Covering and separation for logical fragments with modular predicates
For every class $\mathscr{C}$ of word languages, one may associate a decision problem called $\mathscr{C}$-separation. Given two regular languages, it asks whether there exists a third language in $\mathscr{C}$ containing the first language, while being disjoint from the second one. Usually, finding...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 15, Issue 2 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science Association
08.05.2019
Logical Methods in Computer Science e.V |
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For every class $\mathscr{C}$ of word languages, one may associate a decision problem called $\mathscr{C}$-separation. Given two regular languages, it asks whether there exists a third language in $\mathscr{C}$ containing the first language, while being disjoint from the second one. Usually, finding an algorithm deciding $\mathscr{C}$-separation yields a deep insight on $\mathscr{C}$. We consider classes defined by fragments of first-order logic. Given such a fragment, one may often build a larger class by adding more predicates to its signature. In the paper, we investigate the operation of enriching signatures with modular predicates. Our main theorem is a generic transfer result for this construction. Informally, we show that when a logical fragment is equipped with a signature containing the successor predicate, separation for the stronger logic enriched with modular predicates reduces to separation for the original logic. This result actually applies to a more general decision problem, called the covering problem. |
|---|---|
| ISSN: | 1860-5974 1860-5974 |
| DOI: | 10.23638/LMCS-15(2:11)2019 |