A comparison of the performance of SWAT and artificial intelligence models for monthly rainfall–runoff analysis in the Peddavagu River Basin, India

Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligen...

Full description

Saved in:
Bibliographic Details
Published in:Aqua (London, England) Vol. 72; no. 9; pp. 1707 - 1730
Main Authors: Shekar, Padala Raja, Mathew, Aneesh, Pandey, Arunabh, Bhosale, Avadhoot
Format: Journal Article
Language:English
Published: IWA Publishing 01.09.2023
Subjects:
ISSN:2709-8028, 2709-8036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis.
AbstractList Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis.
Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis. HIGHLIGHTS The study used SWAT and seven AI models for the Peddavagu River Basin.; LSTM performed well in simulating R–R during calibration (R2 is 0.88 and NSE is 0.88) and validation (R2 is 0.88 and NSE is 0.85).; These models are valuable for sustainable water management in the Peddavagu River Basin.;
Author Pandey, Arunabh
Shekar, Padala Raja
Bhosale, Avadhoot
Mathew, Aneesh
Author_xml – sequence: 1
  givenname: Padala Raja
  surname: Shekar
  fullname: Shekar, Padala Raja
– sequence: 2
  givenname: Aneesh
  surname: Mathew
  fullname: Mathew, Aneesh
– sequence: 3
  givenname: Arunabh
  surname: Pandey
  fullname: Pandey, Arunabh
– sequence: 4
  givenname: Avadhoot
  surname: Bhosale
  fullname: Bhosale, Avadhoot
BookMark eNptkU1OHDEQha2ISCGEZfY-QHqodv-5lwNKYCQkooQoS6v8Nzjy2IPdgzS73CHigpwENwQWUVYuPdX3qlzvPTkIMRhCPtawYHXfn-DtDhcMWLOAlr8hh2yAseLQ9AevNePvyHHOTkIHA-PjAIfkfklV3GwxuRwDjZZON4ZuTbIxbTAoM0vffy6vKQZNMU3OOuXQUxcm471bm7lnE7XxmRamlGG68Xua0AWL3j_8_pN2IVpbDNDvs8sFfRry1WiNd7je0W_uziR6itmFT3QVtMMP5G2Bszn--x6RH18-X59dVJdX56uz5WWlmpZNFQLKumNc9bJrOR-x4SCN7SWv9dCoWneas9agBQMa5NB0UtmhtQhDZ9oRmiOyevbVEX-JbXIbTHsR0YknIaa1mP-svBEoJdNWqbqMai3ruNJQc1SSYdHGsXg1z14qxZyTsUK5CSdXDlKO4UUNYg5KzEGJOShRgipU9Q_1ssX_-x8BZJCcQA
CitedBy_id crossref_primary_10_1007_s12517_024_12031_1
crossref_primary_10_3390_geosciences15080289
crossref_primary_10_1007_s42452_025_07448_6
crossref_primary_10_2166_wcc_2024_010
crossref_primary_10_1016_j_hydres_2024_05_003
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_2166_wcc_2024_594
crossref_primary_10_3390_biology14050520
Cites_doi 10.1016/j.jhydrol.2016.05.061
10.2166/aqua.2022.111
10.5194/hess-22-6005-2018
10.1016/j.jhydrol.2012.12.011
10.1016/j.scitotenv.2015.07.092
10.1007/s40899-022-00654-9
10.1061/9780784482339.028
10.3390/w12010175
10.1002/hyp.1448
10.1016/S0022-1694(98)00273-X
10.1029/2019WR025326
10.1016/j.neunet.2014.09.003
10.1016/j.jhydrol.2013.06.044
10.1007/978-981-13-8181-2
10.1007/978-3-030-60869-9
10.1016/j.pce.2018.03.012
10.1061/(ASCE)1084-0699(2007)12:2(173)
10.1007/s10661-018-7012-9
10.1016/j.wsee.2022.12.003
10.1080/02626667.2016.1162907
10.1109/ACCESS.2017.2779939
10.1007/978-981-15-6564-9
10.1016/j.agwat.2016.10.024
10.1002/hyp.5932
10.1007/s13762-013-0209-0
10.1080/02626667.2013.800944
10.1016/j.jhydrol.2014.04.055
10.1007/978-981-19-7100-6
10.1061/(ASCE)1084-0699(1999)4:3(232)
10.1007/s11269-020-02759-2
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.5194/hess-6-859-2002
10.1007/s00477-017-1428-6
10.1002/eco.1569
10.1016/j.nexus.2022.100044
10.2166/aqua.2019.044
10.1007/978-3-030-68124-1
10.1016/j.nexus.2022.100104
10.1016/S0895-7177(03)00117-1
10.1007/s12517-022-10723-0
10.1007/s11269-014-0781-1
10.1061/(ASCE)1084-0699(1999)4:2(135)
10.1016/j.jhydrol.2015.03.027
10.1186/s44147-022-00094-4
10.1016/j.catena.2016.08.002
10.1002/hyp.7568
10.1111/j.1752-1688.2001.tb03630.x
10.1016/j.marpolbul.2012.08.005
10.1007/s13201-021-01485-3
10.1007/s11269-019-02399-1
10.1016/j.jhydrol.2019.123962
10.2166/h2oj.2022.017
10.1002/hyp.10764
10.1007/s00477-018-1560-y
10.1016/j.jhydrol.2021.126378
10.1007/s12665-016-6316-8
10.1007/s00477-015-1040-6
10.1016/j.jhydrol.2015.11.050
10.1111/gwat.12557
10.1016/j.envc.2022.100585
10.1016/j.envres.2019.108852
10.2166/aqua.2023.013
10.1002/hyp.5983
10.1016/j.jhydrol.2013.11.054
10.2166/aqua.2023.200
10.1002/2013WR013855
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2166/aqua.2023.048
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2709-8036
EndPage 1730
ExternalDocumentID oai_doaj_org_article_abb2dfcc1b544f258cd018acb2ac1b99
10_2166_aqua_2023_048
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
FRP
GROUPED_DOAJ
ID FETCH-LOGICAL-c342t-a0ab1528c6b54889a380bef6b81d73c1d5d824eaf0e0d0b735bcf74fa075e4903
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048969600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2709-8028
IngestDate Fri Oct 03 12:47:46 EDT 2025
Sat Nov 29 01:46:54 EST 2025
Tue Nov 18 22:17:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-a0ab1528c6b54889a380bef6b81d73c1d5d824eaf0e0d0b735bcf74fa075e4903
OpenAccessLink https://doaj.org/article/abb2dfcc1b544f258cd018acb2ac1b99
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_abb2dfcc1b544f258cd018acb2ac1b99
crossref_citationtrail_10_2166_aqua_2023_048
crossref_primary_10_2166_aqua_2023_048
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Aqua (London, England)
PublicationYear 2023
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2023092719112969600_AQUAWIES-D-23-00048C55) 2019; 125
Eslamian (2023092719112969600_AQUAWIES-D-23-00048C21) 2023
(2023092719112969600_AQUAWIES-D-23-00048C9) 2012
(2023092719112969600_AQUAWIES-D-23-00048C89) 2023; 72
(2023092719112969600_AQUAWIES-D-23-00048C8) 2021; 35
(2023092719112969600_AQUAWIES-D-23-00048C3) 2006; 20
(2023092719112969600_AQUAWIES-D-23-00048C26) 2020
(2023092719112969600_AQUAWIES-D-23-00048C42) 2002; 6
(2023092719112969600_AQUAWIES-D-23-00048C62) 2021; 11
(2023092719112969600_AQUAWIES-D-23-00048C50) 2007; 50
(2023092719112969600_AQUAWIES-D-23-00048C70) 2023; 2023
(2023092719112969600_AQUAWIES-D-23-00048C41) 2002; 2
Pandey (2023092719112969600_AQUAWIES-D-23-00048C28) 2023
(2023092719112969600_AQUAWIES-D-23-00048C6) 2018; 190
(2023092719112969600_AQUAWIES-D-23-00048C30) 2014; 509
(2023092719112969600_AQUAWIES-D-23-00048C15) 2018; 77
(2023092719112969600_AQUAWIES-D-23-00048C48) 2022; 5
(2023092719112969600_AQUAWIES-D-23-00048C54) 2015; 538
(2023092719112969600_AQUAWIES-D-23-00048C56) 2016; 533
(2023092719112969600_AQUAWIES-D-23-00048C79) 2010
(2023092719112969600_AQUAWIES-D-23-00048C18) 2018; 32
(2023092719112969600_AQUAWIES-D-23-00048C65) 2022; 8
2023092719112969600_AQUAWIES-D-23-00048C01
(2023092719112969600_AQUAWIES-D-23-00048C64) 2022; 15
(2023092719112969600_AQUAWIES-D-23-00048C75) 2014; 59
(2023092719112969600_AQUAWIES-D-23-00048C1) 2019
Pande (2023092719112969600_AQUAWIES-D-23-00048C20) 2021
(2023092719112969600_AQUAWIES-D-23-00048C47) 2023
(2023092719112969600_AQUAWIES-D-23-00048C103) 2020; 56
(2023092719112969600_AQUAWIES-D-23-00048C93) 2018
(2023092719112969600_AQUAWIES-D-23-00048C97) 2000; 2
(2023092719112969600_AQUAWIES-D-23-00048C16) 2019; 577
(2023092719112969600_AQUAWIES-D-23-00048C13) 2023
(2023092719112969600_AQUAWIES-D-23-00048C44) 2014; 28
(2023092719112969600_AQUAWIES-D-23-00048C22) 2012; 64
(2023092719112969600_AQUAWIES-D-23-00048C104) 2012; 145–146
(2023092719112969600_AQUAWIES-D-23-00048C19) 2021; 595
(2023092719112969600_AQUAWIES-D-23-00048C49) 2013; 499
Chauhan (2023092719112969600_AQUAWIES-D-23-00048C85) 2021
(2023092719112969600_AQUAWIES-D-23-00048C87) 2014; 515
(2023092719112969600_AQUAWIES-D-23-00048C96) 1999; 4
(2023092719112969600_AQUAWIES-D-23-00048C107) 2020; 120
(2023092719112969600_AQUAWIES-D-23-00048C25) 2020
(2023092719112969600_AQUAWIES-D-23-00048C95) 2018; 105
(2023092719112969600_AQUAWIES-D-23-00048C68) 2016; 147
(2023092719112969600_AQUAWIES-D-23-00048C35) 2018; 6
(2023092719112969600_AQUAWIES-D-23-00048C83) 2023; 5
(2023092719112969600_AQUAWIES-D-23-00048C90) 2017; 180
(2023092719112969600_AQUAWIES-D-23-00048C37) 2020; 246
(2023092719112969600_AQUAWIES-D-23-00048C81) 2022; 7
ASCE (2023092719112969600_AQUAWIES-D-23-00048C5) 2000; 5
(2023092719112969600_AQUAWIES-D-23-00048C86) 2018; 54
(2023092719112969600_AQUAWIES-D-23-00048C76) 2015; 8
(2023092719112969600_AQUAWIES-D-23-00048C11) 2022; 8
2023092719112969600_AQUAWIES-D-23-00048C53
(2023092719112969600_AQUAWIES-D-23-00048C105) 2021; 598
(2023092719112969600_AQUAWIES-D-23-00048C88) 2014; 50
(2023092719112969600_AQUAWIES-D-23-00048C60) 2017; 62
(2023092719112969600_AQUAWIES-D-23-00048C72) 2016
(2023092719112969600_AQUAWIES-D-23-00048C77) 2015; 61
(2023092719112969600_AQUAWIES-D-23-00048C59) 2022; 8
(2023092719112969600_AQUAWIES-D-23-00048C106) 2018; 32
(2023092719112969600_AQUAWIES-D-23-00048C31) 2017; 76
(2023092719112969600_AQUAWIES-D-23-00048C23) 2021; 595
AlKhaddar (2023092719112969600_AQUAWIES-D-23-00048C61) 2020
(2023092719112969600_AQUAWIES-D-23-00048C78) 2020; 11
(2023092719112969600_AQUAWIES-D-23-00048C12) 2010; 24
(2023092719112969600_AQUAWIES-D-23-00048C100) 2007; 12
(2023092719112969600_AQUAWIES-D-23-00048C36) 2022; 8
(2023092719112969600_AQUAWIES-D-23-00048C38) 2018; 22
(2023092719112969600_AQUAWIES-D-23-00048C17) 2020; 12
(2023092719112969600_AQUAWIES-D-23-00048C91) 2023; 72
(2023092719112969600_AQUAWIES-D-23-00048C92) 2020; 4
(2023092719112969600_AQUAWIES-D-23-00048C51) 2020; 69
(2023092719112969600_AQUAWIES-D-23-00048C73) 1999; 216
(2023092719112969600_AQUAWIES-D-23-00048C45) 2016; 540
(2023092719112969600_AQUAWIES-D-23-00048C57) 2013; 476
(2023092719112969600_AQUAWIES-D-23-00048C32) 1988; 2
(2023092719112969600_AQUAWIES-D-23-00048C101) 2020; 582
(2023092719112969600_AQUAWIES-D-23-00048C108) 2018
(2023092719112969600_AQUAWIES-D-23-00048C74) 2001; 37
(2023092719112969600_AQUAWIES-D-23-00048C39) 2021; 84
(2023092719112969600_AQUAWIES-D-23-00048C71) 2013; 10
(2023092719112969600_AQUAWIES-D-23-00048C7) 2019; 33
(2023092719112969600_AQUAWIES-D-23-00048C33) 2005; 19
(2023092719112969600_AQUAWIES-D-23-00048C52) 2004
(2023092719112969600_AQUAWIES-D-23-00048C29) 2016; 30
(2023092719112969600_AQUAWIES-D-23-00048C40) 2003; 37
Gupta (2023092719112969600_AQUAWIES-D-23-00048C63) 2021
(2023092719112969600_AQUAWIES-D-23-00048C82) 2022; 5
(2023092719112969600_AQUAWIES-D-23-00048C94) 2021; 795
(2023092719112969600_AQUAWIES-D-23-00048C99) 2022; 71
(2023092719112969600_AQUAWIES-D-23-00048C4) 1996; 176
(2023092719112969600_AQUAWIES-D-23-00048C46) 2017; 55
(2023092719112969600_AQUAWIES-D-23-00048C84) 2023
(2023092719112969600_AQUAWIES-D-23-00048C10) 2016
(2023092719112969600_AQUAWIES-D-23-00048C43) 2013; 480
(2023092719112969600_AQUAWIES-D-23-00048C58) 2020; 180
(2023092719112969600_AQUAWIES-D-23-00048C2) 2015; 524
(2023092719112969600_AQUAWIES-D-23-00048C14) 1998; 43
(2023092719112969600_AQUAWIES-D-23-00048C34) 2015; 29
(2023092719112969600_AQUAWIES-D-23-00048C80) 2022; 69
(2023092719112969600_AQUAWIES-D-23-00048C24) 1999; 4
Zakwan (2023092719112969600_AQUAWIES-D-23-00048C27) 2022
(2023092719112969600_AQUAWIES-D-23-00048C102) 2009; 45
(2023092719112969600_AQUAWIES-D-23-00048C69) 2022; 16
(2023092719112969600_AQUAWIES-D-23-00048C98) 2004; 18
References_xml – volume: 540
  start-page: 64
  year: 2016
  ident: 2023092719112969600_AQUAWIES-D-23-00048C45
  article-title: Regional scale hydrologic modeling of a karst-dominant geomorphology: the case study of the Island of Crete
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.05.061
– volume: 71
  start-page: 415
  issue: 3
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C99
  article-title: Integrating a GIS-based approach and a SWAT model to identify potential suitable sites for rainwater harvesting in Rwanda
  publication-title: Journal of Water Supply: Research and Technology-Aqua
  doi: 10.2166/aqua.2022.111
– start-page: 918
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C108
  article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: Journal of Hydrology
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C38
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-22-6005-2018
– volume: 4
  issue: 2021
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C92
  article-title: IoT-based lava flood early warning system with rainfall intensity monitoring and disaster communication technology
  publication-title: Emerging Science Journal
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 2023092719112969600_AQUAWIES-D-23-00048C50
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: American Society of Agricultural and Biological Engineers
– volume: 480
  start-page: 102
  year: 2013
  ident: 2023092719112969600_AQUAWIES-D-23-00048C43
  article-title: The streamflow estimation using the Xinanjiang rainfall runoff model and dual state parameter estimation method
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2012.12.011
– volume: 538
  start-page: 288
  year: 2015
  ident: 2023092719112969600_AQUAWIES-D-23-00048C54
  article-title: Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2015.07.092
– volume: 8
  start-page: 66
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C65
  article-title: Identification of soil erosionprone zone utilizing geo-informatics techniques and WSPM model
  publication-title: Sustainable Water Resources Management
  doi: 10.1007/s40899-022-00654-9
– start-page: 272
  volume-title: World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management
  year: 2019
  ident: 2023092719112969600_AQUAWIES-D-23-00048C1
  article-title: Application and performance assessment of SWAT hydrological model over Kharun river basin, Chhattisgarh, India
  doi: 10.1061/9780784482339.028
– volume: 12
  start-page: 175
  issue: 1
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C17
  article-title: Comparison of long short-term memory networks and the hydrological model in runoff simulation
  publication-title: Water
  doi: 10.3390/w12010175
– volume: 582
  start-page: 1
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C101
  article-title: Multiscale hydrological drought analysis: role of climate, catchment and morphological variables and associated thresholds
  publication-title: Journal of Hydrology
– volume-title: Soil and Water Assessment Tool (Version 2000)—Theoretical Documentation. GSWRL 02-01, BRC 02-05, TR-191
  year: 2004
  ident: 2023092719112969600_AQUAWIES-D-23-00048C52
– year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C13
  article-title: SWAT model calibration approaches in an integrated paddy-dominated catchment-command
  publication-title: Agricultural Water Management
– volume: 18
  start-page: 1811
  issue: 10
  year: 2004
  ident: 2023092719112969600_AQUAWIES-D-23-00048C98
  article-title: Hydrological modelling of a small watershed using generated rainfall in the soil and water assessment tool model
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.1448
– volume: 11
  start-page: 1
  issue: 11
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C78
  article-title: Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling
  publication-title: Atmosphere
– volume: 595
  start-page: 1
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C19
  article-title: Using the soil and water assessment tool to develop a LiDAR-based index of the erosion regulation ecosystem service
  publication-title: Journal of Hydrology
– volume: 216
  start-page: 32
  year: 1999
  ident: 2023092719112969600_AQUAWIES-D-23-00048C73
  article-title: A non-linear rainfall–runoff model using an artificial neural network
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(98)00273-X
– volume: 56
  start-page: e2019WR025326
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C103
  article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning
  publication-title: Water Resources Research
  doi: 10.1029/2019WR025326
– volume: 61
  start-page: 85
  year: 2015
  ident: 2023092719112969600_AQUAWIES-D-23-00048C77
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 273
  volume-title: River Dynamics and Flood Hazards
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C47
  article-title: Flood prioritization of basins based on geomorphometric properties using morphometric analysis and principal component analysis: a case study of the Maner River Basin
– volume: 125
  start-page: 181e194
  year: 2019
  ident: 2023092719112969600_AQUAWIES-D-23-00048C55
  article-title: Combining principal component analysis, discrete wavelet transforms and XGBoost to trade in the financial markets
  publication-title: Expert Systems with Applications
– volume-title: Rainfall–Runoff Modelling: the Primer
  year: 2012
  ident: 2023092719112969600_AQUAWIES-D-23-00048C9
– volume: 499
  start-page: 1
  year: 2013
  ident: 2023092719112969600_AQUAWIES-D-23-00048C49
  article-title: Modeling rainfall–runoff relationship using multivariate GARCH model
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2013.06.044
– ident: 2023092719112969600_AQUAWIES-D-23-00048C01
– start-page: 201
  volume-title: Advances in Water Resources Engineering and Management
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C61
  article-title: Sustainable development and management of groundwater in Varanasi, India BT
  doi: 10.1007/978-981-13-8181-2
– start-page: 533
  volume-title: Current Directions in Water Scarcity Research
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C27
  article-title: Chapter 30 - Understanding trend and its variability of rainfall and temperature over Patna (Bihar)
– start-page: 22
  year: 2010
  ident: 2023092719112969600_AQUAWIES-D-23-00048C79
  article-title: Artificial neural network model for river flow forecasting in a developing country
– volume: 2
  start-page: 359
  issue: 5
  year: 1988
  ident: 2023092719112969600_AQUAWIES-D-23-00048C32
  article-title: Multilayer feed-forward networks are universal approximators
  publication-title: Neural Networks
– volume: 77
  start-page: 1
  issue: 1
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C15
  article-title: Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal
  publication-title: Environmental Earth Sciences
– start-page: 101
  volume-title: The Ganga River Basin: A Hydrometeorological Approach
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C85
  article-title: River discharge study in River Ganga, Varanasi using conventional and modern techniques BT
  doi: 10.1007/978-3-030-60869-9
– volume: 105
  start-page: 115
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C95
  article-title: SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa
  publication-title: Physics and Chemistry of the Earth
  doi: 10.1016/j.pce.2018.03.012
– volume: 12
  start-page: 173
  issue: 2
  year: 2007
  ident: 2023092719112969600_AQUAWIES-D-23-00048C100
  article-title: Suitability of SWAT for the conservation effects assessment project: a comparison on USDA-ARS experimental watersheds
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(2007)12:2(173)
– volume: 190
  start-page: 704
  issue: 12
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C6
  article-title: Performance assessment of artificial neural networks and support vector regression models for stream flow predictions
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-018-7012-9
– volume: 5
  start-page: 46
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C83
  article-title: Detection of land use/land cover changes in a watershed: a case study of the Murredu watershed in Telangana state, India
  publication-title: Watershed Ecology and the Environment
  doi: 10.1016/j.wsee.2022.12.003
– volume: 62
  start-page: 546
  issue: 4
  year: 2017
  ident: 2023092719112969600_AQUAWIES-D-23-00048C60
  article-title: Glacier mass balance simulation using SWAT distributed snow algorithm
  publication-title: Hydrological Sciences Journal
  doi: 10.1080/02626667.2016.1162907
– volume: 6
  start-page: 1662
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C35
  article-title: LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– start-page: 305
  volume-title: Fate and Transport of Subsurface Pollutants
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C63
  article-title: Development and application of the integrated GIS-MODFLOW Model BT
  doi: 10.1007/978-981-15-6564-9
– volume-title: Decadal Land Use and Land Cover Classifications Across India, 1985, 1995, 2005
  year: 2016
  ident: 2023092719112969600_AQUAWIES-D-23-00048C72
– volume: 180
  start-page: 61
  year: 2017
  ident: 2023092719112969600_AQUAWIES-D-23-00048C90
  article-title: Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT)
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2016.10.024
– volume: 20
  start-page: 1201
  issue: 5
  year: 2006
  ident: 2023092719112969600_AQUAWIES-D-23-00048C3
  article-title: Rainfall–runoff modeling using artificial neural networks technique: a Blue Nile catchment case study
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.5932
– volume: 10
  start-page: 1181
  issue: 6
  year: 2013
  ident: 2023092719112969600_AQUAWIES-D-23-00048C71
  article-title: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-013-0209-0
– volume: 59
  start-page: 312
  issue: 2
  year: 2014
  ident: 2023092719112969600_AQUAWIES-D-23-00048C75
  article-title: Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models
  publication-title: Hydrological Sciences Journal
  doi: 10.1080/02626667.2013.800944
– volume: 515
  start-page: 47
  year: 2014
  ident: 2023092719112969600_AQUAWIES-D-23-00048C87
  article-title: Comparative study of different wavelet based neural network models for rainfall-runoff modeling
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2014.04.055
– volume-title: River Dynamics and Flood Hazards. Disaster Resilience and Green Growth
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C28
  article-title: Projecting future maximum temperature changes in River Ganges Basin Using Observations and Statistical Downscaling Model (SDSM)
  doi: 10.1007/978-981-19-7100-6
– volume: 4
  start-page: 232
  year: 1999
  ident: 2023092719112969600_AQUAWIES-D-23-00048C96
  article-title: Rainfall–runoff modeling using artificial neural networks
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(1999)4:3(232)
– volume: 35
  start-page: 1167
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C8
  article-title: Daily runoff forecasting using a cascade long short-Term memory model that considers different variables
  publication-title: Water Resources Management
  doi: 10.1007/s11269-020-02759-2
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  ident: 2023092719112969600_AQUAWIES-D-23-00048C5
  article-title: Task committee on application of artificial neural networks in hydrology. artificial neural networks in hydrology 1: hydrology application
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 6
  start-page: 859
  issue: 5
  year: 2002
  ident: 2023092719112969600_AQUAWIES-D-23-00048C42
  article-title: Towards a comprehensive physically-based rainfall-runoff model
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-6-859-2002
– volume: 32
  start-page: 999
  issue: 4
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C18
  article-title: Regional scale rainfall–runoff modeling using VARX–MGARCH approach
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-017-1428-6
– volume: 8
  start-page: 1119
  issue: 6
  year: 2015
  ident: 2023092719112969600_AQUAWIES-D-23-00048C76
  article-title: Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area
  publication-title: Ecohydrology
  doi: 10.1002/eco.1569
– volume: 5
  start-page: 100044
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C48
  article-title: Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India
  publication-title: Energy Nexus
  doi: 10.1016/j.nexus.2022.100044
– volume: 69
  start-page: 39
  issue: 1
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C51
  article-title: Sensitivity analysis of the DEM resolution and effective parameters of runoff yield in the SWAT model: a case study
  publication-title: Journal of Water Supply: Research and Technology-Aqua
  doi: 10.2166/aqua.2019.044
– start-page: 129
  volume-title: Groundwater Resources Development and Planning in the Semi-Arid Region
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C20
  article-title: Modeling of groundwater level using artificial neural network algorithm and WA-SVR model BT
  doi: 10.1007/978-3-030-68124-1
– volume: 8
  issue: 5
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C59
  article-title: Effect of recharge and abstraction on groundwater levels
  publication-title: Civil Engineering Journal
– volume: 16
  start-page: 1
  issue: 4
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C69
  article-title: Modelling of streamflow and water balance in the Kuttiyadi River Basin using SWAT and remote sensing/GIS tools
  publication-title: International Journal of Environmental Research
– volume: 145–146
  start-page: 70
  issue: 1
  year: 2012
  ident: 2023092719112969600_AQUAWIES-D-23-00048C104
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River basin, China
  publication-title: Geomorph
– volume: 7
  start-page: 100104
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C81
  article-title: Evaluation of morphometric and hypsometric analysis of the Bagh River Basin using remote sensing and geographic information system techniques
  publication-title: Energy Nexus
  doi: 10.1016/j.nexus.2022.100104
– volume: 37
  start-page: 1047
  year: 2003
  ident: 2023092719112969600_AQUAWIES-D-23-00048C40
  article-title: A nonlinear rainfall–runoff model using neural network technique: example in fractured porous media
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/S0895-7177(03)00117-1
– volume: 15
  start-page: 1426
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C64
  article-title: Study of morphological changes and socio-economic impact assessment: a case study of koshi river
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-022-10723-0
– volume: 28
  start-page: 4857
  year: 2014
  ident: 2023092719112969600_AQUAWIES-D-23-00048C44
  article-title: Intermittent streamflow forecasting and extreme event modelling using wavelet based artificial neural networks
  publication-title: Water Resources Management
  doi: 10.1007/s11269-014-0781-1
– start-page: 785e794
  volume-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2023092719112969600_AQUAWIES-D-23-00048C10
  article-title: Xgboost: a scalable tree boosting system
– volume: 595
  start-page: 1
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C23
  article-title: Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 135
  issue: 2
  year: 1999
  ident: 2023092719112969600_AQUAWIES-D-23-00048C24
  article-title: Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(1999)4:2(135)
– volume: 2
  start-page: 156
  year: 2000
  ident: 2023092719112969600_AQUAWIES-D-23-00048C97
  article-title: Precipitation-runoff modeling using artificial neural networks and conceptual models
  publication-title: ASCE Journal of Hydrologic Engineering
– volume: 45
  start-page: 1
  issue: 8
  year: 2009
  ident: 2023092719112969600_AQUAWIES-D-23-00048C102
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resources Research
– volume: 84
  start-page: 2675
  issue: 10–11
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C39
  article-title: Experimental study on infiltration pattern: opportunities for sustainable management in the northern region of India
  publication-title: Water Science and Technology
– volume: 524
  start-page: 733
  year: 2015
  ident: 2023092719112969600_AQUAWIES-D-23-00048C2
  article-title: A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.03.027
– volume: 43
  start-page: 47
  year: 1998
  ident: 2023092719112969600_AQUAWIES-D-23-00048C14
  article-title: An artificial neural network approach to rainfall– runoff modeling
  publication-title: Journal of Hydrology
– volume: 69
  start-page: 44
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C80
  article-title: Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system
  publication-title: Journal of Engineering and Applied Science
  doi: 10.1186/s44147-022-00094-4
– volume: 147
  start-page: 595
  year: 2016
  ident: 2023092719112969600_AQUAWIES-D-23-00048C68
  article-title: Physically based soil erosion and sediment yield models revisited
  publication-title: Catena
  doi: 10.1016/j.catena.2016.08.002
– volume: 24
  start-page: 1133
  issue: 9
  year: 2010
  ident: 2023092719112969600_AQUAWIES-D-23-00048C12
  article-title: Sensitivity and identifiability of stream flow generation parameters of the SWAT model
  publication-title: Hydrological Processes International Journal
  doi: 10.1002/hyp.7568
– volume: 37
  start-page: 1169
  issue: 5
  year: 2001
  ident: 2023092719112969600_AQUAWIES-D-23-00048C74
  article-title: Validation of the SWAT model on a large river basin with point and nonpoint sources
  publication-title: Journal of the American Water Resources Association
  doi: 10.1111/j.1752-1688.2001.tb03630.x
– volume: 64
  start-page: 2409
  issue: 11
  year: 2012
  ident: 2023092719112969600_AQUAWIES-D-23-00048C22
  article-title: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2012.08.005
– volume: 2
  start-page: 18e22
  issue: 3
  year: 2002
  ident: 2023092719112969600_AQUAWIES-D-23-00048C41
  article-title: Classification and regression by randomForest
