Forecasting carbon price in China using a novel hybrid model based on secondary decomposition, multi-complexity and error correction
As global warming intensifies, the reduction of carbon emissions is imminent. Carbon price is directly related to whether carbon can be effectively reduced. Therefore, accurately forecasting carbon price has important practical significance. Aiming at the nonstationary and nonlinear characteristics...
Saved in:
| Published in: | Journal of cleaner production Vol. 401; p. 136701 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.05.2023
|
| Subjects: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As global warming intensifies, the reduction of carbon emissions is imminent. Carbon price is directly related to whether carbon can be effectively reduced. Therefore, accurately forecasting carbon price has important practical significance. Aiming at the nonstationary and nonlinear characteristics of carbon price, this paper proposes a novel hybrid model for forecasting carbon price, which is based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), multiscale fuzzy entropy (MFE), complete ensemble empirical mode decomposition (CEEMD), improved random forest by salp swarm algorithm (SSARF), improved back propagation by cuckoo search (CSBP), improved extreme learning machine by whale optimization algorithm (WOAELM) and error correction (EC), named ICEEMDAN-MFE-CEEMD-SSARF-CSBP-WOAELM-EC. Firstly, carbon price is decomposed by ICEEMDAN, divided into high-, medium-, and low-complexity components by MFE. Secondly, high-complexity components are merged and secondarily decomposed by CEEMD, which are still recorded as high-complexity components. Then, SSARF, CSBP and WOAELM are used to forecast high-, medium-, and low-complexity components, respectively, and forecasting results are reconstructed. Finally, EC is carried out using an extreme learning machine to obtain the final forecasting results, and the Diebold-Mariano test is introduced for a comprehensive evaluation of the model. Taking carbon price in the pilot cities of Shenzhen and Hubei as examples, after 6 aspects and 20 comparative experiments, the results show that the proposed model has higher forecast accuracy, with MAPE, MAE and RMSE up to 0.03131, 0.00089 and 4.02e-06 in Hubei, and its forecasting ability is better than other commonly used international carbon financial price forecasting models, providing a theoretical and data basis for carbon pricing and formulating carbon reduction policies in China. The main contributions of this paper are the improved primary decomposition, the use of secondary decomposition, and the innovative combination of three optimal models to forecast carbon price, but it still needs to be optimized for practice.
[Display omitted]
•Propose improve CEEMDAN by using Hermite interpolation and calculating residuals first.•High complexity components are secondarily decomposed to reduce its complexity.•Improved RF by SSA, named SSARF, is proposed to solve the dilemmas of RF.•Propose a high-accuracy hybrid model for carbon price forecasting.•Compare multi-faceted experiments to prove the validity of the proposed model. |
|---|---|
| AbstractList | As global warming intensifies, the reduction of carbon emissions is imminent. Carbon price is directly related to whether carbon can be effectively reduced. Therefore, accurately forecasting carbon price has important practical significance. Aiming at the nonstationary and nonlinear characteristics of carbon price, this paper proposes a novel hybrid model for forecasting carbon price, which is based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), multiscale fuzzy entropy (MFE), complete ensemble empirical mode decomposition (CEEMD), improved random forest by salp swarm algorithm (SSARF), improved back propagation by cuckoo search (CSBP), improved extreme learning machine by whale optimization algorithm (WOAELM) and error correction (EC), named ICEEMDAN-MFE-CEEMD-SSARF-CSBP-WOAELM-EC. Firstly, carbon price is decomposed by ICEEMDAN, divided into high-, medium-, and low-complexity components by MFE. Secondly, high-complexity components are merged and secondarily decomposed by CEEMD, which are still recorded as high-complexity components. Then, SSARF, CSBP and WOAELM are used to forecast high-, medium-, and low-complexity components, respectively, and forecasting results are reconstructed. Finally, EC is carried out using an extreme learning machine to obtain the final forecasting results, and the Diebold-Mariano test is introduced for a comprehensive evaluation of the model. Taking carbon price in the pilot cities of Shenzhen and Hubei as examples, after 6 aspects and 20 comparative experiments, the results show that the proposed model has higher forecast accuracy, with MAPE, MAE and RMSE up to 0.03131, 0.00089 and 4.02e-06 in Hubei, and its forecasting ability is better than other commonly used international carbon financial price forecasting models, providing a theoretical and data basis for carbon pricing and formulating carbon reduction policies in China. The main contributions of this paper are the improved primary decomposition, the use of secondary decomposition, and the innovative combination of three optimal models to forecast carbon price, but it still needs to be optimized for practice. As global warming intensifies, the reduction of carbon emissions is imminent. Carbon price is directly related to whether carbon can be effectively reduced. Therefore, accurately forecasting carbon price has important practical significance. Aiming at the nonstationary and nonlinear characteristics of carbon price, this paper proposes a novel hybrid model for forecasting carbon price, which is based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), multiscale fuzzy entropy (MFE), complete ensemble empirical mode decomposition (CEEMD), improved random forest by salp swarm algorithm (SSARF), improved back propagation by cuckoo search (CSBP), improved extreme learning machine by whale optimization algorithm (WOAELM) and error correction (EC), named ICEEMDAN-MFE-CEEMD-SSARF-CSBP-WOAELM-EC. Firstly, carbon price is decomposed by ICEEMDAN, divided into high-, medium-, and low-complexity components by MFE. Secondly, high-complexity components are merged and secondarily decomposed by CEEMD, which are still recorded as high-complexity components. Then, SSARF, CSBP and WOAELM are used to forecast high-, medium-, and low-complexity components, respectively, and forecasting results are reconstructed. Finally, EC is carried out using an extreme learning machine to obtain the final forecasting results, and the Diebold-Mariano test is introduced for a comprehensive evaluation of the model. Taking carbon price in the pilot cities of Shenzhen and Hubei as examples, after 6 aspects and 20 comparative experiments, the results show that the proposed model has higher forecast accuracy, with MAPE, MAE and RMSE up to 0.03131, 0.00089 and 4.02e-06 in Hubei, and its forecasting ability is better than other commonly used international carbon financial price forecasting models, providing a theoretical and data basis for carbon pricing and formulating carbon reduction policies in China. The main contributions of this paper are the improved primary decomposition, the use of secondary decomposition, and the innovative combination of three optimal models to forecast carbon price, but it still needs to be optimized for practice. [Display omitted] •Propose improve CEEMDAN by using Hermite interpolation and calculating residuals first.•High complexity components are secondarily decomposed to reduce its complexity.•Improved RF by SSA, named SSARF, is proposed to solve the dilemmas of RF.•Propose a high-accuracy hybrid model for carbon price forecasting.•Compare multi-faceted experiments to prove the validity of the proposed model. |
| ArticleNumber | 136701 |
| Author | Yang, Hong Li, Guohui Yang, Xiaodie |
| Author_xml | – sequence: 1 givenname: Hong surname: Yang fullname: Yang, Hong email: yanghong@xupt.edu.cn – sequence: 2 givenname: Xiaodie surname: Yang fullname: Yang, Xiaodie – sequence: 3 givenname: Guohui surname: Li fullname: Li, Guohui email: liguohui@xupt.edu.cn |
| BookMark | eNqFkEFrGzEQhUVJoHaSnxDQsYeuK62s1YoeSjFxWwjkkpyFdjTbyOxKrrQ29T0_vFqcUy8GgTSj92Z435JchRiQkHvOVpzx5stutYMB9ymualaLFReNYvwDWfBW6YqrtrkiC6alrhpZNx_JMucdY1wxtV6Qt21MCDZPPvymYFMXA90nD0h9oJtXHyw95PnP0hCPONDXU5e8o2N0pehsRkeLJSPE4Gw6UVde4z5mP_kYPtPxMEy-mlsD_vXTidrgKKYUE4WYyupZdkuueztkvHu_b8jL9uF587N6fPrxa_P9sQKxrqfKik6J1vWtklJ2TilmJUPLodG9hdr1HUisZc-E1msNCgXYdYkspOyFFkrckE_nuYXVnwPmyYw-Aw6DDRgP2Qguy2m1kkUqz1JIMeeEvSlUxhLQcGZm6mZn3qmbmbo5Uy--r__5wE92Djkl64eL7m9nNxYKR4_JZPAYAJ2fURkX_YUJ_wDKRqZ6 |
| CitedBy_id | crossref_primary_10_1007_s11071_024_10539_5 crossref_primary_10_1007_s11356_024_32169_5 crossref_primary_10_1016_j_jclepro_2023_139232 crossref_primary_10_12677_aam_2024_137334 crossref_primary_10_1016_j_eswa_2025_126467 crossref_primary_10_1007_s11356_023_28191_8 crossref_primary_10_1016_j_eswa_2024_124424 crossref_primary_10_1016_j_jenvman_2024_120785 crossref_primary_10_1016_j_measurement_2023_113554 crossref_primary_10_1016_j_engappai_2023_107531 crossref_primary_10_1016_j_jclepro_2024_144124 crossref_primary_10_1016_j_asoc_2025_113274 crossref_primary_10_1371_journal_pone_0285311 crossref_primary_10_1016_j_engappai_2024_108646 crossref_primary_10_1016_j_renene_2025_122763 crossref_primary_10_1016_j_energy_2025_136739 crossref_primary_10_1080_13547860_2025_2555003 crossref_primary_10_1016_j_asoc_2024_111543 crossref_primary_10_1007_s10668_025_06361_7 crossref_primary_10_1016_j_jenvman_2025_124035 crossref_primary_10_1016_j_ribaf_2025_103063 crossref_primary_10_1080_21642583_2023_2291409 crossref_primary_10_1016_j_apenergy_2025_125951 crossref_primary_10_1016_j_wasman_2025_114903 crossref_primary_10_1016_j_engappai_2023_106692 crossref_primary_10_1016_j_gsf_2025_102159 crossref_primary_10_1016_j_measurement_2024_114193 crossref_primary_10_1016_j_jclepro_2024_142932 crossref_primary_10_1016_j_tust_2025_106678 crossref_primary_10_1016_j_asoc_2025_113241 crossref_primary_10_1016_j_measurement_2023_112954 crossref_primary_10_3389_fsufs_2024_1334098 crossref_primary_10_1016_j_apenergy_2025_125301 crossref_primary_10_3390_math13030464 crossref_primary_10_1088_2515_7620_ad9086 crossref_primary_10_1029_2023WR035676 crossref_primary_10_1007_s13344_025_0058_x crossref_primary_10_1016_j_psep_2025_106772 crossref_primary_10_3390_math12233778 crossref_primary_10_1016_j_eswa_2023_122912 crossref_primary_10_1007_s43621_025_01473_6 crossref_primary_10_1371_journal_pone_0326926 crossref_primary_10_1007_s11356_024_32333_x crossref_primary_10_1016_j_apm_2023_05_007 crossref_primary_10_1016_j_enbuild_2024_114074 |
| Cites_doi | 10.1016/j.measurement.2022.111446 10.1002/ese3.703 10.1109/JSEN.2021.3133352 10.1016/j.scitotenv.2020.143099 10.1073/pnas.2010380117 10.1016/j.enconman.2021.113944 10.1016/j.energy.2022.123822 10.1016/j.bspc.2021.103000 10.3934/jimo.2021214 10.3390/en13133471 10.1016/j.jenvman.2020.111471 10.1016/j.apenergy.2021.117040 10.1016/j.apr.2018.03.008 10.15244/pjoes/138357 10.1016/j.egyr.2022.03.184 10.1007/s11042-021-11556-x 10.1016/j.energy.2022.124167 10.3390/e19010014 10.1016/j.dt.2021.03.012 10.1108/IJCHM-03-2021-0356 10.3390/e21090914 10.1016/j.jenvman.2020.110721 10.3389/fnins.2021.825434 10.1016/j.jclepro.2017.01.172 10.1016/j.jclepro.2018.09.071 10.1016/j.scitotenv.2019.02.004 10.1016/j.eswa.2022.118502 10.1016/j.eswa.2022.118465 10.1007/s40430-020-02671-1 10.1007/s10614-020-10054-w 10.1073/pnas.88.6.2297 10.1007/s11771-019-4183-7 10.1109/ACCESS.2020.2977219 10.1016/j.jclepro.2019.118671 10.1016/j.energy.2019.01.009 10.1109/ACCESS.2020.2978098 10.1080/10298436.2021.1945056 10.1109/ACCESS.2021.3072673 10.3390/en15103562 10.1016/j.physa.2019.122025 10.1016/j.advengsoft.2017.07.002 10.1016/j.apenergy.2019.01.194 10.1016/j.jclepro.2019.119386 10.3390/en14237845 10.1016/j.apenergy.2021.116485 10.1016/j.jclepro.2020.121027 10.1016/j.rser.2021.111741 10.1016/j.scitotenv.2020.137982 10.1016/j.chaos.2021.111783 10.3390/su13158413 10.1007/s10470-021-01901-3 10.1016/j.egyr.2021.11.270 10.1007/s11356-021-18181-z 10.1007/s11356-022-20450-4 10.1016/j.scitotenv.2020.142052 10.1016/j.jclepro.2021.128024 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2023.136701 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2023_136701 S0959652623008594 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-a3b738df87555bd770a50ea1c69fac2dfbc5e25f039949c7e3ca4526355f39373 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958401300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Thu Oct 02 12:01:30 EDT 2025 Sat Nov 29 07:05:10 EST 2025 Tue Nov 18 21:39:29 EST 2025 Fri Feb 23 02:35:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid framework Carbon price Error correction Mode decomposition Intelligent optimization algorithm Forecasting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-a3b738df87555bd770a50ea1c69fac2dfbc5e25f039949c7e3ca4526355f39373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3153158975 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153158975 crossref_primary_10_1016_j_jclepro_2023_136701 crossref_citationtrail_10_1016_j_jclepro_2023_136701 elsevier_sciencedirect_doi_10_1016_j_jclepro_2023_136701 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Dai, Wang, Zhou (bib15) 2021; 285 Gan, Sun, Wang, Wei (bib11) 2018; 9 Nabavi-Pelesaraei, Bayat, Hosseinzadeh-Bandbafha, Afrasyabi, Chau (bib35) 2017; 148 Lin, Jia (bib27) 2019; 239 Wang, Sun, Cheng, Cui (bib52) 2021; 762 Fu, Huang, Xie, Liao, Yin (bib10) 2020; 269 Li, Liu, Yang (bib21) 2022; 199 Li, Yang, Zhou, Zhao, Yuan (bib26) 2020; 723 Zhang, Li, Hao, Tan (bib68) 2018; 204 Hou, Guo, Wang, Liu (bib14) 2022; 22 Li, Jin, Sun, Li (bib24) 2020; 214 Li, Song (bib25) 2022; 31 Ali, Prasad, Xiang, Yaseen (bib1) 2020; 585 Wang, Zhuang (bib54) 2022 Lu, Rui, Yi, Ran, Gu (bib32) 2020; 8 Xiao, Liao, Bartos, Filip, Geng, Jiang (bib60) 2021; 81 Yahsi, Canakoglu, Agrali (bib63) 2019; 10 Wang, Niu, Zhen, Sun, Xu (bib55) 2020; 36 Ban, Pan, Gu (bib2) 2021; 9 Younesi, Alam, Zoroofi, Ahmadian, Guiti (bib67) 2007 Zheng, Chen, Cheng, Yang (bib72) 2014; 27 Jaramillo-Moran, Fernandez-Martinez, Garcia-Garcia, Carmona-Fernandez (bib16) 2021; 14 Peng, Song, Yang, Wei (bib38) 2022; 15 Liu, Wang, Yang, Liu, Wang (bib30) 2021; 9 Bompard, Corgnati, Grosso, Huang, Mietti, Profumo (bib4) 2022; 154 Zhao, Zhang, Wang, Zhou, Zhao (bib71) 2021; 305 Yoon (bib66) 2021; 57 Ghasemi-Mobtaker, Kaab, Rafiee, Nabavi-Pelesaraei (bib12) 2022; 8 Xu, Tse (bib61) 2019; 26 Xu, Wang, Zhang, Li, Wei (bib62) 2022 Li, Bai, Li (bib23) 2019; 534 Su, Li, Li, Han, Cui, Xie, Liu (bib41) 2021; 70 Wu, Zhang (bib58) 2019; 21 Fatema, Farkoush, Hasan, Malik (bib8) 2022; 42 Yang, Shi, Li (bib65) 2022 Li, Bu, Yang (bib20) 2022; 268 Zhou, Xu, Wang (bib74) 2022; 29 Nasir, Canh, Le (bib37) 2021; 277 Wang, Cui, Sun (bib51) 2021; 314 Zhou, Wang (bib73) 2021; 13 Sun, Du, Zhang, Wang (bib42) 2022; 210 Khanali, Ghasemi-Mobtaker, Varmazyar, Mohammadkashi, Chau, Nabavi-Pelesaraei (bib19) 2022; 250 Wang, Wang, Li (bib56) 2020; 260 Bodile, Rao (bib3) 2021; 109 Pincus (bib39) 1991; 88 Chen, Seo, Zhao (bib5) 2021; 23 Jaseena, Kovoor (bib17) 2021; 234 Tan, Han, Zhang (bib49) 2020; 8 Minhas, Sharma, Singh, Kankar, Singh (bib33) 2020; 42 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib34) 2017; 114 Nabavi-Pelesaraei, Kouchaki-Penchah, Amid (bib36) 2014; 4 Van den Bergh, Botzen (bib50) 2020; 117 Wu, Liu (bib59) 2020; 8 Cheng, Hu (bib6) 2022; 15 Liu, Li, Yang (bib28) 2022; 266 Wang, Dong, Huang (bib57) 2023; 19 (bib7) 2015 Sun, Li, Wang, Zhang (bib44) 2022; 210 Sun, Huang (bib45) 2020; 243 Sun, Zhang (bib47) 2020; 13 Zhao, Cai, Wang (bib70) 2021; 47 Rai, Rawat (bib40) 2022; 29 Han, Ding, Zhao, Kang (bib13) 2019; 171 Lu, Ma, Huang, Azimi (bib31) 2020; 249 Zhao, Sun, Deng, Yang (bib69) 2017; 19 Wang, Cui, He (bib53) 2022; 156 Kaab, Sharifi, Mobli, Nabavi-Pelesaraei, Chau (bib18) 2019; 664 Sun, Xu (bib46) 2021; 754 Sun, Jiang, Feng, Wang, Zhang (bib43) 2022; 34 Li, Zheng, Yang (bib22) 2020; 8 Sun, Zhang (bib48) 2022; 253 Yang, Li, Li, Guan (bib64) 2022; 18 Liu, Shen (bib29) 2020; 11 Fleschutz, Bohlayer, Braun, Henze, Murphy (bib9) 2021; 295 Khanali (10.1016/j.jclepro.2023.136701_bib19) 2022; 250 Su (10.1016/j.jclepro.2023.136701_bib41) 2021; 70 Younesi (10.1016/j.jclepro.2023.136701_bib67) 2007 Ban (10.1016/j.jclepro.2023.136701_bib2) 2021; 9 Zhao (10.1016/j.jclepro.2023.136701_bib70) 2021; 47 Zhang (10.1016/j.jclepro.2023.136701_bib68) 2018; 204 Zhao (10.1016/j.jclepro.2023.136701_bib69) 2017; 19 Jaramillo-Moran (10.1016/j.jclepro.2023.136701_bib16) 2021; 14 Lu (10.1016/j.jclepro.2023.136701_bib31) 2020; 249 Bodile (10.1016/j.jclepro.2023.136701_bib3) 2021; 109 Li (10.1016/j.jclepro.2023.136701_bib22) 2020; 8 Gan (10.1016/j.jclepro.2023.136701_bib11) 2018; 9 Hou (10.1016/j.jclepro.2023.136701_bib14) 2022; 22 Wang (10.1016/j.jclepro.2023.136701_bib51) 2021; 314 Kaab (10.1016/j.jclepro.2023.136701_bib18) 2019; 664 Yoon (10.1016/j.jclepro.2023.136701_bib66) 2021; 57 Sun (10.1016/j.jclepro.2023.136701_bib44) 2022; 210 Cheng (10.1016/j.jclepro.2023.136701_bib6) 2022; 15 Wang (10.1016/j.jclepro.2023.136701_bib55) 2020; 36 Ghasemi-Mobtaker (10.1016/j.jclepro.2023.136701_bib12) 2022; 8 Yang (10.1016/j.jclepro.2023.136701_bib65) 2022 Chen (10.1016/j.jclepro.2023.136701_bib5) 2021; 23 Lin (10.1016/j.jclepro.2023.136701_bib27) 2019; 239 Fleschutz (10.1016/j.jclepro.2023.136701_bib9) 2021; 295 Liu (10.1016/j.jclepro.2023.136701_bib28) 2022; 266 Han (10.1016/j.jclepro.2023.136701_bib13) 2019; 171 Li (10.1016/j.jclepro.2023.136701_bib21) 2022; 199 Wu (10.1016/j.jclepro.2023.136701_bib58) 2019; 21 Yang (10.1016/j.jclepro.2023.136701_bib64) 2022; 18 Wu (10.1016/j.jclepro.2023.136701_bib59) 2020; 8 Van den Bergh (10.1016/j.jclepro.2023.136701_bib50) 2020; 117 Li (10.1016/j.jclepro.2023.136701_bib25) 2022; 31 Sun (10.1016/j.jclepro.2023.136701_bib46) 2021; 754 Xiao (10.1016/j.jclepro.2023.136701_bib60) 2021; 81 Liu (10.1016/j.jclepro.2023.136701_bib29) 2020; 11 Huang (10.1016/j.jclepro.2023.136701_bib15) 2021; 285 Sun (10.1016/j.jclepro.2023.136701_bib43) 2022; 34 Zhou (10.1016/j.jclepro.2023.136701_bib73) 2021; 13 Lu (10.1016/j.jclepro.2023.136701_bib32) 2020; 8 Nasir (10.1016/j.jclepro.2023.136701_bib37) 2021; 277 (10.1016/j.jclepro.2023.136701_bib7) 2015 Fatema (10.1016/j.jclepro.2023.136701_bib8) 2022; 42 Rai (10.1016/j.jclepro.2023.136701_bib40) 2022; 29 Nabavi-Pelesaraei (10.1016/j.jclepro.2023.136701_bib36) 2014; 4 Wang (10.1016/j.jclepro.2023.136701_bib56) 2020; 260 Pincus (10.1016/j.jclepro.2023.136701_bib39) 1991; 88 Xu (10.1016/j.jclepro.2023.136701_bib62) 2022 Xu (10.1016/j.jclepro.2023.136701_bib61) 2019; 26 Minhas (10.1016/j.jclepro.2023.136701_bib33) 2020; 42 Sun (10.1016/j.jclepro.2023.136701_bib45) 2020; 243 Li (10.1016/j.jclepro.2023.136701_bib23) 2019; 534 Sun (10.1016/j.jclepro.2023.136701_bib48) 2022; 253 Yahsi (10.1016/j.jclepro.2023.136701_bib63) 2019; 10 Zheng (10.1016/j.jclepro.2023.136701_bib72) 2014; 27 Liu (10.1016/j.jclepro.2023.136701_bib30) 2021; 9 Wang (10.1016/j.jclepro.2023.136701_bib57) 2023; 19 Jaseena (10.1016/j.jclepro.2023.136701_bib17) 2021; 234 Wang (10.1016/j.jclepro.2023.136701_bib52) 2021; 762 Peng (10.1016/j.jclepro.2023.136701_bib38) 2022; 15 Wang (10.1016/j.jclepro.2023.136701_bib53) 2022; 156 Sun (10.1016/j.jclepro.2023.136701_bib42) 2022; 210 Zhao (10.1016/j.jclepro.2023.136701_bib71) 2021; 305 Fu (10.1016/j.jclepro.2023.136701_bib10) 2020; 269 Nabavi-Pelesaraei (10.1016/j.jclepro.2023.136701_bib35) 2017; 148 Li (10.1016/j.jclepro.2023.136701_bib24) 2020; 214 Sun (10.1016/j.jclepro.2023.136701_bib47) 2020; 13 Zhou (10.1016/j.jclepro.2023.136701_bib74) 2022; 29 Bompard (10.1016/j.jclepro.2023.136701_bib4) 2022; 154 Ali (10.1016/j.jclepro.2023.136701_bib1) 2020; 585 Li (10.1016/j.jclepro.2023.136701_bib20) 2022; 268 Li (10.1016/j.jclepro.2023.136701_bib26) 2020; 723 Mirjalili (10.1016/j.jclepro.2023.136701_bib34) 2017; 114 Wang (10.1016/j.jclepro.2023.136701_bib54) 2022 Tan (10.1016/j.jclepro.2023.136701_bib49) 2020; 8 |
