A comparison of the performance of SWAT and artificial intelligence models for monthly rainfall–runoff analysis in the Peddavagu River Basin, India

Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aqua (London, England) Ročník 72; číslo 9; s. 1707 - 1730
Hlavní autori: Shekar, Padala Raja, Mathew, Aneesh, Pandey, Arunabh, Bhosale, Avadhoot
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IWA Publishing 01.09.2023
Predmet:
ISSN:2709-8028, 2709-8036
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Rainfall–runoff (R–R) analysis is essential for sustainable water resource management. In the present study focusing on the Peddavagu River Basin, various modelling approaches were explored, including the widely used Soil and Water Assessment Tool (SWAT) model, as well as seven artificial intelligence (AI) models. The AI models consisted of seven data-driven models, namely support vector regression, artificial neural network, multiple linear regression, Extreme Gradient Boosting (XGBoost) regression, k-nearest neighbour regression, and random forest regression, along with one deep learning model called long short-term memory (LSTM). To evaluate the performance of these models, a calibration period from 1990 to 2005 and a validation period from 2006 to 2010 were considered. The evaluation metrics used were R2 (coefficient of determination) and NSE (Nash–Sutcliffe Efficiency). The study's findings revealed that all eight models yielded generally acceptable results for modelling the R–R process in the Peddavagu River Basin. Specifically, the LSTM demonstrated very good performance in simulating R–R during both the calibration period (R2 is 0.88 and NSE is 0.88) and the validation period (R2 is 0.88 and NSE is 0.85). In conclusion, the study highlighted the growing trend of adopting AI techniques, particularly the LSTM model, for R–R analysis.
ISSN:2709-8028
2709-8036
DOI:10.2166/aqua.2023.048