  publication-title: R. News
– volume: 11
  start-page: 162
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C62
  article-title: Conceptualization and development of multilayered groundwater model in transient condition
  publication-title: Applied Water Science
  doi: 10.1007/s13201-021-01485-3
– volume: 176
  start-page: 57
  issue: 1–4
  year: 1996
  ident: 2023092719112969600_AQUAWIES-D-23-00048C4
  article-title: Estimating hydrologic budgets for three Illinois watershedsm
  publication-title: Journal of Hydrology
– start-page: 659
  volume-title: Hydrologic Modeling
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C93
  article-title: Streamflow estimation using SWAT model over Seonath river basin, Chhattisgarh, India
– volume: 33
  start-page: 4783
  issue: 14
  year: 2019
  ident: 2023092719112969600_AQUAWIES-D-23-00048C7
  article-title: Short-term streamflow forecasting using the feature-enhanced regression model
  publication-title: Water Resources Management
  doi: 10.1007/s11269-019-02399-1
– start-page: 365
  volume-title: River Dynamics and Flood Hazards
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C84
  article-title: Erosion susceptibility mapping based on hypsometric analysis using remote sensing and geographical information system techniques
– ident: 2023092719112969600_AQUAWIES-D-23-00048C53
– volume: 577
  start-page: 123962
  year: 2019
  ident: 2023092719112969600_AQUAWIES-D-23-00048C16
  article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 5
  start-page: 490
  issue: 3
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C82
  article-title: Prioritising sub-watersheds using morphometric analysis, principal component analysis, and land use/land cover analysis in the Kinnerasani River basin, India
  publication-title: H2Open Journal
  doi: 10.2166/h2oj.2022.017
– volume: 30
  start-page: 2255
  issue: 13
  year: 2016
  ident: 2023092719112969600_AQUAWIES-D-23-00048C29
  article-title: On characterizing the temporal dominance patterns of model parameters and processes
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.10764
– volume: 32
  start-page: 2199
  issue: 8
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C106
  article-title: Monthly runoff forecasting based on LSTM-ALO model
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-018-1560-y
– volume: 598
  start-page: 126378
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C105
  article-title: Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2021.126378
– volume: 8
  issue: 8
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C11
  article-title: Daily maximum rainfall forecast affected by tropical cyclones using grey theory
  publication-title: Civil Engineering Journal
– volume: 76
  start-page: 3
  issue: 1
  year: 2017
  ident: 2023092719112969600_AQUAWIES-D-23-00048C31
  article-title: Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-6316-8
– volume: 29
  start-page: 1345
  issue: 5
  year: 2015
  ident: 2023092719112969600_AQUAWIES-D-23-00048C34
  article-title: Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-015-1040-6
– volume: 533
  start-page: 141
  year: 2016
  ident: 2023092719112969600_AQUAWIES-D-23-00048C56
  article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.11.050
– volume: 2023
  start-page: jws2023176
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C70
  article-title: Long-term hydrological simulation for the estimation of snowmelt contribution of Alaknanda River Basin, Uttarakhand using SWAT
  publication-title: Journal of Water Supply: Research and Technology-Aqua
– volume: 55
  start-page: 688
  year: 2017
  ident: 2023092719112969600_AQUAWIES-D-23-00048C46
  article-title: Prospective interest of deep learning for hydrological inference
  publication-title: Groundwater
  doi: 10.1111/gwat.12557
– start-page: 283
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C26
  article-title: Spatio-temporal impact assessment of land use/land cover (LU-LC) change on land surface temperatures over Jaipur city in India
  publication-title: International Journal of Urban Sustainable Development
– start-page: 1
  volume-title: Handbook of Hydroinformatics
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C21
  article-title: Chapter 1 - Advantage of grid-free analytic element method for identification of locations and pumping rates of wells
– start-page: 141
  volume-title: Advances in Water Resources Engineering and Management
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C25
  article-title: Evaluation of the SWAT model for analysing the water balance components for the upper Sabarmati Basin
– volume: 54
  year: 2018
  ident: 2023092719112969600_AQUAWIES-D-23-00048C86
  article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists
  publication-title: Water Resources Research
– volume: 8
  start-page: 100585
  year: 2022
  ident: 2023092719112969600_AQUAWIES-D-23-00048C36
  article-title: Snowmelt runoff estimation using combined terra-aqua MODIS improved snow product in Western Himalayan River Basin via degree day modelling approach
  publication-title: Environmental Challenges
  doi: 10.1016/j.envc.2022.100585
– volume: 180
  start-page: 108852
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C58
  article-title: Artificial intelligence-based ensemble model for prediction of vehicular traffic noise
  publication-title: Environmental Research
  doi: 10.1016/j.envres.2019.108852
– volume: 72
  start-page: 739
  issue: 5
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C91
  article-title: Study of acidic air pollutant (SO2 and NO2) tolerance of microalgae with sodium bicarbonate as growth stimulant
  publication-title: AQUA-Water Infrastructure, Ecosystems and Society
  doi: 10.2166/aqua.2023.013
– volume: 120
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C107
  article-title: A novel study of SWAT and ANN models for runoff simulation with application on dataset of metrological stations
  publication-title: Physics and Chemistry of the Earth
– volume: 246
  year: 2020
  ident: 2023092719112969600_AQUAWIES-D-23-00048C37
  article-title: Evaluation and integration of reanalysis rainfall products under contrasting climatic conditions in India
  publication-title: Atmospheric Research
– volume: 19
  start-page: 3819
  year: 2005
  ident: 2023092719112969600_AQUAWIES-D-23-00048C33
  article-title: Rainfall–runoff models using artificial neural networks for ensemble stream flow prediction
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.5983
– volume: 795
  start-page: 1
  year: 2021
  ident: 2023092719112969600_AQUAWIES-D-23-00048C94
  article-title: A review of alternative climate products for SWAT modelling: sources, assessment and future directions
  publication-title: Science of the Total Environment
– volume: 509
  start-page: 379
  year: 2014
  ident: 2023092719112969600_AQUAWIES-D-23-00048C30
  article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2013.11.054
– volume: 72
  start-page: 690
  issue: 5
  year: 2023
  ident: 2023092719112969600_AQUAWIES-D-23-00048C89
  article-title: Assessment of wastewater treatment potential of sand beds of River Ganga at Varanasi, India
  publication-title: AQUA-Water Infrastructure, Ecosystems and Society
  doi: 10.2166/aqua.2023.200
– volume: 50
  start-page: 1288
  issue: 2
  year: 2014
  ident: 2023092719112969600_AQUAWIES-D-23-00048C88
  article-title: Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models
  publication-title: Water Resources Research
  doi: 10.1002/2013WR013855
– volume: 476
  year: 2013
  ident: 2023092719112969600_AQUAWIES-D-23-00048C57
  article-title: Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling
  publication-title: Journal of Hydrology
SSID ssib050728970
ssj0002513546
ssib050049682
Score 2.3331866
Snippet Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1707
SubjectTerms ann
artificial intelligence
lstm
rainfall–runoff models
swat
Title A comparison of the performance of SWAT and artificial intelligence models for monthly rainfall–runoff analysis in the Peddavagu River Basin, India
URI https://doaj.org/article/abb2dfcc1b544f258cd018acb2ac1b99
Volume 72
WOSCitedRecordID wos001048969600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0002513546
  issn: 2709-8028
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050728970
  issn: 2709-8028
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPvFNDuLJapq-0uMqioKK-EBvJU9dWLrrPgQv4n8Q_6C_xJmmrr2IFy-lhCSdZobOF5r5PkK2Jc-Fg0QUABRQAaQAHUDSs4FDrW6hIMUmVaHwWXZxIe7v88uG1BeeCfP0wH7hUFKLG6d1qJI4djwR2rBQSK24hLa8Kt0D1NPYTEEkJQh80x_WFgA9sLGoIxO_0ZDVI1_FwzMwVIBdnoCTh2m6L59GSEnEoz2GukCNhNXg9a8S0PEcma2RI215i-fJhC0XyEyDT3CRfLSoHusK0q6jgO5o76c0AJuu71o3VJaG4qt7-gjabvBy0kobZ0BhDNyWw8fOC0UZCSc7nc-39_6o7DoHE3guExhaPeTSGiOf5cOIXuFBD3ogB-1yl56WEH5L5Pb46ObwJKh1FwIdxXwYSCYVpHWhU1hzIXIZCaasSxVg2yzSoUmM4LGVjllmmMqiRGmXxU4C_LBxzqJlMll2S7tCaJ5qIQCl6SSWMf5jZCoKEwd7ylynRshVsvu9uIWuSclRG6NTwOYEfVGgLwr0RQG-WCU74-49z8bxW8cD9NS4E5JoVw0QWkUdWsVfobX2H5Osk2k0yh9L2yCTw_7IbpIp_TxsD_pbVdTC9fz16AvLNPKy
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+the+performance+of+SWAT+and+artificial+intelligence+models+for+monthly+rainfall%E2%80%93runoff+analysis+in+the+Peddavagu+River+Basin%2C+India&rft.jtitle=Aqua+%28London%2C+England%29&rft.au=Padala+Raja+Shekar&rft.au=Aneesh+Mathew&rft.au=Arunabh+Pandey&rft.au=Avadhoot+Bhosale&rft.date=2023-09-01&rft.pub=IWA+Publishing&rft.issn=2709-8028&rft.eissn=2709-8036&rft.volume=72&rft.issue=9&rft.spage=1707&rft.epage=1730&rft_id=info:doi/10.2166%2Faqua.2023.048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abb2dfcc1b544f258cd018acb2ac1b99
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8028&client=summon