| References_xml | – volume: 239 start-page: 157 year: 2019 end-page: 170 ident: bib27 article-title: Impacts of carbon price level in carbon emission trading market publication-title: Appl. Energy – year: 2022 ident: bib62 article-title: An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction publication-title: Ann. Oper. Res. – volume: 234 year: 2021 ident: bib17 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers. Manag. – volume: 27 start-page: 145 year: 2014 end-page: 151 ident: bib72 article-title: Multi-scale fuzzy entropy and its application in fault diagnosis of rolling bearing publication-title: J. Vib. Eng. – volume: 210 year: 2022 ident: bib44 article-title: Multi-step ahead tourism demand forecasting: the perspective of the learning using privileged information paradigm publication-title: Expert Syst. Appl. – volume: 22 start-page: 1583 year: 2022 end-page: 1596 ident: bib14 article-title: Deep-learning-based fault type identification using modified CEEMDAN and image augmentation in distribution power grid publication-title: IEEE Sensor. J. – volume: 8 start-page: 42042 year: 2020 end-page: 42054 ident: bib32 article-title: A hybrid model for lane-level traffic flow forecasting based on complete ensemble empirical mode decomposition and extreme gradient boosting publication-title: IEEE Access – volume: 9 year: 2021 ident: bib2 article-title: Electrical characteristics estimation of photovoltaic modules via cuckoo search-relevant vector machine probabilistic model publication-title: Front. Energy Res. – volume: 34 start-page: 382 year: 2022 end-page: 406 ident: bib43 article-title: The impact of COVID-19 on hotel customer satisfaction: evidence from Beijing and Shanghai in China publication-title: Int. J. Contemp. Hospit. Manag. – volume: 305 year: 2021 ident: bib71 article-title: The influence of carbon price on fuel conversion strategy of power generation enterprises - a perspective of Guangdong province publication-title: J. Clean. Prod. – volume: 723 year: 2020 ident: bib26 article-title: Scenario simulation of the EU carbon price and its enlightenment to China publication-title: Sci. Total Environ. – volume: 8 start-page: 1644 year: 2020 end-page: 1664 ident: bib22 article-title: Carbon price combination prediction model based on improved variational mode decomposition publication-title: Energy Rep. – year: 2022 ident: bib65 article-title: Underwater acoustic signal denoising model based on secondary variational mode decomposition publication-title: Def. Technol. – volume: 9 start-page: 57311 year: 2021 end-page: 57324 ident: bib30 article-title: Runoff prediction and analysis based on improved CEEMDAN-OS-QR-ELM publication-title: IEEE Access – volume: 260 year: 2020 ident: bib56 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: a case study in China publication-title: J. Clean. Prod. – volume: 214 year: 2020 ident: bib24 article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting publication-title: Knowl. Base Syst. – volume: 253 year: 2022 ident: bib48 article-title: A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction publication-title: Energy – volume: 15 start-page: 3562 year: 2022 ident: bib6 article-title: Forecasting regional carbon prices in China based on secondary decomposition and a hybrid kernel-based extreme learning machine publication-title: Energies – volume: 754 year: 2021 ident: bib46 article-title: Carbon price prediction based on modified wavelet least square support vector machine publication-title: Sci. Total Environ. – volume: 117 start-page: 23219 year: 2020 end-page: 23220 ident: bib50 article-title: Low-carbon transition is improbable without carbon pricing publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 11 start-page: 25 year: 2020 end-page: 37 ident: bib29 article-title: Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network publication-title: Carbon Manag. – volume: 199 year: 2022 ident: bib21 article-title: Research on feature extraction method of ship radiated noise with K-nearest neighbor mutual information variational mode decomposition, neural network estimation time entropy and self-organizing map neural network publication-title: Measurement – year: 2022 ident: bib54 article-title: A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting publication-title: Environ. Dev. Sustain. – volume: 210 year: 2022 ident: bib42 article-title: Improving multi-step ahead tourism demand forecasting: a strategy-driven approach publication-title: Expert Syst. Appl. – volume: 10 start-page: 175 year: 2019 end-page: 187 ident: bib63 article-title: Carbon price forecasting models based on big data analytics publication-title: Carbon Manag. – volume: 13 start-page: 8413 year: 2021 ident: bib73 article-title: Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine publication-title: Sustainability – volume: 109 start-page: 467 year: 2021 end-page: 477 ident: bib3 article-title: Improved complete ensemble empirical mode decomposition with adaptive noise: quasi-oppositional Jaya hybrid algorithm for ECG denoising publication-title: Analog Integr. Circuits Process. – volume: 243 year: 2020 ident: bib45 article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network publication-title: J. Clean. Prod. – volume: 19 start-page: 961 year: 2023 end-page: 983 ident: bib57 article-title: Carbon spot prices in equilibrium frameworks associated with climate change publication-title: J. Ind. Manag. Optim. – volume: 42 start-page: 586 year: 2020 ident: bib33 article-title: Improvement in classification accuracy and computational speed in bearing fault diagnosis using multiscale fuzzy entropy publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 70 year: 2021 ident: bib41 article-title: Constructing biomarker for early diagnosis of aMCI based on combination of multiscale fuzzy entropy and functional brain connectivity publication-title: Biomed. Signal Process Control – volume: 29 start-page: 37842 year: 2022 end-page: 37853 ident: bib40 article-title: Exploring the nexus between environment quality, economic development and industrialization in BRICS nations: the role of technological innovation and income inequality publication-title: Environ. Sci. Pollut. Res. – volume: 88 start-page: 2297 year: 1991 end-page: 2301 ident: bib39 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib34 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software – volume: 8 start-page: 4922 year: 2022 end-page: 4934 ident: bib12 article-title: A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms publication-title: Energy Rep. – volume: 36 start-page: 20 year: 2020 end-page: 27 ident: bib55 article-title: Research on China’s carbon emission prediction based on WOA-ELM model publication-title: Ecol. Econ. – volume: 277 year: 2021 ident: bib37 article-title: Environmental degradation & role of financialisation, economic development, industrialisation and trade liberalization publication-title: J. Environ. Manag. – volume: 13 start-page: 3471 year: 2020 ident: bib47 article-title: Carbon price prediction based on ensemble empirical mode decomposition and extreme learning machine optimized by improved bat algorithm considering energy price factors publication-title: Energies – volume: 585 year: 2020 ident: bib1 article-title: Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts publication-title: J. Hydrol. – volume: 762 year: 2021 ident: bib52 article-title: An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting publication-title: Sci. Total Environ. – volume: 154 year: 2022 ident: bib4 article-title: Multidimensional assessment of the energy sustainability and carbon pricing impacts along the belt and road initiative publication-title: Renew. Sustain. Energy Rev. – volume: 285 year: 2021 ident: bib15 article-title: A hybrid model for carbon price forecasting using GARCH and long short-term memory network publication-title: Appl. Energy – volume: 18 start-page: 604 year: 2022 end-page: 617 ident: bib64 article-title: A novel feature extraction method for ship-radiated noise publication-title: Def. Technol. – year: 2015 ident: bib7 article-title: Carbon Price [mat Document] – volume: 8 start-page: 2708 year: 2020 end-page: 2721 ident: bib59 article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition publication-title: Energy Sci. Eng. – start-page: 5638 year: 2007 end-page: 5641 ident: bib67 article-title: Computer-aided mass detection on digitized mammograms using adaptive thresholding and fuzzy entropy publication-title: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007 – volume: 4 start-page: 148 year: 2014 end-page: 158 ident: bib36 article-title: Modeling and optimization of CO publication-title: Int. J. Biosci. – volume: 23 start-page: 4372 year: 2021 end-page: 4384 ident: bib5 article-title: A novel pavement transverse cracks detection model using WT-CNN and STFT-CNN for smartphone data analysis publication-title: Int. J. Pavement Eng. – volume: 148 start-page: 427 year: 2017 end-page: 440 ident: bib35 article-title: Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran publication-title: J. Clean. Prod. – volume: 21 start-page: 914 year: 2019 ident: bib58 article-title: Fractional refined composite multiscale fuzzy entropy of international stock indices publication-title: Entropy – volume: 314 year: 2021 ident: bib51 article-title: A novel framework for carbon price prediction using comprehensive feature screening, bidirectional gate recurrent unit and Gaussian process regression publication-title: J. Clean. Prod. – volume: 295 year: 2021 ident: bib9 article-title: The effect of price-based demand response on carbon emissions in European electricity markets: the importance of adequate carbon prices publication-title: Appl. Energy – volume: 269 year: 2020 ident: bib10 article-title: Planning electric power system under carbon-price mechanism considering multiple uncertainties - a case study of Tianjin publication-title: J. Environ. Manag. – volume: 268 year: 2022 ident: bib20 article-title: Research on noise reduction method for ship radiate noise based on secondary decomposition publication-title: Ocean Eng – volume: 171 start-page: 69 year: 2019 end-page: 76 ident: bib13 article-title: Forecasting carbon prices in the Shenzhen market, China: the role of mixed-frequency factors publication-title: Energy – volume: 664 start-page: 1005 year: 2019 end-page: 1019 ident: bib18 article-title: Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production publication-title: Sci. Total Environ. – volume: 26 start-page: 2404 year: 2019 end-page: 2417 ident: bib61 article-title: A method combining refined composite multiscale fuzzy entropy with PSO-SVM for roller bearing fault diagnosis publication-title: J. Cent. South Univ. – volume: 204 start-page: 958 year: 2018 end-page: 964 ident: bib68 article-title: A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting publication-title: J. Clean. Prod. – volume: 250 year: 2022 ident: bib19 article-title: Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production publication-title: Energy – volume: 57 start-page: 247 year: 2021 end-page: 265 ident: bib66 article-title: Forecasting of real GDP growth using machine learning models: gradient boosting and random forest approach publication-title: Comput. Econ. – volume: 42 start-page: 779 year: 2022 end-page: 791 ident: bib8 article-title: Deterministic and probabilistic occupancy detection with a novel heuristic optimization and back-propagation (BP) based algorithm publication-title: J. Intell. Fuzzy Syst. – volume: 29 start-page: 65585 year: 2022 end-page: 65598 ident: bib74 article-title: A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm publication-title: Environ. Sci. Pollut. Res. – volume: 9 start-page: 989 year: 2018 end-page: 999 ident: bib11 article-title: A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration publication-title: Atmos. Pollut. Res. – volume: 14 start-page: 7845 year: 2021 ident: bib16 article-title: Improving artificial intelligence forecasting models performance with data preprocessing: European union allowance prices case study publication-title: Energies – volume: 47 start-page: 138 year: 2021 end-page: 145 ident: bib70 article-title: Indirect prediction of remaining life of lithium-ion battery based on WOA-ELM publication-title: China Measurement & Test – volume: 8 start-page: 44470 year: 2020 end-page: 44484 ident: bib49 article-title: Ultra-short-term wind power prediction by salp swarm algorithm-based optimizing extreme learning machine publication-title: IEEE Access – volume: 31 start-page: 149 year: 2022 end-page: 161 ident: bib25 article-title: Research on the application of GA-ELM model in carbon trading price-an example of Beijing publication-title: Pol. J. Environ. Stud. – volume: 534 year: 2019 ident: bib23 article-title: A novel secondary decomposition learning paradigm with kernel extreme learning machine for multi-step forecasting of container throughput publication-title: Physica A – volume: 156 year: 2022 ident: bib53 article-title: Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine publication-title: Chaos, Solit. Fractals – volume: 19 start-page: 14 year: 2017 ident: bib69 article-title: A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing publication-title: Entropy – volume: 266 year: 2022 ident: bib28 article-title: A new feature extraction method of ship radiated noise based on variational mode decomposition, weighted fluctuation-based dispersion entropy and relevance vector machine publication-title: Ocean Eng – volume: 81 start-page: 1567 year: 2021 end-page: 1587 ident: bib60 article-title: Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm publication-title: Multimed. Tool. Appl. – volume: 249 year: 2020 ident: bib31 article-title: Carbon trading volume and price forecasting in China using multiple machine learning models publication-title: J. Clean. Prod. – volume: 15 year: 2022 ident: bib38 article-title: Seizure prediction in EEG signals using STFT and domain adaptation publication-title: Front. Neurosci. – volume: 199 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib21 article-title: Research on feature extraction method of ship radiated noise with K-nearest neighbor mutual information variational mode decomposition, neural network estimation time entropy and self-organizing map neural network publication-title: Measurement doi: 10.1016/j.measurement.2022.111446 – volume: 8 start-page: 2708 issue: 8 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib59 article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition publication-title: Energy Sci. Eng. doi: 10.1002/ese3.703 – volume: 22 start-page: 1583 issue: 2 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib14 article-title: Deep-learning-based fault type identification using modified CEEMDAN and image augmentation in distribution power grid publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2021.3133352 – volume: 762 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib52 article-title: An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143099 – volume: 27 start-page: 145 issue: 1 year: 2014 ident: 10.1016/j.jclepro.2023.136701_bib72 article-title: Multi-scale fuzzy entropy and its application in fault diagnosis of rolling bearing publication-title: J. Vib. Eng. – volume: 117 start-page: 23219 issue: 38 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib50 article-title: Low-carbon transition is improbable without carbon pricing publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.2010380117 – volume: 234 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib17 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.113944 – volume: 250 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib19 article-title: Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production publication-title: Energy doi: 10.1016/j.energy.2022.123822 – year: 2015 ident: 10.1016/j.jclepro.2023.136701_bib7 – volume: 70 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib41 article-title: Constructing biomarker for early diagnosis of aMCI based on combination of multiscale fuzzy entropy and functional brain connectivity publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2021.103000 – volume: 19 start-page: 961 issue: 2 year: 2023 ident: 10.1016/j.jclepro.2023.136701_bib57 article-title: Carbon spot prices in equilibrium frameworks associated with climate change publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2021214 – volume: 13 start-page: 3471 issue: 13 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib47 article-title: Carbon price prediction based on ensemble empirical mode decomposition and extreme learning machine optimized by improved bat algorithm considering energy price factors publication-title: Energies doi: 10.3390/en13133471 – volume: 10 start-page: 175 issue: 2 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib63 article-title: Carbon price forecasting models based on big data analytics publication-title: Carbon Manag. – volume: 277 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib37 article-title: Environmental degradation & role of financialisation, economic development, industrialisation and trade liberalization publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111471 – volume: 295 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib9 article-title: The effect of price-based demand response on carbon emissions in European electricity markets: the importance of adequate carbon prices publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117040 – volume: 9 start-page: 989 issue: 6 year: 2018 ident: 10.1016/j.jclepro.2023.136701_bib11 article-title: A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2018.03.008 – volume: 31 start-page: 149 issue: 1 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib25 article-title: Research on the application of GA-ELM model in carbon trading price-an example of Beijing publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/138357 – volume: 4 start-page: 148 issue: 7 year: 2014 ident: 10.1016/j.jclepro.2023.136701_bib36 article-title: Modeling and optimization of CO2 emissions for tangerine production using artificial neural networks and data envelopment analysis publication-title: Int. J. Biosci. – volume: 8 start-page: 4922 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib12 article-title: A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.184 – volume: 81 start-page: 1567 issue: 2 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib60 article-title: Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-021-11556-x – volume: 253 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib48 article-title: A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction publication-title: Energy doi: 10.1016/j.energy.2022.124167 – volume: 19 start-page: 14 issue: 1 year: 2017 ident: 10.1016/j.jclepro.2023.136701_bib69 article-title: A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing publication-title: Entropy doi: 10.3390/e19010014 – volume: 18 start-page: 604 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib64 article-title: A novel feature extraction method for ship-radiated noise publication-title: Def. Technol. doi: 10.1016/j.dt.2021.03.012 – volume: 34 start-page: 382 issue: 1 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib43 article-title: The impact of COVID-19 on hotel customer satisfaction: evidence from Beijing and Shanghai in China publication-title: Int. J. Contemp. Hospit. Manag. doi: 10.1108/IJCHM-03-2021-0356 – volume: 21 start-page: 914 issue: 9 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib58 article-title: Fractional refined composite multiscale fuzzy entropy of international stock indices publication-title: Entropy doi: 10.3390/e21090914 – volume: 269 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib10 article-title: Planning electric power system under carbon-price mechanism considering multiple uncertainties - a case study of Tianjin publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110721 – volume: 15 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib38 article-title: Seizure prediction in EEG signals using STFT and domain adaptation publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.825434 – volume: 47 start-page: 138 issue: 9 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib70 article-title: Indirect prediction of remaining life of lithium-ion battery based on WOA-ELM publication-title: China Measurement & Test – volume: 148 start-page: 427 year: 2017 ident: 10.1016/j.jclepro.2023.136701_bib35 article-title: Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.172 – volume: 204 start-page: 958 year: 2018 ident: 10.1016/j.jclepro.2023.136701_bib68 article-title: A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.071 – volume: 664 start-page: 1005 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib18 article-title: Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.004 – volume: 210 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib44 article-title: Multi-step ahead tourism demand forecasting: the perspective of the learning using privileged information paradigm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118502 – volume: 11 start-page: 25 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib29 article-title: Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network publication-title: Carbon Manag. – volume: 210 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib42 article-title: Improving multi-step ahead tourism demand forecasting: a strategy-driven approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118465 – volume: 42 start-page: 586 issue: 11 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib33 article-title: Improvement in classification accuracy and computational speed in bearing fault diagnosis using multiscale fuzzy entropy publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-020-02671-1 – volume: 57 start-page: 247 issue: 1 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib66 article-title: Forecasting of real GDP growth using machine learning models: gradient boosting and random forest approach publication-title: Comput. Econ. doi: 10.1007/s10614-020-10054-w – volume: 88 start-page: 2297 issue: 6 year: 1991 ident: 10.1016/j.jclepro.2023.136701_bib39 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.88.6.2297 – volume: 26 start-page: 2404 issue: 9 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib61 article-title: A method combining refined composite multiscale fuzzy entropy with PSO-SVM for roller bearing fault diagnosis publication-title: J. Cent. South Univ. doi: 10.1007/s11771-019-4183-7 – volume: 42 start-page: 779 issue: 2 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib8 article-title: Deterministic and probabilistic occupancy detection with a novel heuristic optimization and back-propagation (BP) based algorithm publication-title: J. Intell. Fuzzy Syst. – volume: 8 start-page: 42042 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib32 article-title: A hybrid model for lane-level traffic flow forecasting based on complete ensemble empirical mode decomposition and extreme gradient boosting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977219 – volume: 243 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib45 article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118671 – volume: 214 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib24 article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting publication-title: Knowl. Base Syst. – volume: 171 start-page: 69 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib13 article-title: Forecasting carbon prices in the Shenzhen market, China: the role of mixed-frequency factors publication-title: Energy doi: 10.1016/j.energy.2019.01.009 – volume: 8 start-page: 44470 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib49 article-title: Ultra-short-term wind power prediction by salp swarm algorithm-based optimizing extreme learning machine publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978098 – volume: 9 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib2 article-title: Electrical characteristics estimation of photovoltaic modules via cuckoo search-relevant vector machine probabilistic model publication-title: Front. Energy Res. – volume: 23 start-page: 4372 issue: 12 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib5 article-title: A novel pavement transverse cracks detection model using WT-CNN and STFT-CNN for smartphone data analysis publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2021.1945056 – volume: 9 start-page: 57311 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib30 article-title: Runoff prediction and analysis based on improved CEEMDAN-OS-QR-ELM publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072673 – volume: 15 start-page: 3562 issue: 10 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib6 article-title: Forecasting regional carbon prices in China based on secondary decomposition and a hybrid kernel-based extreme learning machine publication-title: Energies doi: 10.3390/en15103562 – year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib54 article-title: A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting publication-title: Environ. Dev. Sustain. – volume: 534 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib23 article-title: A novel secondary decomposition learning paradigm with kernel extreme learning machine for multi-step forecasting of container throughput publication-title: Physica A doi: 10.1016/j.physa.2019.122025 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.jclepro.2023.136701_bib34 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.07.002 – year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib65 article-title: Underwater acoustic signal denoising model based on secondary variational mode decomposition publication-title: Def. Technol. – volume: 585 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib1 article-title: Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts publication-title: J. Hydrol. – volume: 239 start-page: 157 year: 2019 ident: 10.1016/j.jclepro.2023.136701_bib27 article-title: Impacts of carbon price level in carbon emission trading market publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.194 – volume: 249 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib31 article-title: Carbon trading volume and price forecasting in China using multiple machine learning models publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119386 – volume: 14 start-page: 7845 issue: 23 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib16 article-title: Improving artificial intelligence forecasting models performance with data preprocessing: European union allowance prices case study publication-title: Energies doi: 10.3390/en14237845 – volume: 266 issue: 5 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib28 article-title: A new feature extraction method of ship radiated noise based on variational mode decomposition, weighted fluctuation-based dispersion entropy and relevance vector machine publication-title: Ocean Eng – volume: 285 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib15 article-title: A hybrid model for carbon price forecasting using GARCH and long short-term memory network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116485 – volume: 260 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib56 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: a case study in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121027 – volume: 154 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib4 article-title: Multidimensional assessment of the energy sustainability and carbon pricing impacts along the belt and road initiative publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111741 – volume: 723 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib26 article-title: Scenario simulation of the EU carbon price and its enlightenment to China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137982 – volume: 268 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib20 article-title: Research on noise reduction method for ship radiate noise based on secondary decomposition publication-title: Ocean Eng – volume: 36 start-page: 20 issue: 8 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib55 article-title: Research on China’s carbon emission prediction based on WOA-ELM model publication-title: Ecol. Econ. – year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib62 article-title: An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction publication-title: Ann. Oper. Res. – volume: 156 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib53 article-title: Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine publication-title: Chaos, Solit. Fractals doi: 10.1016/j.chaos.2021.111783 – volume: 13 start-page: 8413 issue: 15 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib73 article-title: Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine publication-title: Sustainability doi: 10.3390/su13158413 – volume: 109 start-page: 467 issue: 2 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib3 article-title: Improved complete ensemble empirical mode decomposition with adaptive noise: quasi-oppositional Jaya hybrid algorithm for ECG denoising publication-title: Analog Integr. Circuits Process. doi: 10.1007/s10470-021-01901-3 – volume: 305 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib71 article-title: The influence of carbon price on fuel conversion strategy of power generation enterprises - a perspective of Guangdong province publication-title: J. Clean. Prod. – start-page: 5638 year: 2007 ident: 10.1016/j.jclepro.2023.136701_bib67 article-title: Computer-aided mass detection on digitized mammograms using adaptive thresholding and fuzzy entropy – volume: 8 start-page: 1644 year: 2020 ident: 10.1016/j.jclepro.2023.136701_bib22 article-title: Carbon price combination prediction model based on improved variational mode decomposition publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.11.270 – volume: 29 start-page: 37842 issue: 25 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib40 article-title: Exploring the nexus between environment quality, economic development and industrialization in BRICS nations: the role of technological innovation and income inequality publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-18181-z – volume: 29 start-page: 65585 issue: 43 year: 2022 ident: 10.1016/j.jclepro.2023.136701_bib74 article-title: A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-20450-4 – volume: 754 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib46 article-title: Carbon price prediction based on modified wavelet least square support vector machine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142052 – volume: 314 year: 2021 ident: 10.1016/j.jclepro.2023.136701_bib51 article-title: A novel framework for carbon price prediction using comprehensive feature screening, bidirectional gate recurrent unit and Gaussian process regression publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128024 |
| SSID | ssj0017074 |
| Score | 2.58707 |
| Snippet | As global warming intensifies, the reduction of carbon emissions is imminent. Carbon price is directly related to whether carbon can be effectively reduced.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 136701 |
| SubjectTerms | algorithms carbon carbon markets Carbon price China entropy Error correction Forecasting Hybrid framework Intelligent optimization algorithm Mode decomposition prices swarms |
| Title | Forecasting carbon price in China using a novel hybrid model based on secondary decomposition, multi-complexity and error correction |
| URI | https://dx.doi.org/10.1016/j.jclepro.2023.136701 https://www.proquest.com/docview/3153158975 |
| Volume | 401 |
| WOSCitedRecordID | wos000958401300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFNtechIiEvIkmedHCu0paDVwmErLSfL6zhqVlWyJJtqe-eHM2M72VCKWg5coshaZ618X-zx-JsZQt4qHzfSvnKTMFdulMIdbMFQZZ5JzxdxopSuWjJh02kyn6ffrFep0eUEWFkmm026-q9QQxuAjaGz_wB3_1BogHsAHa4AO1xvBTwW25Si0XJmKepFhSIsmA50fB9Wy3Za7R8QTlldqHPn7BKDtkxJHAcXtQwPEBrcKGcoqcsUys6ttgsR0RpEV2vR1QaNePS9q7quakdirQ_ZY_2n0QtjFaWqURaWtXIoAvhuHdcnlV1LB23zQlRZ0VNwohUIn9rqrC2GXotAawRN3ObA_XgYm2j5biaGvZ6zQuEd83z32vnduBqWoyUMF0Y6wkfbDtsFrTvEn37lx6eTCZ-N57N3qx8ulhrDI3lbd-Uu2Q1YnMJUuHv0eTz_0h8-Mc8k7-6GuA38-nDtP__NpLmyuGuLZfaIPLRvnR4Zijwmd1T5hDwYJKB8Sn4OyEINWagmCy1KqslCNVmooJos1JCFarJQTRYKXXqy0N_I8p5epQoFqlBNFbqlyjNyejyefTxxbV0OV4ZRsHZFuGBhkuWw1Y3jRcaYJ2JPCV8eprmQQZYvZKyCOPfA-I1SyVQoBVayB9M2x_yL4XOyU1al2iMU8yfmeaCkEnmUCCGYFKiJCLwoh82Gt0-i7tVyaZPWY-2Uc96pE5fcIsIREW4Q2SejvtvKZG25qUPS4cat6WlMSg7Mu6nrmw5nDlMznrfBh1S1DQ_BmvDjJGXxwS1-84Lc334oL8nOum7VK3JPXqyLpn5tOfoLxOq3Bg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+carbon+price+in+China+using+a+novel+hybrid+model+based+on+secondary+decomposition%2C+multi-complexity+and+error+correction&rft.jtitle=Journal+of+cleaner+production&rft.au=Yang%2C+Hong&rft.au=Yang%2C+Xiaodie&rft.au=Li%2C+Guohui&rft.date=2023-05-15&rft.issn=0959-6526&rft.volume=401+p.136701-&rft_id=info:doi/10.1016%2Fj.jclepro.2023.136701&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |