Theory of higher order interpretations and application to Basic Feasible Functions

Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 16, Issue 4; H. 4
Hauptverfasser: Hainry, Emmanuel, Péchoux, Romain
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science Association 14.12.2020
Logical Methods in Computer Science e.V
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that is well-suited for the complexity analysis of this programming language. The interpretation domain is a complete lattice and, consequently, we express program interpretation in terms of a least fixpoint. As an application, by bounding interpretations by higher order polynomials, we characterize Basic Feasible Functions at any order.
AbstractList Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that is well-suited for the complexity analysis of this programming language. The interpretation domain is a complete lattice and, consequently, we express program interpretation in terms of a least fixpoint. As an application, by bounding interpretations by higher order polynomials, we characterize Basic Feasible Functions at any order.
Author Péchoux, Romain
Hainry, Emmanuel
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Hainry
  fullname: Hainry, Emmanuel
– sequence: 2
  givenname: Romain
  surname: Péchoux
  fullname: Péchoux, Romain
BackLink https://inria.hal.science/hal-02499206$$DView record in HAL
BookMark eNpVkU9PAjEQxRuDiYh8AU89ymF1-mdL6w2JCAnGRPHcdLuzsGTdku5qwrd3AWN0DvMmL29-l3dJenWokZBrBrdcKKHvls_Tt4SpG3nP5IgDhzPSZ1pBkpqx7P25L8iwabbQjRBMc9Unr6sNhrinoaCbcr3BSEPMu13WLcZdxNa1Zagb6uqcut2uKv3RoG2gD64pPZ1hJ1mFdPZZ-2P2ipwXrmpw-KMD8j57XE3nyfLlaTGdLBMvJG8TBzpLZcoLoZn2QmRKe52B8WMDQgHPjDE-99JxCVKlhTbc51golFwIDYUYkMWJmwe3tbtYfri4t8GV9miEuLYutqWv0ALX49RpTHUHBJRO5hIz5wwK8CixY41OrI2r_qHmk6U9eMClMRzUF--y_JT1MTRNxOL3gYE9FmIPhVimrLRM2kMh4htrdn9V
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.23638/LMCS-16(4:14)2020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_02875a8e58dc40e4a4d4ebaa9e30ce4e
oai:HAL:hal-02499206v2
10_23638_LMCS_16_4_14_2020
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
VOOES
ID FETCH-LOGICAL-c342t-a08b5452f3818c33b68c8b09c7903602b999cdc4a240465f892cdef6e423380f3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605983500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:34:51 EDT 2025
Wed Nov 05 07:27:43 EST 2025
Sat Nov 29 08:04:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Implicit computational complexity
basic feasible functionals
Language English
License https://creativecommons.org/licenses/by-sa/4.0
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-a08b5452f3818c33b68c8b09c7903602b999cdc4a240465f892cdef6e423380f3
ORCID 0000-0002-9750-0460
0000-0003-0601-5425
OpenAccessLink https://doaj.org/article/02875a8e58dc40e4a4d4ebaa9e30ce4e
ParticipantIDs doaj_primary_oai_doaj_org_article_02875a8e58dc40e4a4d4ebaa9e30ce4e
hal_primary_oai_HAL_hal_02499206v2
crossref_primary_10_23638_LMCS_16_4_14_2020
PublicationCentury 2000
PublicationDate 2020-12-14
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-14
  day: 14
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2020
Publisher Logical Methods in Computer Science Association
Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science Association
– name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.2220018
Snippet Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms Computation and Language
Computational Complexity
Computer Science
computer science - computational complexity
computer science - logic in computer science
computer science - programming languages
Logic in Computer Science
Title Theory of higher order interpretations and application to Basic Feasible Functions
URI https://inria.hal.science/hal-02499206
https://doaj.org/article/02875a8e58dc40e4a4d4ebaa9e30ce4e
Volume 16, Issue 4
WOSCitedRecordID wos000605983500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LawIxEA5Feuil71L7IpQeWspidhNjtjcVxYNK6QO8hWx2gkLRoluP_e2dZLXoqZdeFjaE3TCT5Ptmd_INIXeZg3qaKx5BDBAhXsvIAM5lgxumRXrrRGZDsYnGcKhGo_R5o9SXzwkr5YFLw9UQ_xp1o6CucisYCCNyAZkxKXBmQYDffZH1bARTYQ_m3BPn8pQMDoCrWn_Qfo1ieS-eYvGAIT_bQqIg2I_4Ml5_Tw340j0k-ytiSJvlgI7IDkyPycG66AJdrcET8lKepqczR8chR4MG9Uw62coeXFAzzenG32lazGjLoEsokj5cBh9Auwhpoe8pee923tq9aFUYIbJcJEVkmMp8bXDn4dZynkllVcZS20gRkFiSIeuzaC6DcC1k3ak0sTk4CegLrpjjZ6QynU3hnFDrGN6nzkinvJRZJuPccb_KY2WQO1bJ49pI-rPUv9AYNwSTam9SHUstMIDQ3qRV0vJ2_O3ptatDA3pUrzyq__JoldyiF7ae0Wv2tW_z-oZpwuQyufiPN12SPT9qn50SiytSKeZfcE127bKYLOY3YUbhdfDd-QGJoNDC
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+of+higher+order+interpretations+and+application+to+Basic+Feasible+Functions&rft.jtitle=Logical+methods+in+computer+science&rft.au=Emmanuel+Hainry&rft.au=Romain+P%C3%A9choux&rft.date=2020-12-14&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=16%2C+Issue+4&rft_id=info:doi/10.23638%2FLMCS-16%284%3A14%292020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_02875a8e58dc40e4a4d4ebaa9e30ce4e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon