10.1016/S0309-1708(02)00092-1 10.1016/j.jhydrol.2016.11.030 10.5194/egusphere-egu2020-1928 10.1371/journal.pone.0045814 10.1007/s10040-008-0311-4 10.1016/S0022-1694(01)00466-8 10.1080/01944369608975688 10.1016/j.jhydrol.2018.04.022 10.1111/j.1752-1688.2009.00345.x 10.1016/j.advwatres.2012.09.001 10.1016/j.watres.2020.115597 10.1007/BF02187360 10.1016/j.jhydrol.2013.03.051 10.1007/s00267-002-2737-0 10.1029/2017WR021838 10.2166/wst.2014.013 10.1088/1748-9326/ac1c2a 10.1016/j.ecolind.2010.02.001 10.1002/hyp.218 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2022.127527 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2022_127527 S0022169422001020 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-b73f1c1865e7b98f50ba8c9fcce3db123f18f1ccb6e33e9a54eb79bee0ff98913 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790827500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Wed Oct 01 15:09:05 EDT 2025 Sat Nov 29 07:26:41 EST 2025 Tue Nov 18 20:54:30 EST 2025 Fri Feb 23 02:39:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stormwater infiltration Urban Baseflow Modelling Evapotranspiration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-b73f1c1865e7b98f50ba8c9fcce3db123f18f1ccb6e33e9a54eb79bee0ff98913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2636437749 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636437749 crossref_primary_10_1016_j_jhydrol_2022_127527 crossref_citationtrail_10_1016_j_jhydrol_2022_127527 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_127527 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Poozan, A., Western, A., Arora, M., Burns, M., Fletcher, T., 2020. The fate of infiltrated stormwater from infiltration basins to the stream: quantifying the impact of the urban karst, in: EGU General Assembly Conference Abstracts. p. 1928. Mullaney, Lucke, Trueman (b0165) 2015; 14 Keßler, Meyer, Seeling, Tressel, Krein (b0110) 2012; 84 Peterson, Western (b0185) 2018; 54 Arnold, Gibbons (b0005) 1996; 62 Kidmose, Troldborg, Refsgaard, Bischoff (b0115) 2015; 525 Shuster, Rhea (b0215) 2013; 485 Azarnivand, Camporese, Alaghmand, Daly (b0010) 2020; 34 Leopold (b0125) 1968 Walsh, Fletcher, Burns, Gilbert (b0245) 2012; 7 Fanelli, Prestegaard, Palmer (b0065) 2017; 31 Grey, Livesley, Fletcher, Szota (b0085) 2018; 178 Menció, Mas-Pla (b0150) 2010; 10 (b0095) 2002 Dean, Camporese, Webb, Grover, Dresel, Daly (b0045) 2016; 52 Thom, Szota, Coutts, Fletcher, Livesley (b0230) 2020; 173 Duan, Gupta, Sorooshian (b0050) 1993; 76 Erickson, Stefan (b0055) 2009; 135 Smith, Allen, Pereira (b0220) 1998 Lerner (b0130) 2002; 10 Locatelli, Mark, Mikkelsen, Arnbjerg-Nielsen, Deletic, Roldin, Binning (b0140) 2017; 544 Behroozi, Arora, Fletcher, Western (b0020) 2020; 367 Rolls, Leigh, Sheldon (b0200) 2012; 31 Refsgaard, J.C., Storm, B., 1995. MIKE SHE, in: Computer Models of Watershed Hydrology. Gharun, Turnbull, Adams (b0080) 2013; 492 Hardison, E.C., O’Driscoll, M.A., Deloatch, J.P., Howard, R.J., Brinson, M.M., 2009. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. J. Am. Water Resour. Assoc. 10.1111/j.1752-1688.2009.00345.x. van Genuchten (b0235) 1980 Falkiner, Nambiar, Polglase, Theiveyanathan, Stewart (b0060) 2006; 67 Fletcher, Andrieu, Hamel (b0075) 2013; 51 Bonneau, J., Fletcher, T.D., Costelloe, J.F., Poelsma, P.J., James, R.B., Burns, M.J., 2018b. Where does infiltrated stormwater go? Interactions with vegetation and subsurface anthropogenic features. J. Hydrol. 