A comparison of the performance of SWAT and artificial intelligence models for monthly rainfall–runoff analysis in the Peddavagu River Basin, India
Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligen...
Uloženo v:
| Vydáno v: | Aqua (London, England) Ročník 72; číslo 9; s. 1707 - 1730 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IWA Publishing
01.09.2023
|
| Témata: | |
| ISSN: | 2709-8028, 2709-8036 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis. |
|---|---|
| AbstractList | Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis. Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis. HIGHLIGHTS The study used SWAT and seven AI models for the Peddavagu River Basin.; LSTM performed well in simulating R–R during calibration (R2 is 0.88 and NSE is 0.88) and validation (R2 is 0.88 and NSE is 0.85).; These models are valuable for sustainable water management in the Peddavagu River Basin.; |
| Author | Pandey, Arunabh Shekar, Padala Raja Bhosale, Avadhoot Mathew, Aneesh |
| Author_xml | – sequence: 1 givenname: Padala Raja surname: Shekar fullname: Shekar, Padala Raja – sequence: 2 givenname: Aneesh surname: Mathew fullname: Mathew, Aneesh – sequence: 3 givenname: Arunabh surname: Pandey fullname: Pandey, Arunabh – sequence: 4 givenname: Avadhoot surname: Bhosale fullname: Bhosale, Avadhoot |
| BookMark | eNptkU1OHDEQha2ISCGEZfY-QHqodv-5lwNKYCQkooQoS6v8Nzjy2IPdgzS73CHigpwENwQWUVYuPdX3qlzvPTkIMRhCPtawYHXfn-DtDhcMWLOAlr8hh2yAseLQ9AevNePvyHHOTkIHA-PjAIfkfklV3GwxuRwDjZZON4ZuTbIxbTAoM0vffy6vKQZNMU3OOuXQUxcm471bm7lnE7XxmRamlGG68Xua0AWL3j_8_pN2IVpbDNDvs8sFfRry1WiNd7je0W_uziR6itmFT3QVtMMP5G2Bszn--x6RH18-X59dVJdX56uz5WWlmpZNFQLKumNc9bJrOR-x4SCN7SWv9dCoWneas9agBQMa5NB0UtmhtQhDZ9oRmiOyevbVEX-JbXIbTHsR0YknIaa1mP-svBEoJdNWqbqMai3ruNJQc1SSYdHGsXg1z14qxZyTsUK5CSdXDlKO4UUNYg5KzEGJOShRgipU9Q_1ssX_-x8BZJCcQA |
| CitedBy_id | crossref_primary_10_1007_s12517_024_12031_1 crossref_primary_10_3390_geosciences15080289 crossref_primary_10_1007_s42452_025_07448_6 crossref_primary_10_2166_wcc_2024_010 crossref_primary_10_1016_j_hydres_2024_05_003 crossref_primary_10_1016_j_asoc_2024_112352 crossref_primary_10_2166_wcc_2024_594 crossref_primary_10_3390_biology14050520 |
| Cites_doi | 10.1016/j.jhydrol.2016.05.061 10.2166/aqua.2022.111 10.5194/hess-22-6005-2018 10.1016/j.jhydrol.2012.12.011 10.1016/j.scitotenv.2015.07.092 10.1007/s40899-022-00654-9 10.1061/9780784482339.028 10.3390/w12010175 10.1002/hyp.1448 10.1016/S0022-1694(98)00273-X 10.1029/2019WR025326 10.1016/j.neunet.2014.09.003 10.1016/j.jhydrol.2013.06.044 10.1007/978-981-13-8181-2 10.1007/978-3-030-60869-9 10.1016/j.pce.2018.03.012 10.1061/(ASCE)1084-0699(2007)12:2(173) 10.1007/s10661-018-7012-9 10.1016/j.wsee.2022.12.003 10.1080/02626667.2016.1162907 10.1109/ACCESS.2017.2779939 10.1007/978-981-15-6564-9 10.1016/j.agwat.2016.10.024 10.1002/hyp.5932 10.1007/s13762-013-0209-0 10.1080/02626667.2013.800944 10.1016/j.jhydrol.2014.04.055 10.1007/978-981-19-7100-6 10.1061/(ASCE)1084-0699(1999)4:3(232) 10.1007/s11269-020-02759-2 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.5194/hess-6-859-2002 10.1007/s00477-017-1428-6 10.1002/eco.1569 10.1016/j.nexus.2022.100044 10.2166/aqua.2019.044 10.1007/978-3-030-68124-1 10.1016/j.nexus.2022.100104 10.1016/S0895-7177(03)00117-1 10.1007/s12517-022-10723-0 10.1007/s11269-014-0781-1 10.1061/(ASCE)1084-0699(1999)4:2(135) 10.1016/j.jhydrol.2015.03.027 10.1186/s44147-022-00094-4 10.1016/j.catena.2016.08.002 10.1002/hyp.7568 10.1111/j.1752-1688.2001.tb03630.x 10.1016/j.marpolbul.2012.08.005 10.1007/s13201-021-01485-3 10.1007/s11269-019-02399-1 10.1016/j.jhydrol.2019.123962 10.2166/h2oj.2022.017 10.1002/hyp.10764 10.1007/s00477-018-1560-y 10.1016/j.jhydrol.2021.126378 10.1007/s12665-016-6316-8 10.1007/s00477-015-1040-6 10.1016/j.jhydrol.2015.11.050 10.1111/gwat.12557 10.1016/j.envc.2022.100585 10.1016/j.envres.2019.108852 10.2166/aqua.2023.013 10.1002/hyp.5983 10.1016/j.jhydrol.2013.11.054 10.2166/aqua.2023.200 10.1002/2013WR013855 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.2166/aqua.2023.048 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2709-8036 |
| EndPage | 1730 |
| ExternalDocumentID | oai_doaj_org_article_abb2dfcc1b544f258cd018acb2ac1b99 10_2166_aqua_2023_048 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION FRP GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c342t-a0ab1528c6b54889a380bef6b81d73c1d5d824eaf0e0d0b735bcf74fa075e4903 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048969600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2709-8028 |
| IngestDate | Fri Oct 03 12:47:46 EDT 2025 Sat Nov 29 01:46:54 EST 2025 Tue Nov 18 22:17:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-a0ab1528c6b54889a380bef6b81d73c1d5d824eaf0e0d0b735bcf74fa075e4903 |
| OpenAccessLink | https://doaj.org/article/abb2dfcc1b544f258cd018acb2ac1b99 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_abb2dfcc1b544f258cd018acb2ac1b99 crossref_citationtrail_10_2166_aqua_2023_048 crossref_primary_10_2166_aqua_2023_048 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Aqua (London, England) |
| PublicationYear | 2023 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| References | (2023092719112969600_AQUAWIES-D-23-00048C55) 2019; 125 Eslamian (2023092719112969600_AQUAWIES-D-23-00048C21) 2023 (2023092719112969600_AQUAWIES-D-23-00048C9) 2012 (2023092719112969600_AQUAWIES-D-23-00048C89) 2023; 72 (2023092719112969600_AQUAWIES-D-23-00048C8) 2021; 35 (2023092719112969600_AQUAWIES-D-23-00048C3) 2006; 20 (2023092719112969600_AQUAWIES-D-23-00048C26) 2020 (2023092719112969600_AQUAWIES-D-23-00048C42) 2002; 6 (2023092719112969600_AQUAWIES-D-23-00048C62) 2021; 11 (2023092719112969600_AQUAWIES-D-23-00048C50) 2007; 50 (2023092719112969600_AQUAWIES-D-23-00048C70) 2023; 2023 (2023092719112969600_AQUAWIES-D-23-00048C41) 2002; 2 Pandey (2023092719112969600_AQUAWIES-D-23-00048C28) 2023 (2023092719112969600_AQUAWIES-D-23-00048C6) 2018; 190 (2023092719112969600_AQUAWIES-D-23-00048C30) 2014; 509 (2023092719112969600_AQUAWIES-D-23-00048C15) 2018; 77 (2023092719112969600_AQUAWIES-D-23-00048C48) 2022; 5 (2023092719112969600_AQUAWIES-D-23-00048C54) 2015; 538 (2023092719112969600_AQUAWIES-D-23-00048C56) 2016; 533 (2023092719112969600_AQUAWIES-D-23-00048C79) 2010 (2023092719112969600_AQUAWIES-D-23-00048C18) 2018; 32 (2023092719112969600_AQUAWIES-D-23-00048C65) 2022; 8 2023092719112969600_AQUAWIES-D-23-00048C01 (2023092719112969600_AQUAWIES-D-23-00048C64) 2022; 15 (2023092719112969600_AQUAWIES-D-23-00048C75) 2014; 59 (2023092719112969600_AQUAWIES-D-23-00048C1) 2019 Pande (2023092719112969600_AQUAWIES-D-23-00048C20) 2021 (2023092719112969600_AQUAWIES-D-23-00048C47) 2023 (2023092719112969600_AQUAWIES-D-23-00048C103) 2020; 56 (2023092719112969600_AQUAWIES-D-23-00048C93) 2018 (2023092719112969600_AQUAWIES-D-23-00048C97) 2000; 2 (2023092719112969600_AQUAWIES-D-23-00048C16) 2019; 577 (2023092719112969600_AQUAWIES-D-23-00048C13) 2023 (2023092719112969600_AQUAWIES-D-23-00048C44) 2014; 28 (2023092719112969600_AQUAWIES-D-23-00048C22) 2012; 64 (2023092719112969600_AQUAWIES-D-23-00048C104) 2012; 145–146 (2023092719112969600_AQUAWIES-D-23-00048C19) 2021; 595 (2023092719112969600_AQUAWIES-D-23-00048C49) 2013; 499 Chauhan (2023092719112969600_AQUAWIES-D-23-00048C85) 2021 (2023092719112969600_AQUAWIES-D-23-00048C87) 2014; 515 (2023092719112969600_AQUAWIES-D-23-00048C96) 1999; 4 (2023092719112969600_AQUAWIES-D-23-00048C107) 2020; 120 (2023092719112969600_AQUAWIES-D-23-00048C25) 2020 (2023092719112969600_AQUAWIES-D-23-00048C95) 2018; 105 (2023092719112969600_AQUAWIES-D-23-00048C68) 2016; 147 (2023092719112969600_AQUAWIES-D-23-00048C35) 2018; 6 (2023092719112969600_AQUAWIES-D-23-00048C83) 2023; 5 (2023092719112969600_AQUAWIES-D-23-00048C90) 2017; 180 (2023092719112969600_AQUAWIES-D-23-00048C37) 2020; 246 (2023092719112969600_AQUAWIES-D-23-00048C81) 2022; 7 ASCE (2023092719112969600_AQUAWIES-D-23-00048C5) 2000; 5 (2023092719112969600_AQUAWIES-D-23-00048C86) 2018; 54 (2023092719112969600_AQUAWIES-D-23-00048C76) 2015; 8 (2023092719112969600_AQUAWIES-D-23-00048C11) 2022; 8 2023092719112969600_AQUAWIES-D-23-00048C53 (2023092719112969600_AQUAWIES-D-23-00048C105) 2021; 598 (2023092719112969600_AQUAWIES-D-23-00048C88) 2014; 50 (2023092719112969600_AQUAWIES-D-23-00048C60) 2017; 62 (2023092719112969600_AQUAWIES-D-23-00048C72) 2016 (2023092719112969600_AQUAWIES-D-23-00048C77) 2015; 61 (2023092719112969600_AQUAWIES-D-23-00048C59) 2022; 8 (2023092719112969600_AQUAWIES-D-23-00048C106) 2018; 32 (2023092719112969600_AQUAWIES-D-23-00048C31) 2017; 76 (2023092719112969600_AQUAWIES-D-23-00048C23) 2021; 595 AlKhaddar (2023092719112969600_AQUAWIES-D-23-00048C61) 2020 (2023092719112969600_AQUAWIES-D-23-00048C78) 2020; 11 (2023092719112969600_AQUAWIES-D-23-00048C12) 2010; 24 (2023092719112969600_AQUAWIES-D-23-00048C100) 2007; 12 (2023092719112969600_AQUAWIES-D-23-00048C36) 2022; 8 (2023092719112969600_AQUAWIES-D-23-00048C38) 2018; 22 (2023092719112969600_AQUAWIES-D-23-00048C17) 2020; 12 (2023092719112969600_AQUAWIES-D-23-00048C91) 2023; 72 (2023092719112969600_AQUAWIES-D-23-00048C92) 2020; 4 (2023092719112969600_AQUAWIES-D-23-00048C51) 2020; 69 (2023092719112969600_AQUAWIES-D-23-00048C73) 1999; 216 (2023092719112969600_AQUAWIES-D-23-00048C45) 2016; 540 (2023092719112969600_AQUAWIES-D-23-00048C57) 2013; 476 (2023092719112969600_AQUAWIES-D-23-00048C32) 1988; 2 (2023092719112969600_AQUAWIES-D-23-00048C101) 2020; 582 (2023092719112969600_AQUAWIES-D-23-00048C108) 2018 (2023092719112969600_AQUAWIES-D-23-00048C74) 2001; 37 (2023092719112969600_AQUAWIES-D-23-00048C39) 2021; 84 (2023092719112969600_AQUAWIES-D-23-00048C71) 2013; 10 (2023092719112969600_AQUAWIES-D-23-00048C7) 2019; 33 (2023092719112969600_AQUAWIES-D-23-00048C33) 2005; 19 (2023092719112969600_AQUAWIES-D-23-00048C52) 2004 (2023092719112969600_AQUAWIES-D-23-00048C29) 2016; 30 (2023092719112969600_AQUAWIES-D-23-00048C40) 2003; 37 Gupta (2023092719112969600_AQUAWIES-D-23-00048C63) 2021 (2023092719112969600_AQUAWIES-D-23-00048C82) 2022; 5 (2023092719112969600_AQUAWIES-D-23-00048C94) 2021; 795 (2023092719112969600_AQUAWIES-D-23-00048C99) 2022; 71 (2023092719112969600_AQUAWIES-D-23-00048C4) 1996; 176 (2023092719112969600_AQUAWIES-D-23-00048C46) 2017; 55 (2023092719112969600_AQUAWIES-D-23-00048C84) 2023 (2023092719112969600_AQUAWIES-D-23-00048C10) 2016 (2023092719112969600_AQUAWIES-D-23-00048C43) 2013; 480 (2023092719112969600_AQUAWIES-D-23-00048C58) 2020; 180 (2023092719112969600_AQUAWIES-D-23-00048C2) 2015; 524 (2023092719112969600_AQUAWIES-D-23-00048C14) 1998; 43 (2023092719112969600_AQUAWIES-D-23-00048C34) 2015; 29 (2023092719112969600_AQUAWIES-D-23-00048C80) 2022; 69 (2023092719112969600_AQUAWIES-D-23-00048C24) 1999; 4 Zakwan (2023092719112969600_AQUAWIES-D-23-00048C27) 2022 (2023092719112969600_AQUAWIES-D-23-00048C102) 2009; 45 (2023092719112969600_AQUAWIES-D-23-00048C69) 2022; 16 (2023092719112969600_AQUAWIES-D-23-00048C98) 2004; 18 |
| References_xml | – volume: 540 start-page: 64 year: 2016 ident: 2023092719112969600_AQUAWIES-D-23-00048C45 article-title: Regional scale hydrologic modeling of a karst-dominant geomorphology: the case study of the Island of Crete publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.05.061 – volume: 71 start-page: 415 issue: 3 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C99 article-title: Integrating a GIS-based approach and a SWAT model to identify potential suitable sites for rainwater harvesting in Rwanda publication-title: Journal of Water Supply: Research and Technology-Aqua doi: 10.2166/aqua.2022.111 – start-page: 918 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C108 article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas publication-title: Journal of Hydrology – volume: 22 start-page: 6005 issue: 11 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C38 article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-22-6005-2018 – volume: 4 issue: 2021 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C92 article-title: IoT-based lava flood early warning system with rainfall intensity monitoring and disaster communication technology publication-title: Emerging Science Journal – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 2023092719112969600_AQUAWIES-D-23-00048C50 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: American Society of Agricultural and Biological Engineers – volume: 480 start-page: 102 year: 2013 ident: 2023092719112969600_AQUAWIES-D-23-00048C43 article-title: The streamflow estimation using the Xinanjiang rainfall runoff model and dual state parameter estimation method publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.12.011 – volume: 538 start-page: 288 year: 2015 ident: 2023092719112969600_AQUAWIES-D-23-00048C54 article-title: Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2015.07.092 – volume: 8 start-page: 66 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C65 article-title: Identification of soil erosionprone zone utilizing geo-informatics techniques and WSPM model publication-title: Sustainable Water Resources Management doi: 10.1007/s40899-022-00654-9 – start-page: 272 volume-title: World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management year: 2019 ident: 2023092719112969600_AQUAWIES-D-23-00048C1 article-title: Application and performance assessment of SWAT hydrological model over Kharun river basin, Chhattisgarh, India doi: 10.1061/9780784482339.028 – volume: 12 start-page: 175 issue: 1 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C17 article-title: Comparison of long short-term memory networks and the hydrological model in runoff simulation publication-title: Water doi: 10.3390/w12010175 – volume: 582 start-page: 1 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C101 article-title: Multiscale hydrological drought analysis: role of climate, catchment and morphological variables and associated thresholds publication-title: Journal of Hydrology – volume-title: Soil and Water Assessment Tool (Version 2000)—Theoretical Documentation. GSWRL 02-01, BRC 02-05, TR-191 year: 2004 ident: 2023092719112969600_AQUAWIES-D-23-00048C52 – year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C13 article-title: SWAT model calibration approaches in an integrated paddy-dominated catchment-command publication-title: Agricultural Water Management – volume: 18 start-page: 1811 issue: 10 year: 2004 ident: 2023092719112969600_AQUAWIES-D-23-00048C98 article-title: Hydrological modelling of a small watershed using generated rainfall in the soil and water assessment tool model publication-title: Hydrological Processes doi: 10.1002/hyp.1448 – volume: 11 start-page: 1 issue: 11 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C78 article-title: Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling publication-title: Atmosphere – volume: 595 start-page: 1 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C19 article-title: Using the soil and water assessment tool to develop a LiDAR-based index of the erosion regulation ecosystem service publication-title: Journal of Hydrology – volume: 216 start-page: 32 year: 1999 ident: 2023092719112969600_AQUAWIES-D-23-00048C73 article-title: A non-linear rainfall–runoff model using an artificial neural network publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(98)00273-X – volume: 56 start-page: e2019WR025326 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C103 article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning publication-title: Water Resources Research doi: 10.1029/2019WR025326 – volume: 61 start-page: 85 year: 2015 ident: 2023092719112969600_AQUAWIES-D-23-00048C77 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – start-page: 273 volume-title: River Dynamics and Flood Hazards year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C47 article-title: Flood prioritization of basins based on geomorphometric properties using morphometric analysis and principal component analysis: a case study of the Maner River Basin – volume: 125 start-page: 181e194 year: 2019 ident: 2023092719112969600_AQUAWIES-D-23-00048C55 article-title: Combining principal component analysis, discrete wavelet transforms and XGBoost to trade in the financial markets publication-title: Expert Systems with Applications – volume-title: Rainfall–Runoff Modelling: the Primer year: 2012 ident: 2023092719112969600_AQUAWIES-D-23-00048C9 – volume: 499 start-page: 1 year: 2013 ident: 2023092719112969600_AQUAWIES-D-23-00048C49 article-title: Modeling rainfall–runoff relationship using multivariate GARCH model publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2013.06.044 – ident: 2023092719112969600_AQUAWIES-D-23-00048C01 – start-page: 201 volume-title: Advances in Water Resources Engineering and Management year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C61 article-title: Sustainable development and management of groundwater in Varanasi, India BT doi: 10.1007/978-981-13-8181-2 – start-page: 533 volume-title: Current Directions in Water Scarcity Research year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C27 article-title: Chapter 30 - Understanding trend and its variability of rainfall and temperature over Patna (Bihar) – start-page: 22 year: 2010 ident: 2023092719112969600_AQUAWIES-D-23-00048C79 article-title: Artificial neural network model for river flow forecasting in a developing country – volume: 2 start-page: 359 issue: 5 year: 1988 ident: 2023092719112969600_AQUAWIES-D-23-00048C32 article-title: Multilayer feed-forward networks are universal approximators publication-title: Neural Networks – volume: 77 start-page: 1 issue: 1 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C15 article-title: Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal publication-title: Environmental Earth Sciences – start-page: 101 volume-title: The Ganga River Basin: A Hydrometeorological Approach year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C85 article-title: River discharge study in River Ganga, Varanasi using conventional and modern techniques BT doi: 10.1007/978-3-030-60869-9 – volume: 105 start-page: 115 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C95 article-title: SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa publication-title: Physics and Chemistry of the Earth doi: 10.1016/j.pce.2018.03.012 – volume: 12 start-page: 173 issue: 2 year: 2007 ident: 2023092719112969600_AQUAWIES-D-23-00048C100 article-title: Suitability of SWAT for the conservation effects assessment project: a comparison on USDA-ARS experimental watersheds publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(2007)12:2(173) – volume: 190 start-page: 704 issue: 12 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C6 article-title: Performance assessment of artificial neural networks and support vector regression models for stream flow predictions publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-018-7012-9 – volume: 5 start-page: 46 year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C83 article-title: Detection of land use/land cover changes in a watershed: a case study of the Murredu watershed in Telangana state, India publication-title: Watershed Ecology and the Environment doi: 10.1016/j.wsee.2022.12.003 – volume: 62 start-page: 546 issue: 4 year: 2017 ident: 2023092719112969600_AQUAWIES-D-23-00048C60 article-title: Glacier mass balance simulation using SWAT distributed snow algorithm publication-title: Hydrological Sciences Journal doi: 10.1080/02626667.2016.1162907 – volume: 6 start-page: 1662 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C35 article-title: LSTM fully convolutional networks for time series classification publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2779939 – start-page: 305 volume-title: Fate and Transport of Subsurface Pollutants year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C63 article-title: Development and application of the integrated GIS-MODFLOW Model BT doi: 10.1007/978-981-15-6564-9 – volume-title: Decadal Land Use and Land Cover Classifications Across India, 1985, 1995, 2005 year: 2016 ident: 2023092719112969600_AQUAWIES-D-23-00048C72 – volume: 180 start-page: 61 year: 2017 ident: 2023092719112969600_AQUAWIES-D-23-00048C90 article-title: Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT) publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2016.10.024 – volume: 20 start-page: 1201 issue: 5 year: 2006 ident: 2023092719112969600_AQUAWIES-D-23-00048C3 article-title: Rainfall–runoff modeling using artificial neural networks technique: a Blue Nile catchment case study publication-title: Hydrological Processes doi: 10.1002/hyp.5932 – volume: 10 start-page: 1181 issue: 6 year: 2013 ident: 2023092719112969600_AQUAWIES-D-23-00048C71 article-title: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-013-0209-0 – volume: 59 start-page: 312 issue: 2 year: 2014 ident: 2023092719112969600_AQUAWIES-D-23-00048C75 article-title: Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models publication-title: Hydrological Sciences Journal doi: 10.1080/02626667.2013.800944 – volume: 515 start-page: 47 year: 2014 ident: 2023092719112969600_AQUAWIES-D-23-00048C87 article-title: Comparative study of different wavelet based neural network models for rainfall-runoff modeling publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2014.04.055 – volume-title: River Dynamics and Flood Hazards. Disaster Resilience and Green Growth year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C28 article-title: Projecting future maximum temperature changes in River Ganges Basin Using Observations and Statistical Downscaling Model (SDSM) doi: 10.1007/978-981-19-7100-6 – volume: 4 start-page: 232 year: 1999 ident: 2023092719112969600_AQUAWIES-D-23-00048C96 article-title: Rainfall–runoff modeling using artificial neural networks publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(1999)4:3(232) – volume: 35 start-page: 1167 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C8 article-title: Daily runoff forecasting using a cascade long short-Term memory model that considers different variables publication-title: Water Resources Management doi: 10.1007/s11269-020-02759-2 – volume: 5 start-page: 124 issue: 2 year: 2000 ident: 2023092719112969600_AQUAWIES-D-23-00048C5 article-title: Task committee on application of artificial neural networks in hydrology. artificial neural networks in hydrology 1: hydrology application publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 6 start-page: 859 issue: 5 year: 2002 ident: 2023092719112969600_AQUAWIES-D-23-00048C42 article-title: Towards a comprehensive physically-based rainfall-runoff model publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-6-859-2002 – volume: 32 start-page: 999 issue: 4 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C18 article-title: Regional scale rainfall–runoff modeling using VARX–MGARCH approach publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-017-1428-6 – volume: 8 start-page: 1119 issue: 6 year: 2015 ident: 2023092719112969600_AQUAWIES-D-23-00048C76 article-title: Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area publication-title: Ecohydrology doi: 10.1002/eco.1569 – volume: 5 start-page: 100044 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C48 article-title: Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India publication-title: Energy Nexus doi: 10.1016/j.nexus.2022.100044 – volume: 69 start-page: 39 issue: 1 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C51 article-title: Sensitivity analysis of the DEM resolution and effective parameters of runoff yield in the SWAT model: a case study publication-title: Journal of Water Supply: Research and Technology-Aqua doi: 10.2166/aqua.2019.044 – start-page: 129 volume-title: Groundwater Resources Development and Planning in the Semi-Arid Region year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C20 article-title: Modeling of groundwater level using artificial neural network algorithm and WA-SVR model BT doi: 10.1007/978-3-030-68124-1 – volume: 8 issue: 5 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C59 article-title: Effect of recharge and abstraction on groundwater levels publication-title: Civil Engineering Journal – volume: 16 start-page: 1 issue: 4 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C69 article-title: Modelling of streamflow and water balance in the Kuttiyadi River Basin using SWAT and remote sensing/GIS tools publication-title: International Journal of Environmental Research – volume: 145–146 start-page: 70 issue: 1 year: 2012 ident: 2023092719112969600_AQUAWIES-D-23-00048C104 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River basin, China publication-title: Geomorph – volume: 7 start-page: 100104 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C81 article-title: Evaluation of morphometric and hypsometric analysis of the Bagh River Basin using remote sensing and geographic information system techniques publication-title: Energy Nexus doi: 10.1016/j.nexus.2022.100104 – volume: 37 start-page: 1047 year: 2003 ident: 2023092719112969600_AQUAWIES-D-23-00048C40 article-title: A nonlinear rainfall–runoff model using neural network technique: example in fractured porous media publication-title: Mathematical and Computer Modelling doi: 10.1016/S0895-7177(03)00117-1 – volume: 15 start-page: 1426 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C64 article-title: Study of morphological changes and socio-economic impact assessment: a case study of koshi river publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-022-10723-0 – volume: 28 start-page: 4857 year: 2014 ident: 2023092719112969600_AQUAWIES-D-23-00048C44 article-title: Intermittent streamflow forecasting and extreme event modelling using wavelet based artificial neural networks publication-title: Water Resources Management doi: 10.1007/s11269-014-0781-1 – start-page: 785e794 volume-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2023092719112969600_AQUAWIES-D-23-00048C10 article-title: Xgboost: a scalable tree boosting system – volume: 595 start-page: 1 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C23 article-title: Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia publication-title: Journal of Hydrology – volume: 4 start-page: 135 issue: 2 year: 1999 ident: 2023092719112969600_AQUAWIES-D-23-00048C24 article-title: Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) – volume: 2 start-page: 156 year: 2000 ident: 2023092719112969600_AQUAWIES-D-23-00048C97 article-title: Precipitation-runoff modeling using artificial neural networks and conceptual models publication-title: ASCE Journal of Hydrologic Engineering – volume: 45 start-page: 1 issue: 8 year: 2009 ident: 2023092719112969600_AQUAWIES-D-23-00048C102 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resources Research – volume: 84 start-page: 2675 issue: 10–11 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C39 article-title: Experimental study on infiltration pattern: opportunities for sustainable management in the northern region of India publication-title: Water Science and Technology – volume: 524 start-page: 733 year: 2015 ident: 2023092719112969600_AQUAWIES-D-23-00048C2 article-title: A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.03.027 – volume: 43 start-page: 47 year: 1998 ident: 2023092719112969600_AQUAWIES-D-23-00048C14 article-title: An artificial neural network approach to rainfall– runoff modeling publication-title: Journal of Hydrology – volume: 69 start-page: 44 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C80 article-title: Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system publication-title: Journal of Engineering and Applied Science doi: 10.1186/s44147-022-00094-4 – volume: 147 start-page: 595 year: 2016 ident: 2023092719112969600_AQUAWIES-D-23-00048C68 article-title: Physically based soil erosion and sediment yield models revisited publication-title: Catena doi: 10.1016/j.catena.2016.08.002 – volume: 24 start-page: 1133 issue: 9 year: 2010 ident: 2023092719112969600_AQUAWIES-D-23-00048C12 article-title: Sensitivity and identifiability of stream flow generation parameters of the SWAT model publication-title: Hydrological Processes International Journal doi: 10.1002/hyp.7568 – volume: 37 start-page: 1169 issue: 5 year: 2001 ident: 2023092719112969600_AQUAWIES-D-23-00048C74 article-title: Validation of the SWAT model on a large river basin with point and nonpoint sources publication-title: Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.2001.tb03630.x – volume: 64 start-page: 2409 issue: 11 year: 2012 ident: 2023092719112969600_AQUAWIES-D-23-00048C22 article-title: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2012.08.005 – volume: 2 start-page: 18e22 issue: 3 year: 2002 ident: 2023092719112969600_AQUAWIES-D-23-00048C41 article-title: Classification and regression by randomForest publication-title: R. News – volume: 11 start-page: 162 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C62 article-title: Conceptualization and development of multilayered groundwater model in transient condition publication-title: Applied Water Science doi: 10.1007/s13201-021-01485-3 – volume: 176 start-page: 57 issue: 1–4 year: 1996 ident: 2023092719112969600_AQUAWIES-D-23-00048C4 article-title: Estimating hydrologic budgets for three Illinois watershedsm publication-title: Journal of Hydrology – start-page: 659 volume-title: Hydrologic Modeling year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C93 article-title: Streamflow estimation using SWAT model over Seonath river basin, Chhattisgarh, India – volume: 33 start-page: 4783 issue: 14 year: 2019 ident: 2023092719112969600_AQUAWIES-D-23-00048C7 article-title: Short-term streamflow forecasting using the feature-enhanced regression model publication-title: Water Resources Management doi: 10.1007/s11269-019-02399-1 – start-page: 365 volume-title: River Dynamics and Flood Hazards year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C84 article-title: Erosion susceptibility mapping based on hypsometric analysis using remote sensing and geographical information system techniques – ident: 2023092719112969600_AQUAWIES-D-23-00048C53 – volume: 577 start-page: 123962 year: 2019 ident: 2023092719112969600_AQUAWIES-D-23-00048C16 article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.123962 – volume: 5 start-page: 490 issue: 3 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C82 article-title: Prioritising sub-watersheds using morphometric analysis, principal component analysis, and land use/land cover analysis in the Kinnerasani River basin, India publication-title: H2Open Journal doi: 10.2166/h2oj.2022.017 – volume: 30 start-page: 2255 issue: 13 year: 2016 ident: 2023092719112969600_AQUAWIES-D-23-00048C29 article-title: On characterizing the temporal dominance patterns of model parameters and processes publication-title: Hydrological Processes doi: 10.1002/hyp.10764 – volume: 32 start-page: 2199 issue: 8 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C106 article-title: Monthly runoff forecasting based on LSTM-ALO model publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-018-1560-y – volume: 598 start-page: 126378 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C105 article-title: Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.126378 – volume: 8 issue: 8 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C11 article-title: Daily maximum rainfall forecast affected by tropical cyclones using grey theory publication-title: Civil Engineering Journal – volume: 76 start-page: 3 issue: 1 year: 2017 ident: 2023092719112969600_AQUAWIES-D-23-00048C31 article-title: Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-6316-8 – volume: 29 start-page: 1345 issue: 5 year: 2015 ident: 2023092719112969600_AQUAWIES-D-23-00048C34 article-title: Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-015-1040-6 – volume: 533 start-page: 141 year: 2016 ident: 2023092719112969600_AQUAWIES-D-23-00048C56 article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.11.050 – volume: 2023 start-page: jws2023176 year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C70 article-title: Long-term hydrological simulation for the estimation of snowmelt contribution of Alaknanda River Basin, Uttarakhand using SWAT publication-title: Journal of Water Supply: Research and Technology-Aqua – volume: 55 start-page: 688 year: 2017 ident: 2023092719112969600_AQUAWIES-D-23-00048C46 article-title: Prospective interest of deep learning for hydrological inference publication-title: Groundwater doi: 10.1111/gwat.12557 – start-page: 283 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C26 article-title: Spatio-temporal impact assessment of land use/land cover (LU-LC) change on land surface temperatures over Jaipur city in India publication-title: International Journal of Urban Sustainable Development – start-page: 1 volume-title: Handbook of Hydroinformatics year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C21 article-title: Chapter 1 - Advantage of grid-free analytic element method for identification of locations and pumping rates of wells – start-page: 141 volume-title: Advances in Water Resources Engineering and Management year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C25 article-title: Evaluation of the SWAT model for analysing the water balance components for the upper Sabarmati Basin – volume: 54 year: 2018 ident: 2023092719112969600_AQUAWIES-D-23-00048C86 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resources Research – volume: 8 start-page: 100585 year: 2022 ident: 2023092719112969600_AQUAWIES-D-23-00048C36 article-title: Snowmelt runoff estimation using combined terra-aqua MODIS improved snow product in Western Himalayan River Basin via degree day modelling approach publication-title: Environmental Challenges doi: 10.1016/j.envc.2022.100585 – volume: 180 start-page: 108852 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C58 article-title: Artificial intelligence-based ensemble model for prediction of vehicular traffic noise publication-title: Environmental Research doi: 10.1016/j.envres.2019.108852 – volume: 72 start-page: 739 issue: 5 year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C91 article-title: Study of acidic air pollutant (SO2 and NO2) tolerance of microalgae with sodium bicarbonate as growth stimulant publication-title: AQUA-Water Infrastructure, Ecosystems and Society doi: 10.2166/aqua.2023.013 – volume: 120 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C107 article-title: A novel study of SWAT and ANN models for runoff simulation with application on dataset of metrological stations publication-title: Physics and Chemistry of the Earth – volume: 246 year: 2020 ident: 2023092719112969600_AQUAWIES-D-23-00048C37 article-title: Evaluation and integration of reanalysis rainfall products under contrasting climatic conditions in India publication-title: Atmospheric Research – volume: 19 start-page: 3819 year: 2005 ident: 2023092719112969600_AQUAWIES-D-23-00048C33 article-title: Rainfall–runoff models using artificial neural networks for ensemble stream flow prediction publication-title: Hydrological Processes doi: 10.1002/hyp.5983 – volume: 795 start-page: 1 year: 2021 ident: 2023092719112969600_AQUAWIES-D-23-00048C94 article-title: A review of alternative climate products for SWAT modelling: sources, assessment and future directions publication-title: Science of the Total Environment – volume: 509 start-page: 379 year: 2014 ident: 2023092719112969600_AQUAWIES-D-23-00048C30 article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2013.11.054 – volume: 72 start-page: 690 issue: 5 year: 2023 ident: 2023092719112969600_AQUAWIES-D-23-00048C89 article-title: Assessment of wastewater treatment potential of sand beds of River Ganga at Varanasi, India publication-title: AQUA-Water Infrastructure, Ecosystems and Society doi: 10.2166/aqua.2023.200 – volume: 50 start-page: 1288 issue: 2 year: 2014 ident: 2023092719112969600_AQUAWIES-D-23-00048C88 article-title: Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models publication-title: Water Resources Research doi: 10.1002/2013WR013855 – volume: 476 year: 2013 ident: 2023092719112969600_AQUAWIES-D-23-00048C57 article-title: Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling publication-title: Journal of Hydrology |
| SSID | ssib050728970 ssj0002513546 ssib050049682 |
| Score | 2.3331866 |
| Snippet | Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 1707 |
| SubjectTerms | ann artificial intelligence lstm rainfall–runoff models swat |
| Title | A comparison of the performance of SWAT and artificial intelligence models for monthly rainfall–runoff analysis in the Peddavagu River Basin, India |
| URI | https://doaj.org/article/abb2dfcc1b544f258cd018acb2ac1b99 |
| Volume | 72 |
| WOSCitedRecordID | wos001048969600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2709-8036 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0002513546 issn: 2709-8028 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2709-8036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050728970 issn: 2709-8028 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELUqxKJdVFCoeJTKi4oVoY6dh7O8VKBWKgi1tLCLxq9ypatcuA-kbqr-A-IH-ZLOxOGSTcWGTRRZ48TxjDzHyvgcxj6ECozyyiSpL32SQZEmJleQSAhgEe-rvK3N-fm1PDnRFxfVaU_qi2rCIj1wnDiS1JIuWJuaPMuCzLV1ItVgjQRsq9qje4h6epspjKScgG_xyNqCoAc3Fl1k0hqNWV3FUzyyFBUu01JHAk6ZFsVHuJ4TJZFU-4J0gXoJq8fr3yagoxX2ukOOfBBHvMpe-OYNe9XjE1xjdwNuF7qCfBw4ojt-9Xg0gJq-nw_OODSO06dH-gg-7PFy8lYbZ8qxD942s8vRb04yEgFGo_u_t5N5Mw4BHxC5TLBr-5JT7xzcwK85_0aFHvwApsNmj39pMPzW2Y-jw7NPn5NOdyGxKpOzBAQYTOvaFjjnWlegtDA-FAaxbals6nKnZeYhCC-cMKXKjQ1lFgDhh88qod6ypWbc-A3G0WsODQzCEp8FQf_ocM9dlCAQ92ltNtnew-TWtiMlJ22MUY2bE_JFTb6oyRc1-mKT7S7MryIbx_8MD8hTCyMi0W4bMLTqLrTqp0Jr6zkess1e0qBiWdo7tjSbzP0OW7Y3s-F08r6NWrwe_zn8BzJE88E |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+the+performance+of+SWAT+and+artificial+intelligence+models+for+monthly+rainfall%E2%80%93runoff+analysis+in+the+Peddavagu+River+Basin%2C+India&rft.jtitle=Aqua+%28London%2C+England%29&rft.au=Padala+Raja+Shekar&rft.au=Aneesh+Mathew&rft.au=Arunabh+Pandey&rft.au=Avadhoot+Bhosale&rft.date=2023-09-01&rft.pub=IWA+Publishing&rft.issn=2709-8028&rft.eissn=2709-8036&rft.volume=72&rft.issue=9&rft.spage=1707&rft.epage=1730&rft_id=info:doi/10.2166%2Faqua.2023.048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abb2dfcc1b544f258cd018acb2ac1b99 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8028&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8028&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8028&client=summon |