10.1016/j.jhydrol.2018.10.006. Madsen (b0145) 2003; 26 Bonneau, Burns, Fletcher, Witt, Drysdale, Costelloe (b0030) 2018; 561 Baker, Attiwill (b0015) 1987; 4 Zhou, Shepherd (b0260) 2010; 52 Mitchell, Benyon, Lane (b0155) 2010 Rose, Peters (b0205) 2001; 15 Tallis, Taylor, Sinnett, Freer-Smith (b0225) 2011; 103 Li, Liang, Li, Lei, Zhou (b0135) 2019; 50 Jaber, Shukla (b0100) 2012 Schaap, Leij, van Genuchten (b0210) 2001; 251 Western, Arora, Burns, Bonneau, Thom, Yong, James, Poelsma, Fletcher (b0250) 2021; 16 Ngan, G., 2012. Stormwater Source Control Design Guidelines 2012. Moustadraf, Razack, Sinan (b0160) 2008; 16 Willmott (b0255) 1981; 2 Bunn, Arthington (b0040) 2002; 30 Bhaskar, Hogan, Archfield (b0025) 2016; 30 Payne, Pham, Cook, Fletcher, Hatt, Deletic (b0180) 2014; 69 Kaushal, Belt (b0105) 2012; 15 Kristensen, Jensen (b0120) 1975 Nolan, Lane, Benyon, Bradstock, Mitchell (b0175) 2014 Vázquez, Feyen (b0240) 2003; 270 Faúndez Urbina, den Berg, Dam, Tang, Ritsema (b0070) 2020; 19 Western (10.1016/j.jhydrol.2022.127527_b0250) 2021; 16 Kristensen (10.1016/j.jhydrol.2022.127527_b0120) 1975 Peterson (10.1016/j.jhydrol.2022.127527_b0185) 2018; 54 Kidmose (10.1016/j.jhydrol.2022.127527_b0115) 2015; 525 Li (10.1016/j.jhydrol.2022.127527_b0135) 2019; 50 Madsen (10.1016/j.jhydrol.2022.127527_b0145) 2003; 26 10.1016/j.jhydrol.2022.127527_b0090 Behroozi (10.1016/j.jhydrol.2022.127527_b0020) 2020; 367 Keßler (10.1016/j.jhydrol.2022.127527_b0110) 2012; 84 10.1016/j.jhydrol.2022.127527_b0170 Jaber (10.1016/j.jhydrol.2022.127527_b0100) 2012 Vázquez (10.1016/j.jhydrol.2022.127527_b0240) 2003; 270 Leopold (10.1016/j.jhydrol.2022.127527_b0125) 1968 Mullaney (10.1016/j.jhydrol.2022.127527_b0165) 2015; 14 Rolls (10.1016/j.jhydrol.2022.127527_b0200) 2012; 31 Payne (10.1016/j.jhydrol.2022.127527_b0180) 2014; 69 Fanelli (10.1016/j.jhydrol.2022.127527_b0065) 2017; 31 Bhaskar (10.1016/j.jhydrol.2022.127527_b0025) 2016; 30 Dean (10.1016/j.jhydrol.2022.127527_b0045) 2016; 52 Falkiner (10.1016/j.jhydrol.2022.127527_b0060) 2006; 67 Moustadraf (10.1016/j.jhydrol.2022.127527_b0160) 2008; 16 Locatelli (10.1016/j.jhydrol.2022.127527_b0140) 2017; 544 Bunn (10.1016/j.jhydrol.2022.127527_b0040) 2002; 30 Nolan (10.1016/j.jhydrol.2022.127527_b0175) 2014 Smith (10.1016/j.jhydrol.2022.127527_b0220) 1998 van Genuchten (10.1016/j.jhydrol.2022.127527_b0235) 1980 Grey (10.1016/j.jhydrol.2022.127527_b0085) 2018; 178 Rose (10.1016/j.jhydrol.2022.127527_b0205) 2001; 15 Erickson (10.1016/j.jhydrol.2022.127527_b0055) 2009; 135 Mitchell (10.1016/j.jhydrol.2022.127527_b0155) 2010 10.1016/j.jhydrol.2022.127527_b0035 Duan (10.1016/j.jhydrol.2022.127527_b0050) 1993; 76 Thom (10.1016/j.jhydrol.2022.127527_b0230) 2020; 173 Shuster (10.1016/j.jhydrol.2022.127527_b0215) 2013; 485 Lerner (10.1016/j.jhydrol.2022.127527_b0130) 2002; 10 Baker (10.1016/j.jhydrol.2022.127527_b0015) 1987; 4 Menció (10.1016/j.jhydrol.2022.127527_b0150) 2010; 10 10.1016/j.jhydrol.2022.127527_b0190 Azarnivand (10.1016/j.jhydrol.2022.127527_b0010) 2020; 34 10.1016/j.jhydrol.2022.127527_b0195 Bonneau (10.1016/j.jhydrol.2022.127527_b0030) 2018; 561 Walsh (10.1016/j.jhydrol.2022.127527_b0245) 2012; 7 Faúndez Urbina (10.1016/j.jhydrol.2022.127527_b0070) 2020; 19 Tallis (10.1016/j.jhydrol.2022.127527_b0225) 2011; 103 Kaushal (10.1016/j.jhydrol.2022.127527_b0105) 2012; 15 Willmott (10.1016/j.jhydrol.2022.127527_b0255) 1981; 2 Fletcher (10.1016/j.jhydrol.2022.127527_b0075) 2013; 51 (10.1016/j.jhydrol.2022.127527_b0095) 2002 Zhou (10.1016/j.jhydrol.2022.127527_b0260) 2010; 52 Arnold (10.1016/j.jhydrol.2022.127527_b0005) 1996; 62 Gharun (10.1016/j.jhydrol.2022.127527_b0080) 2013; 492 Schaap (10.1016/j.jhydrol.2022.127527_b0210) 2001; 251 |
| References_xml | – volume: 54 start-page: 4663 year: 2018 end-page: 4680 ident: b0185 article-title: Statistical Interpolation of Groundwater Hydrographs publication-title: Water Resour. Res. – volume: 84 start-page: 441 year: 2012 end-page: 451 ident: b0110 article-title: Influence of near-to-nature stormwater management on the local water balance using the example of an urban development area publication-title: Water Environ. Res. – reference: Bonneau, J., Fletcher, T.D., Costelloe, J.F., Poelsma, P.J., James, R.B., Burns, M.J., 2018b. Where does infiltrated stormwater go? Interactions with vegetation and subsurface anthropogenic features. J. Hydrol. 10.1016/j.jhydrol.2018.10.006. – reference: Refsgaard, J.C., Storm, B., 1995. MIKE SHE, in: Computer Models of Watershed Hydrology. – volume: 30 start-page: 3156 year: 2016 end-page: 3171 ident: b0025 article-title: Urban base flow with low impact development publication-title: Hydrol. Process. – volume: 178 start-page: 122 year: 2018 end-page: 129 ident: b0085 article-title: Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided publication-title: Landscape and Urban Planning – reference: Ngan, G., 2012. Stormwater Source Control Design Guidelines 2012. – year: 1980 ident: b0235 article-title: CLOSED-FORM EQUATION FOR PREDICTING THE HYDRAULIC CONDUCTIVITY OF UNSATURATED SOILS publication-title: Soil Sci. Soc. Am. J. – volume: 15 start-page: 409 year: 2012 end-page: 435 ident: b0105 article-title: The urban watershed continuum: Evolving spatial and temporal dimensions publication-title: Urban Ecosyst – volume: 544 start-page: 524 year: 2017 end-page: 537 ident: b0140 article-title: Hydrologic impact of urbanization with extensive stormwater infiltration publication-title: J. Hydrol. – volume: 103 start-page: 129 year: 2011 end-page: 138 ident: b0225 article-title: Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments publication-title: Landscape and Urban Planning – volume: 492 start-page: 219 year: 2013 end-page: 227 ident: b0080 article-title: Validation of canopy transpiration in a mixed-species foothill eucalypt forest using a soil-plant-atmosphere model publication-title: J. Hydrol. – volume: 10 start-page: 143 year: 2002 end-page: 152 ident: b0130 article-title: Identifying and quantifying urban recharge: A review publication-title: Hydrogeol. J. – year: 1975 ident: b0120 article-title: MODEL FOR ESTIMATING ACTUAL EVAPOTRANSPIRATION FROM POTENTIAL EVAPOTRANSPIRATION publication-title: Nord Hydrol – volume: 26 start-page: 205 year: 2003 end-page: 216 ident: b0145 article-title: Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives publication-title: Adv. Water Resour. – volume: 16 start-page: 104014 year: 2021 ident: b0250 article-title: Impacts of stormwater infiltration on downslope soil moisture and tree water use publication-title: Environ. Res. Lett. – volume: 561 start-page: 413 year: 2018 end-page: 426 ident: b0030 article-title: The impact of urbanization on subsurface flow paths – A paired-catchment isotopic study publication-title: J. Hydrol. – volume: 69 start-page: 1312 year: 2014 end-page: 1319 ident: b0180 article-title: Biofilter design for effective nitrogen removal from stormwater – Influence of plant species, inflow hydrology and use of a saturated zone publication-title: Water Sci. Technol. – volume: 525 start-page: 506 year: 2015 end-page: 520 ident: b0115 article-title: Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration publication-title: J. Hydrol. – volume: 19 year: 2020 ident: b0070 article-title: Parameter sensitivity of SWAP–PEARL models for pesticide leaching in macroporous soils publication-title: Vadose Zo. J. – volume: 485 start-page: 177 year: 2013 end-page: 187 ident: b0215 article-title: Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA) publication-title: J. Hydrol. – volume: 251 start-page: 163 year: 2001 end-page: 176 ident: b0210 article-title: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions publication-title: J. Hydrol. – volume: 51 start-page: 261 year: 2013 end-page: 279 ident: b0075 article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art publication-title: Adv. Water Resour. – year: 2010 ident: b0155 article-title: Water use of mixed species eucalypt forests – reference: Hardison, E.C., O’Driscoll, M.A., Deloatch, J.P., Howard, R.J., Brinson, M.M., 2009. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. J. Am. Water Resour. Assoc. 10.1111/j.1752-1688.2009.00345.x. – year: 2012 ident: b0100 article-title: MIKE SHE: MODEL USE, CALIBRATION – volume: 30 start-page: 492 year: 2002 end-page: 507 ident: b0040 article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity publication-title: Environ. Manage. – volume: 10 start-page: 915 year: 2010 end-page: 926 ident: b0150 article-title: Influence of groundwater exploitation on the ecological status of streams in a Mediterranean system (Selva Basin publication-title: Ecological Indicators – volume: 31 start-page: 1163 year: 2012 end-page: 1186 ident: b0200 article-title: Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration publication-title: Freshwater Science – volume: 62 start-page: 243 year: 1996 end-page: 258 ident: b0005 article-title: Impervious Surface Coverage: The Emergence of a Key Environmental Indicator publication-title: J. Am. Plan. Assoc. – volume: 7 start-page: e45814 year: 2012 ident: b0245 article-title: Urban Stormwater Runoff: A New Class of Environmental Flow Problem publication-title: PLoS One – volume: 135 start-page: 512 year: 2009 end-page: 520 ident: b0055 article-title: Natural Groundwater Recharge Response to Urbanization: Vermillion River Watershed publication-title: J. Water Resour. Plann. Manage. – volume: 4 start-page: 27 year: 1987 end-page: 39 ident: b0015 article-title: Fluxes of elements in rain passing through forest canopies in south-eastern Australia publication-title: Biogeochemistry – year: 1968 ident: b0125 article-title: Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use – volume: 15 start-page: 1441 year: 2001 end-page: 1457 ident: b0205 article-title: Effects of urbanization on streamflow in the Atlanta area (Georgia publication-title: Hydrol. Process. – year: 2002 ident: b0095 publication-title: Current Problems of Hydrogeology in Urban Areas, Urban Agglomerates and Industrial Centres – start-page: n/a year: 2014 end-page: n/a ident: b0175 article-title: Changes in evapotranspiration following wildfire in resprouting eucalypt forests publication-title: Ecohydrology – volume: 367 start-page: 114243 year: 2020 ident: b0020 article-title: Sorption and transport behavior of zinc in the soil publication-title: Geoderma – volume: 76 start-page: 501 year: 1993 end-page: 521 ident: b0050 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: J. Optim. Theory Appl. – volume: 16 start-page: 1411 year: 2008 end-page: 1426 ident: b0160 article-title: Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modelingEvaluation des impacts du changement climatique sur l’aquifère côtier de la Chaouïa,Maroc, en utilisant la modélisation numériqueEvaluación de los impactos de cambios climáticos en el acuífero costero Chaouia,Marruecos, usando modelación numérica publication-title: Hydrogeol. J. – volume: 2 start-page: 184 year: 1981 end-page: 194 ident: b0255 article-title: On the validation of models publication-title: Phys. Geogr. – volume: 52 start-page: 639 year: 2010 end-page: 668 ident: b0260 article-title: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies publication-title: Nat. Hazards. – volume: 50 start-page: 644 year: 2019 end-page: 654 ident: b0135 article-title: Multi-objective calibration of MIKE SHE with SMAP soil moisture datasets publication-title: Hydrol. Res. – volume: 67 start-page: 279 year: 2006 end-page: 291 ident: b0060 article-title: Root distribution of Eucalyptus grandis and Corymbia maculata in degraded saline soils of south-eastern Australia publication-title: Agrofor. Syst. – volume: 173 start-page: 115597 year: 2020 ident: b0230 article-title: Transpiration by established trees could increase the efficiency of stormwater control measures publication-title: Water Res – reference: Poozan, A., Western, A., Arora, M., Burns, M., Fletcher, T., 2020. The fate of infiltrated stormwater from infiltration basins to the stream: quantifying the impact of the urban karst, in: EGU General Assembly Conference Abstracts. p. 1928. – year: 1998 ident: b0220 article-title: Revised FAO methodology for crop-water requirements – volume: 34 start-page: 615 year: 2020 end-page: 632 ident: b0010 article-title: Simulated response of an intermittent stream to rainfall frequency patterns publication-title: Hydrol. Process. – volume: 270 start-page: 309 year: 2003 end-page: 327 ident: b0240 article-title: Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment publication-title: J. Hydrol. – volume: 52 start-page: 4713 year: 2016 end-page: 4729 ident: b0045 article-title: Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling publication-title: Water Resour. Res. – volume: 31 start-page: 3306 year: 2017 end-page: 3319 ident: b0065 article-title: Evaluation of infiltration-based stormwater management to restore hydrological processes in urban headwater streams publication-title: Hydrol. Process. – volume: 14 start-page: 19 year: 2015 end-page: 29 ident: b0165 article-title: The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees publication-title: Urban Forestry & Urban Greening – volume: 76 start-page: 501 issue: 3 year: 1993 ident: 10.1016/j.jhydrol.2022.127527_b0050 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939380 – volume: 15 start-page: 409 issue: 2 year: 2012 ident: 10.1016/j.jhydrol.2022.127527_b0105 article-title: The urban watershed continuum: Evolving spatial and temporal dimensions publication-title: Urban Ecosyst doi: 10.1007/s11252-012-0226-7 – volume: 84 start-page: 441 issue: 5 year: 2012 ident: 10.1016/j.jhydrol.2022.127527_b0110 article-title: Influence of near-to-nature stormwater management on the local water balance using the example of an urban development area publication-title: Water Environ. Res. doi: 10.2175/106143012X13347678384729 – volume: 367 start-page: 114243 year: 2020 ident: 10.1016/j.jhydrol.2022.127527_b0020 article-title: Sorption and transport behavior of zinc in the soil publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114243 – year: 2002 ident: 10.1016/j.jhydrol.2022.127527_b0095 – volume: 31 start-page: 3306 issue: 19 year: 2017 ident: 10.1016/j.jhydrol.2022.127527_b0065 article-title: Evaluation of infiltration-based stormwater management to restore hydrological processes in urban headwater streams publication-title: Hydrol. Process. doi: 10.1002/hyp.11266 – volume: 2 start-page: 184 issue: 2 year: 1981 ident: 10.1016/j.jhydrol.2022.127527_b0255 article-title: On the validation of models publication-title: Phys. Geogr. doi: 10.1080/02723646.1981.10642213 – volume: 31 start-page: 1163 issue: 4 year: 2012 ident: 10.1016/j.jhydrol.2022.127527_b0200 article-title: Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration publication-title: Freshwater Science doi: 10.1899/12-002.1 – volume: 34 start-page: 615 issue: 3 year: 2020 ident: 10.1016/j.jhydrol.2022.127527_b0010 article-title: Simulated response of an intermittent stream to rainfall frequency patterns publication-title: Hydrol. Process. doi: 10.1002/hyp.13610 – ident: 10.1016/j.jhydrol.2022.127527_b0170 – volume: 52 start-page: 639 issue: 3 year: 2010 ident: 10.1016/j.jhydrol.2022.127527_b0260 article-title: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies publication-title: Nat. Hazards. doi: 10.1007/s11069-009-9406-z – volume: 103 start-page: 129 issue: 2 year: 2011 ident: 10.1016/j.jhydrol.2022.127527_b0225 article-title: Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2011.07.003 – year: 1980 ident: 10.1016/j.jhydrol.2022.127527_b0235 article-title: CLOSED-FORM EQUATION FOR PREDICTING THE HYDRAULIC CONDUCTIVITY OF UNSATURATED SOILS publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 485 start-page: 177 year: 2013 ident: 10.1016/j.jhydrol.2022.127527_b0215 article-title: Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.10.043 – volume: 30 start-page: 3156 issue: 18 year: 2016 ident: 10.1016/j.jhydrol.2022.127527_b0025 article-title: Urban base flow with low impact development publication-title: Hydrol. Process. doi: 10.1002/hyp.10808 – volume: 10 start-page: 143 issue: 1 year: 2002 ident: 10.1016/j.jhydrol.2022.127527_b0130 article-title: Identifying and quantifying urban recharge: A review publication-title: Hydrogeol. J. doi: 10.1007/s10040-001-0177-1 – volume: 270 start-page: 309 issue: 3-4 year: 2003 ident: 10.1016/j.jhydrol.2022.127527_b0240 article-title: Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00308-6 – year: 1968 ident: 10.1016/j.jhydrol.2022.127527_b0125 – volume: 50 start-page: 644 issue: 2 year: 2019 ident: 10.1016/j.jhydrol.2022.127527_b0135 article-title: Multi-objective calibration of MIKE SHE with SMAP soil moisture datasets publication-title: Hydrol. Res. doi: 10.2166/nh.2018.110 – ident: 10.1016/j.jhydrol.2022.127527_b0035 doi: 10.1007/978-3-319-99867-1_6 – volume: 178 start-page: 122 year: 2018 ident: 10.1016/j.jhydrol.2022.127527_b0085 article-title: Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2018.06.002 – start-page: n/a year: 2014 ident: 10.1016/j.jhydrol.2022.127527_b0175 article-title: Changes in evapotranspiration following wildfire in resprouting eucalypt forests publication-title: Ecohydrology – year: 1998 ident: 10.1016/j.jhydrol.2022.127527_b0220 – volume: 52 start-page: 4713 issue: 6 year: 2016 ident: 10.1016/j.jhydrol.2022.127527_b0045 article-title: Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling publication-title: Water Resour. Res. doi: 10.1002/2016WR018663 – volume: 135 start-page: 512 issue: 6 year: 2009 ident: 10.1016/j.jhydrol.2022.127527_b0055 article-title: Natural Groundwater Recharge Response to Urbanization: Vermillion River Watershed publication-title: J. Water Resour. Plann. Manage. doi: 10.1061/(ASCE)0733-9496(2009)135:6(512) – volume: 14 start-page: 19 issue: 1 year: 2015 ident: 10.1016/j.jhydrol.2022.127527_b0165 article-title: The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees publication-title: Urban Forestry & Urban Greening doi: 10.1016/j.ufug.2014.11.007 – volume: 67 start-page: 279 issue: 3 year: 2006 ident: 10.1016/j.jhydrol.2022.127527_b0060 article-title: Root distribution of Eucalyptus grandis and Corymbia maculata in degraded saline soils of south-eastern Australia publication-title: Agrofor. Syst. doi: 10.1007/s10457-005-5258-z – year: 1975 ident: 10.1016/j.jhydrol.2022.127527_b0120 article-title: MODEL FOR ESTIMATING ACTUAL EVAPOTRANSPIRATION FROM POTENTIAL EVAPOTRANSPIRATION publication-title: Nord Hydrol doi: 10.2166/nh.1975.0012 – volume: 525 start-page: 506 year: 2015 ident: 10.1016/j.jhydrol.2022.127527_b0115 article-title: Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.04.007 – year: 2010 ident: 10.1016/j.jhydrol.2022.127527_b0155 – volume: 26 start-page: 205 issue: 2 year: 2003 ident: 10.1016/j.jhydrol.2022.127527_b0145 article-title: Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00092-1 – volume: 544 start-page: 524 year: 2017 ident: 10.1016/j.jhydrol.2022.127527_b0140 article-title: Hydrologic impact of urbanization with extensive stormwater infiltration publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.030 – ident: 10.1016/j.jhydrol.2022.127527_b0190 doi: 10.5194/egusphere-egu2020-1928 – volume: 7 start-page: e45814 issue: 9 year: 2012 ident: 10.1016/j.jhydrol.2022.127527_b0245 article-title: Urban Stormwater Runoff: A New Class of Environmental Flow Problem publication-title: PLoS One doi: 10.1371/journal.pone.0045814 – volume: 16 start-page: 1411 issue: 7 year: 2008 ident: 10.1016/j.jhydrol.2022.127527_b0160 publication-title: Hydrogeol. J. doi: 10.1007/s10040-008-0311-4 – volume: 251 start-page: 163 issue: 3-4 year: 2001 ident: 10.1016/j.jhydrol.2022.127527_b0210 article-title: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00466-8 – volume: 62 start-page: 243 issue: 2 year: 1996 ident: 10.1016/j.jhydrol.2022.127527_b0005 article-title: Impervious Surface Coverage: The Emergence of a Key Environmental Indicator publication-title: J. Am. Plan. Assoc. doi: 10.1080/01944369608975688 – volume: 561 start-page: 413 year: 2018 ident: 10.1016/j.jhydrol.2022.127527_b0030 article-title: The impact of urbanization on subsurface flow paths – A paired-catchment isotopic study publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.022 – ident: 10.1016/j.jhydrol.2022.127527_b0090 doi: 10.1111/j.1752-1688.2009.00345.x – volume: 51 start-page: 261 year: 2013 ident: 10.1016/j.jhydrol.2022.127527_b0075 article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.09.001 – volume: 19 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2022.127527_b0070 article-title: Parameter sensitivity of SWAP–PEARL models for pesticide leaching in macroporous soils publication-title: Vadose Zo. J. – ident: 10.1016/j.jhydrol.2022.127527_b0195 – year: 2012 ident: 10.1016/j.jhydrol.2022.127527_b0100 – volume: 173 start-page: 115597 year: 2020 ident: 10.1016/j.jhydrol.2022.127527_b0230 article-title: Transpiration by established trees could increase the efficiency of stormwater control measures publication-title: Water Res doi: 10.1016/j.watres.2020.115597 – volume: 4 start-page: 27 issue: 1 year: 1987 ident: 10.1016/j.jhydrol.2022.127527_b0015 article-title: Fluxes of elements in rain passing through forest canopies in south-eastern Australia publication-title: Biogeochemistry doi: 10.1007/BF02187360 – volume: 492 start-page: 219 year: 2013 ident: 10.1016/j.jhydrol.2022.127527_b0080 article-title: Validation of canopy transpiration in a mixed-species foothill eucalypt forest using a soil-plant-atmosphere model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.03.051 – volume: 30 start-page: 492 issue: 4 year: 2002 ident: 10.1016/j.jhydrol.2022.127527_b0040 article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity publication-title: Environ. Manage. doi: 10.1007/s00267-002-2737-0 – volume: 54 start-page: 4663 issue: 7 year: 2018 ident: 10.1016/j.jhydrol.2022.127527_b0185 article-title: Statistical Interpolation of Groundwater Hydrographs publication-title: Water Resour. Res. doi: 10.1029/2017WR021838 – volume: 69 start-page: 1312 issue: 6 year: 2014 ident: 10.1016/j.jhydrol.2022.127527_b0180 article-title: Biofilter design for effective nitrogen removal from stormwater – Influence of plant species, inflow hydrology and use of a saturated zone publication-title: Water Sci. Technol. doi: 10.2166/wst.2014.013 – volume: 16 start-page: 104014 issue: 10 year: 2021 ident: 10.1016/j.jhydrol.2022.127527_b0250 article-title: Impacts of stormwater infiltration on downslope soil moisture and tree water use publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac1c2a – volume: 10 start-page: 915 issue: 5 year: 2010 ident: 10.1016/j.jhydrol.2022.127527_b0150 article-title: Influence of groundwater exploitation on the ecological status of streams in a Mediterranean system (Selva Basin publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2010.02.001 – volume: 15 start-page: 1441 issue: 8 year: 2001 ident: 10.1016/j.jhydrol.2022.127527_b0205 article-title: Effects of urbanization on streamflow in the Atlanta area (Georgia publication-title: Hydrol. Process. doi: 10.1002/hyp.218 |
| SSID | ssj0000334 |
| Score | 2.4405918 |
| Snippet | •Interaction between vegetation and infiltrated stormwater is simulated for a system.•Evapotranspiration decreases 13% in absence of infiltrated... A major problem associated with sealing native soils with impervious surfaces in urban areas is reduced groundwater recharge. This in turn reduces stream... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127527 |
| SubjectTerms | base flow Baseflow Evapotranspiration freshwater groundwater groundwater recharge microclimate model validation Modelling stormwater Stormwater infiltration streams uncertainty Urban vegetation |
| Title | Modelling the interaction between vegetation and infiltrated stormwater |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2022.127527 https://www.proquest.com/docview/2636437749 |
| Volume | 607 |
| WOSCitedRecordID | wos000790827500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4IXxKcYXwoS4qVKSeo0iR8L6vhQVfbQQd8s27G3VV1S2m5s--u5i-2kGkMbD7xEVeRL0ruf7PPd-XeEvKVa9yMVy1AUohcmIpdhrgVsVeIiTuI4ZaIOXXwfZeNxPp2yPRfKXtXtBLKyzM_O2OK_mhrugbHx6Ow_mLt5KNyA32B0uILZ4Xojw2N3M0u0jT4l0kEsXT9wX5N1qg98kaHlXjJH85qktuhgreTxL-Frdv_0Wg_Pi6WlbQLXdHCMNAsFYqqJJ-xV1YUNqg5kNTfioinhcKGdzg9LznCpnNL3Yel8gHfZELhtRd5Csqp7Irn4rYtUwCa3LXBpTw6A-ZPN2TeNss6iizTzvSy8ck634YVZd2b_YRcf7QTaRcwn7sff-O7-aMQnw-nk3eJniO3FMA3veq3cJtsgyGD62x58GU6_tos2pYknlsdPbA97vb_yzX9zYy4t6LWXMnlA7jtDBQMLi4fkli4fkbuu0_3h-WPyqYFHAMoNNuAROHgELTwCgEewAY-ghccTsr87nHz8HLpmGqGiSW8dyoyaWMV52teZZLnpR1LkihmlNC0k-C8mzmGAkqmmVDPRT7TMmNQ6MoZhLvsp2SqrUj8jAeb-qWC429SJEqmQMDbSpqBSFeAS7ZDE64YrxzSPDU_m3JcUzrhTKUeVcqvSHdJtxBaWauU6gdwrnjt_0fqBHKBznegbbygO8ykmyUSpq5MV76UUc9lZwp7fYMwLcq9F-kuytV6e6FfkjjpdH62Wrx3IfgM6xJyQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+interaction+between+vegetation+and+infiltrated+stormwater&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Poozan%2C+Abolfazl&rft.au=William+Western%2C+Andrew&rft.au=James+Burns%2C+Matthew&rft.au=Arora%2C+M&rft.date=2022-04-01&rft.issn=0022-1694&rft.volume=607+p.127527-&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.127527&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |