Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers
Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomas...
Gespeichert in:
| Veröffentlicht in: | Soil biology & biochemistry Jg. 168; S. 108629 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2022
|
| Schlagworte: | |
| ISSN: | 0038-0717, 1879-3428 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomass and diversity. Here, we used paired grazed and ungrazed (fenced) plots at 10 locations across the Mongolian Plateau to investigate how long-term (>10 years) livestock grazing affects the biomass, diversity, composition, and function of microbial communities in surface (0–20 cm) and deep soil layers (40–60 cm). Livestock grazing increased bacterial diversity by 5–9% in both soil layers but increased fungal diversity by 10% only in the topsoil. Livestock grazing also strongly altered bacterial and fungal community composition in both soil layers. Livestock grazing decreased soil C mineralization rates by 11–25% in both soil layers, and decreased soil N mineralization rates by 16% and bacterial biomass by 20% only in the topsoil. The grazing-induced increase in microbial diversity in both soil layers was mainly explained by the changes in plant C:N ratio and plant biomass rather than by soil abiotic variables, especially for the deep soil layer. The grazing-induced negative effects on ecosystem functions (soil C and N mineralization) were mainly associated with soil abiotic variables together with plant variables or microbial diversity in the surface soil layer and were mainly associated with plant variables and soil microbial diversity in the deep soil layer. Overall, our regional field experiment provides the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate the deep soil in arid and semi-arid grasslands. This knowledge suggests that models should consider the dynamic interactions between land use and both soil microbial diversity and biomass across soil depths in global drylands.
Conceptual diagram showing the effects of livestock grazing on the soil microbial community structure and functions in surface and deep soil layers on the Mongolia Plateau. We investigated how large herbivore grazing affects biomass and diversities of soil bacterial and fungal communities and ecosystem functions in both surface and deep soil layers using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results provide the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate to a deep soil layer on arid and semi-arid grasslands. The findings suggest that models should consider the dynamic interactions between land use and both soil microbial biomass and diversity across soil depths in global drylands. [Display omitted]
•Livestock grazing increased soil bacterial diversity in both topsoil and deep soils.•Livestock grazing increased soil fungal diversity only in the topsoil.•Livestock grazing decreased soil bacterial biomass only in the topsoil.•Grazing effects on soil bacteria were stronger than on soil fungi across soil depths.•Grazing effects on soil microbes and functions can penetrate the deeper soils. |
|---|---|
| AbstractList | Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomass and diversity. Here, we used paired grazed and ungrazed (fenced) plots at 10 locations across the Mongolian Plateau to investigate how long-term (>10 years) livestock grazing affects the biomass, diversity, composition, and function of microbial communities in surface (0–20 cm) and deep soil layers (40–60 cm). Livestock grazing increased bacterial diversity by 5–9% in both soil layers but increased fungal diversity by 10% only in the topsoil. Livestock grazing also strongly altered bacterial and fungal community composition in both soil layers. Livestock grazing decreased soil C mineralization rates by 11–25% in both soil layers, and decreased soil N mineralization rates by 16% and bacterial biomass by 20% only in the topsoil. The grazing-induced increase in microbial diversity in both soil layers was mainly explained by the changes in plant C:N ratio and plant biomass rather than by soil abiotic variables, especially for the deep soil layer. The grazing-induced negative effects on ecosystem functions (soil C and N mineralization) were mainly associated with soil abiotic variables together with plant variables or microbial diversity in the surface soil layer and were mainly associated with plant variables and soil microbial diversity in the deep soil layer. Overall, our regional field experiment provides the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate the deep soil in arid and semi-arid grasslands. This knowledge suggests that models should consider the dynamic interactions between land use and both soil microbial diversity and biomass across soil depths in global drylands.
Conceptual diagram showing the effects of livestock grazing on the soil microbial community structure and functions in surface and deep soil layers on the Mongolia Plateau. We investigated how large herbivore grazing affects biomass and diversities of soil bacterial and fungal communities and ecosystem functions in both surface and deep soil layers using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results provide the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate to a deep soil layer on arid and semi-arid grasslands. The findings suggest that models should consider the dynamic interactions between land use and both soil microbial biomass and diversity across soil depths in global drylands. [Display omitted]
•Livestock grazing increased soil bacterial diversity in both topsoil and deep soils.•Livestock grazing increased soil fungal diversity only in the topsoil.•Livestock grazing decreased soil bacterial biomass only in the topsoil.•Grazing effects on soil bacteria were stronger than on soil fungi across soil depths.•Grazing effects on soil microbes and functions can penetrate the deeper soils. Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomass and diversity. Here, we used paired grazed and ungrazed (fenced) plots at 10 locations across the Mongolian Plateau to investigate how long-term (>10 years) livestock grazing affects the biomass, diversity, composition, and function of microbial communities in surface (0–20 cm) and deep soil layers (40–60 cm). Livestock grazing increased bacterial diversity by 5–9% in both soil layers but increased fungal diversity by 10% only in the topsoil. Livestock grazing also strongly altered bacterial and fungal community composition in both soil layers. Livestock grazing decreased soil C mineralization rates by 11–25% in both soil layers, and decreased soil N mineralization rates by 16% and bacterial biomass by 20% only in the topsoil. The grazing-induced increase in microbial diversity in both soil layers was mainly explained by the changes in plant C:N ratio and plant biomass rather than by soil abiotic variables, especially for the deep soil layer. The grazing-induced negative effects on ecosystem functions (soil C and N mineralization) were mainly associated with soil abiotic variables together with plant variables or microbial diversity in the surface soil layer and were mainly associated with plant variables and soil microbial diversity in the deep soil layer. Overall, our regional field experiment provides the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate the deep soil in arid and semi-arid grasslands. This knowledge suggests that models should consider the dynamic interactions between land use and both soil microbial diversity and biomass across soil depths in global drylands. |
| ArticleNumber | 108629 |
| Author | Delgado-Baquerizo, Manuel Wu, Jianping Bai, Yongfei Liu, Shengen Chen, Dima Wang, Bing Wu, Ying Hu, Shuijin |
| Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0003-4035-7015 surname: Wu fullname: Wu, Ying organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China – sequence: 2 givenname: Dima orcidid: 0000-0002-1687-0401 surname: Chen fullname: Chen, Dima email: chendima@ctgu.edu.cn organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China – sequence: 3 givenname: Manuel surname: Delgado-Baquerizo fullname: Delgado-Baquerizo, Manuel organization: Laboratorio de Biodiversidad y Funcionamiento Ecosistemico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain – sequence: 4 givenname: Shengen surname: Liu fullname: Liu, Shengen organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China – sequence: 5 givenname: Bing surname: Wang fullname: Wang, Bing organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China – sequence: 6 givenname: Jianping surname: Wu fullname: Wu, Jianping organization: Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China – sequence: 7 givenname: Shuijin surname: Hu fullname: Hu, Shuijin organization: Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA – sequence: 8 givenname: Yongfei surname: Bai fullname: Bai, Yongfei email: yfbai@ibcas.ac.cn organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNqFkc9u3CAQh1GVSt2keYRIHHvxBmyzBvVQVVHbVFopl_SM-DNs2dqwBbzS9jX6wsVyTr3khGDmm9GP7xpdhRgAoTtKtpTQ3f1xm6MftY_blrRtfeO7VrxBG8oH0XR9y6_QhpCON2Sgwzt0nfORENIy2m3Q330Mh6ZAmnCCg49BjRjO3kIwgKPD5SdgcA5Myct19GfIJZpf-JDUHx8OOAa8bMeTNylqX3ETp2kOvlxwLmk2ZU6AVbDYzcGUuiFjX5k5OWXWggU4rUNGdYGU36O3To0Zbl_OG_Tj65fnh8dm__Tt-8PnfWNqqNIowqxgjADnArjSlg1C98JxMwjSk44YqwdnmGaaWw5KWOoI1RR6QZl2vLtBH9a5pxR_zzWXnHw2MI4qQJyzbHc95z0bGKmtH9fWGjLnBE4aX9SSpiTlR0mJXFTIo3xRIRcVclVRafYffUp-UunyKvdp5aD-wtlDktn4xYz1qRqRNvpXJvwDqQqslA |
| CitedBy_id | crossref_primary_10_1016_j_agee_2023_108541 crossref_primary_10_1016_j_apsoil_2025_105886 crossref_primary_10_1002_ece3_71082 crossref_primary_10_1016_j_envres_2023_116656 crossref_primary_10_1007_s11104_023_06015_5 crossref_primary_10_1016_j_ecolind_2024_112097 crossref_primary_10_1016_j_apsoil_2024_105646 crossref_primary_10_1016_j_soilbio_2024_109508 crossref_primary_10_1016_j_soilbio_2023_109226 crossref_primary_10_1016_j_jenvman_2025_126432 crossref_primary_10_3389_fpls_2023_1238077 crossref_primary_10_1016_j_catena_2024_108629 crossref_primary_10_1016_j_ecolind_2023_110957 crossref_primary_10_1016_j_jenvman_2022_116859 crossref_primary_10_1007_s00374_025_01896_3 crossref_primary_10_1016_j_scitotenv_2023_169353 crossref_primary_10_1016_j_scitotenv_2023_169358 crossref_primary_10_1016_j_still_2025_106679 crossref_primary_10_1002_ldr_4939 crossref_primary_10_1016_j_gecco_2025_e03456 crossref_primary_10_3389_fenvs_2023_1109298 crossref_primary_10_1016_j_jenvman_2025_125236 crossref_primary_10_1016_j_agee_2023_108825 crossref_primary_10_1016_j_catena_2023_107306 crossref_primary_10_1016_j_jenvman_2024_120668 crossref_primary_10_3390_microorganisms12112274 crossref_primary_10_1016_j_apsoil_2023_104851 crossref_primary_10_1016_j_still_2024_106180 crossref_primary_10_3390_f16040626 crossref_primary_10_1016_j_rama_2024_06_002 crossref_primary_10_1080_02571862_2025_2538216 crossref_primary_10_1016_j_scitotenv_2023_165814 crossref_primary_10_3390_microbiolres16070153 crossref_primary_10_1098_rsos_230963 crossref_primary_10_1016_j_jare_2025_08_033 crossref_primary_10_7717_peerj_17031 crossref_primary_10_1002_ldr_4766 crossref_primary_10_1016_j_geoderma_2024_117070 crossref_primary_10_1016_j_indcrop_2023_117838 crossref_primary_10_1093_ismejo_wrae056 crossref_primary_10_1016_j_scitotenv_2025_179516 crossref_primary_10_3389_fmicb_2024_1458777 crossref_primary_10_1007_s11104_025_07343_4 crossref_primary_10_1016_j_ecolind_2025_113766 crossref_primary_10_1016_j_envres_2024_118922 crossref_primary_10_1111_1365_2435_14449 crossref_primary_10_3390_atmos13071145 crossref_primary_10_1016_j_jenvman_2024_121509 crossref_primary_10_3389_fsci_2025_1575468 crossref_primary_10_1099_mic_0_001517 crossref_primary_10_3390_plants13050666 crossref_primary_10_1016_j_geoderma_2025_117451 crossref_primary_10_7717_peerj_18433 crossref_primary_10_1016_j_agrformet_2024_110176 crossref_primary_10_1111_1365_2435_70131 crossref_primary_10_1002_ldr_5369 crossref_primary_10_7717_peerj_18791 crossref_primary_10_1016_j_jenvman_2025_126545 crossref_primary_10_1007_s11104_025_07792_x crossref_primary_10_1007_s13593_024_00973_5 crossref_primary_10_3389_fpls_2024_1366821 |
| Cites_doi | 10.1111/j.1365-2486.2012.02665.x 10.1016/j.soilbio.2018.05.026 10.1016/S0038-0717(02)00251-1 10.1111/j.1461-0248.2012.01844.x 10.1007/s00442-007-0689-z 10.1073/pnas.1516684112 10.1007/s00248-001-1020-x 10.1016/j.ecolind.2014.01.040 10.1016/j.soilbio.2008.08.001 10.1126/science.1131634 10.1038/nclimate1951 10.1002/ldr.3606 10.1111/gcb.15326 10.1111/2041-210X.12512 10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2 10.1007/s00374-010-0487-3 10.1128/AEM.02738-17 10.1111/geb.12029 10.1002/ecy.1879 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1128/mBio.01318-19 10.1111/j.1365-2664.2012.02205.x 10.1111/1365-2435.13359 10.1016/j.ecoleng.2016.09.003 10.1126/science.aal1319 10.1007/s11104-011-0985-6 10.1038/s41893-020-0490-0 10.1016/j.soilbio.2019.107611 10.1038/nrmicro3109 10.1038/s41558-018-0081-5 10.1007/s00374-018-01336-5 10.1016/j.soilbio.2012.03.011 10.1088/1748-9326/ab4932 10.1038/ncomms10541 10.1111/j.1574-6941.2007.00398.x 10.1038/nature10386 10.1111/gcb.15308 10.1111/gcb.13431 10.1128/AEM.01787-07 10.1111/j.1574-6941.2009.00733.x 10.1111/j.1365-2389.2011.01393.x 10.1186/s40168-018-0544-y 10.1016/j.geoderma.2016.01.041 10.1016/j.geoderma.2017.01.019 10.1016/j.soilbio.2015.01.016 10.1038/nmeth.3869 10.1111/1365-2435.12027 10.1016/j.agee.2017.08.007 10.1016/j.apsoil.2015.08.013 10.1016/j.apsoil.2017.04.005 10.1038/nature02850 10.1111/nph.16976 10.1038/s41587-019-0209-9 10.1002/ldr.3189 10.1126/science.1187820 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.soilbio.2022.108629 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Agriculture |
| EISSN | 1879-3428 |
| ExternalDocumentID | 10_1016_j_soilbio_2022_108629 S0038071722000864 |
| GeographicLocations | Central Asia |
| GeographicLocations_xml | – name: Central Asia |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-a05d9550e889e8abd579b49f8c7904030cdb7fc5b5b8d8ea9d1f01b1e4915bf83 |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-0717 |
| IngestDate | Wed Oct 01 15:12:21 EDT 2025 Tue Nov 18 21:45:13 EST 2025 Sat Nov 29 07:29:09 EST 2025 Fri Feb 23 02:40:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Livestock grazing Soil mineralization Plant–soil (below-ground) interactions Depth profile Ecosystem functions Microbial diversity Drylands Microbial community structure |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-a05d9550e889e8abd579b49f8c7904030cdb7fc5b5b8d8ea9d1f01b1e4915bf83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1687-0401 0000-0003-4035-7015 |
| PQID | 2648845750 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2648845750 crossref_citationtrail_10_1016_j_soilbio_2022_108629 crossref_primary_10_1016_j_soilbio_2022_108629 elsevier_sciencedirect_doi_10_1016_j_soilbio_2022_108629 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Soil biology & biochemistry |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chase (bib9) 2010; 328 Delgado Baquerizo, Maestre, Reich, Jeffries, Gaitan, Encinar, Berdugo, Campbell, Singh (bib15) 2016; 7 Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Alexander, Alm, Arumugam, Asnicar (bib6) 2019; 37 Johnson, Matchett (bib26) 2001; 82 Rousk, Bååth (bib38) 2007; 62 Callahan, McMurdie, Rosen, Han, Johnson, Holmes (bib8) 2016; 13 Aldezabal, Moragues, Odriozola, Mijangos (bib1) 2015; 96 Che, Wang, Wang, Xu, Wang, Rui, Wang, Hu, Tao, Cui (bib10) 2019; 139 Xun, Yan, Ren, Jin, Xiong, Zhang, Cui, Xin, Zhang (bib50) 2018; 6 Maron, Sarr, Kaisermann, Lévêque, Mathieu, Guigue, Karimi, Bernard, Dequiedt, Terrat (bib30) 2018; 84 Sloat, Gerber, Samberg, Smith, Herrero, Ferreira, Godde, West (bib43) 2018; 8 Pries, Castanha, Porras, Torn (bib33) 2017; 355 Wieder, Bonan, Allison (bib47) 2013; 3 Fierer, Schimel, Holden (bib19) 2003; 35 Garcia-Pausas, Casals, Camarero, Huguet, Thompson, Sebastia, Romanya (bib21) 2008; 40 Hansel, Fendorf, Jardine, Francis (bib23) 2008; 74 Bai, Wu, Clark, Pan, Zhang, Chen, Wang, Han (bib4) 2012; 49 Maestre, Delgado-Baquerizo, Jeffries, Eldridge, Ochoa, Gozalo, Quero, Garcia-Gomez, Gallardo, Ulrich (bib28) 2015; 112 Lefcheck (bib27) 2016; 7 Ba, Ning, Wang, Facelli, Facelli, Yang, Zhang (bib2) 2012; 352 Martinsen, Mulder, Austrheim, Mysterud (bib31) 2011; 62 Sweeney, de Vries, van Dongen, Bardgett (bib44) 2021; 229 Jiang, Hu, Lai, Han, Wang, Liu, Zhang, Guo (bib24) 2020; 26 Brewer, Aronson, Arogyaswamy, Billings, Botthoff, Campbell, Dove, Fairbanks, Gallery, Hart (bib7) 2019; 10 Schnecker, Wild, Takriti, Eloy Alves, Gentsch, Gittel, Hofer, Klaus, Knoltsch, Lashchinskiy, Mikutta, Richter (bib40) 2015; 83 Yarwood, Myrold, Högberg (bib53) 2009; 70 Zhao, Ren, Shelton, Wang, Pang, Chen, Wang (bib55) 2017; 249 Dungait, Hopkins, Gregory, Whitmore (bib16) 2012; 18 Reynolds, Stafford Smith, Lambin, Turner, Mortimore, Batterbury, Downing, Dowlatadi, Fernandez, Herrick (bib36) 2007; 316 Yan, Li, Wang, Zhang, Wang, Wu, Yan, Zhang, Kang (bib51) 2020; 31 Chen, Zheng, Shan, Taube, Bai (bib12) 2013; 27 R Core Team (bib34) 2017 Wang, Tang (bib45) 2019; 14 Cheng, Jing, Wei, Jing (bib13) 2016; 97 Sharkhuu, Plante, Enkhmandal, Gonneau, Casper, Boldgiv, Petraitis (bib41) 2016; 269 Philippot, Raaijmakers, Lemanceau, Van Der Putten (bib32) 2013; 11 Manier, Hobbs (bib29) 2007; 152 Sitters, Kimuyu, Young, Claeys, Olde Venterink (bib42) 2020; 3 Zhou, Zhou, He, Shao, Hu, Liu, Zhou, Hosseinibai (bib56) 2017; 23 Eldridge, Delgado‐Baquerizo, Travers, Val, Oliver, Hamonts, Singh (bib18) 2017; 98 de Vries, Manning, Tallowin, Mortimer, Pilgrim, Harrison, Hobbs, Quirk, Shipley, Cornelissen, Kattge, Bardgett (bib14) 2012; 15 Bai, Han, Wu, Chen, Li (bib3) 2004; 431 Yang, Niu, Collins, Yan, Ji, Ling, Zhou, Du, Guo, Hu (bib52) 2019; 30 Eilers, Debenport, Anderson, Fierer (bib17) 2012; 50 Zhang, Liu, Song, Wang, Guo (bib54) 2018; 124 Findlay, Tank, Dye, Valett, Mulholland, McDowell, Johnson, Hamilton, Edmonds, Dodds (bib20) 2002; 43 Jobbágy, Jackson (bib25) 2000; 10 Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning (bib39) 2011; 478 Zhou, Wang, Hao, Wang (bib57) 2010; 46 Bardgett, Wardle (bib5) 2010 Raiesi, Riahi (bib35) 2014; 41 Hamonts, Bissett, Macdonald, Barton, Manning, Young (bib22) 2017; 117 Wang, Zhang, Staley, Gao, Ishii, Wei, Liu, Cheng, Hao, Sadowsky (bib46) 2019; 55 Xu, Silveira, Inglett, Sollenberger, Gerber (bib48) 2017; 293 Risch, Zimmermann, Moser, Schütz, Hagedorn, Firn, Fay, Biederman, Blair, Borer (bib37) 2020; 26 Chen, Saleem, Cheng, Mi, Chu, Tuvshintogtokh, Hu, Bai (bib11) 2019; 33 Xu, Thornton, Post (bib49) 2013; 22 Bai (10.1016/j.soilbio.2022.108629_bib4) 2012; 49 Zhou (10.1016/j.soilbio.2022.108629_bib57) 2010; 46 Risch (10.1016/j.soilbio.2022.108629_bib37) 2020; 26 Chen (10.1016/j.soilbio.2022.108629_bib11) 2019; 33 Lefcheck (10.1016/j.soilbio.2022.108629_bib27) 2016; 7 Rousk (10.1016/j.soilbio.2022.108629_bib38) 2007; 62 Xu (10.1016/j.soilbio.2022.108629_bib48) 2017; 293 Zhou (10.1016/j.soilbio.2022.108629_bib56) 2017; 23 Bolyen (10.1016/j.soilbio.2022.108629_bib6) 2019; 37 R Core Team (10.1016/j.soilbio.2022.108629_bib34) 2017 Dungait (10.1016/j.soilbio.2022.108629_bib16) 2012; 18 Wieder (10.1016/j.soilbio.2022.108629_bib47) 2013; 3 Yang (10.1016/j.soilbio.2022.108629_bib52) 2019; 30 Chen (10.1016/j.soilbio.2022.108629_bib12) 2013; 27 Manier (10.1016/j.soilbio.2022.108629_bib29) 2007; 152 Bardgett (10.1016/j.soilbio.2022.108629_bib5) 2010 Maestre (10.1016/j.soilbio.2022.108629_bib28) 2015; 112 Xun (10.1016/j.soilbio.2022.108629_bib50) 2018; 6 Sitters (10.1016/j.soilbio.2022.108629_bib42) 2020; 3 Che (10.1016/j.soilbio.2022.108629_bib10) 2019; 139 Hansel (10.1016/j.soilbio.2022.108629_bib23) 2008; 74 Wang (10.1016/j.soilbio.2022.108629_bib45) 2019; 14 Aldezabal (10.1016/j.soilbio.2022.108629_bib1) 2015; 96 Chase (10.1016/j.soilbio.2022.108629_bib9) 2010; 328 Eilers (10.1016/j.soilbio.2022.108629_bib17) 2012; 50 Martinsen (10.1016/j.soilbio.2022.108629_bib31) 2011; 62 Schmidt (10.1016/j.soilbio.2022.108629_bib39) 2011; 478 Cheng (10.1016/j.soilbio.2022.108629_bib13) 2016; 97 Jiang (10.1016/j.soilbio.2022.108629_bib24) 2020; 26 Johnson (10.1016/j.soilbio.2022.108629_bib26) 2001; 82 Sharkhuu (10.1016/j.soilbio.2022.108629_bib41) 2016; 269 Pries (10.1016/j.soilbio.2022.108629_bib33) 2017; 355 Wang (10.1016/j.soilbio.2022.108629_bib46) 2019; 55 Sloat (10.1016/j.soilbio.2022.108629_bib43) 2018; 8 Findlay (10.1016/j.soilbio.2022.108629_bib20) 2002; 43 Zhang (10.1016/j.soilbio.2022.108629_bib54) 2018; 124 Fierer (10.1016/j.soilbio.2022.108629_bib19) 2003; 35 Eldridge (10.1016/j.soilbio.2022.108629_bib18) 2017; 98 Yarwood (10.1016/j.soilbio.2022.108629_bib53) 2009; 70 Garcia-Pausas (10.1016/j.soilbio.2022.108629_bib21) 2008; 40 Yan (10.1016/j.soilbio.2022.108629_bib51) 2020; 31 de Vries (10.1016/j.soilbio.2022.108629_bib14) 2012; 15 Schnecker (10.1016/j.soilbio.2022.108629_bib40) 2015; 83 Sweeney (10.1016/j.soilbio.2022.108629_bib44) 2021; 229 Ba (10.1016/j.soilbio.2022.108629_bib2) 2012; 352 Zhao (10.1016/j.soilbio.2022.108629_bib55) 2017; 249 Raiesi (10.1016/j.soilbio.2022.108629_bib35) 2014; 41 Maron (10.1016/j.soilbio.2022.108629_bib30) 2018; 84 Philippot (10.1016/j.soilbio.2022.108629_bib32) 2013; 11 Callahan (10.1016/j.soilbio.2022.108629_bib8) 2016; 13 Reynolds (10.1016/j.soilbio.2022.108629_bib36) 2007; 316 Hamonts (10.1016/j.soilbio.2022.108629_bib22) 2017; 117 Delgado Baquerizo (10.1016/j.soilbio.2022.108629_bib15) 2016; 7 Bai (10.1016/j.soilbio.2022.108629_bib3) 2004; 431 Brewer (10.1016/j.soilbio.2022.108629_bib7) 2019; 10 Jobbágy (10.1016/j.soilbio.2022.108629_bib25) 2000; 10 Xu (10.1016/j.soilbio.2022.108629_bib49) 2013; 22 |
| References_xml | – volume: 10 year: 2019 ident: bib7 article-title: Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons publication-title: mBio – volume: 37 start-page: 852 year: 2019 ident: bib6 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nature Biotechnology – volume: 41 start-page: 145 year: 2014 end-page: 154 ident: bib35 article-title: The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands publication-title: Ecological Indicators – volume: 8 start-page: 214 year: 2018 end-page: 218 ident: bib43 article-title: Increasing importance of precipitation variability on global livestock grazing lands publication-title: Nature Climate Change – volume: 49 start-page: 1204 year: 2012 end-page: 1215 ident: bib4 article-title: Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient publication-title: Journal of Applied Ecology – volume: 316 start-page: 847 year: 2007 end-page: 851 ident: bib36 article-title: Global desertification: building a science for dryland development publication-title: Science – volume: 124 start-page: 47 year: 2018 end-page: 58 ident: bib54 article-title: Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands publication-title: Soil Biology and Biochemistry – volume: 35 start-page: 167 year: 2003 end-page: 176 ident: bib19 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry – volume: 22 start-page: 737 year: 2013 end-page: 749 ident: bib49 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecology and Biogeography – year: 2010 ident: bib5 article-title: Aboveground-belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change – volume: 139 start-page: 107611 year: 2019 ident: bib10 article-title: Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing publication-title: Soil Biology and Biochemistry – volume: 328 start-page: 1388 year: 2010 end-page: 1391 ident: bib9 article-title: Stochastic community assembly causes higher biodiversity in more productive environments publication-title: Science – volume: 98 start-page: 1922 year: 2017 end-page: 1931 ident: bib18 article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores publication-title: Ecology – volume: 7 start-page: 1 year: 2016 end-page: 8 ident: bib15 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nature Communications – volume: 74 start-page: 1620 year: 2008 end-page: 1633 ident: bib23 article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile publication-title: Applied and Environmental Microbiology – volume: 117 start-page: 117 year: 2017 end-page: 128 ident: bib22 article-title: Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland publication-title: Applied Soil Ecology – volume: 15 start-page: 1230 year: 2012 end-page: 1239 ident: bib14 article-title: Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities publication-title: Ecology Letters – volume: 46 start-page: 817 year: 2010 end-page: 824 ident: bib57 article-title: Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe publication-title: Biology and Fertility of Soils – volume: 13 start-page: 581 year: 2016 end-page: 588 ident: bib8 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nature Methods – volume: 14 start-page: 114003 year: 2019 ident: bib45 article-title: A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands publication-title: Environmental Research Letters – volume: 352 start-page: 143 year: 2012 end-page: 156 ident: bib2 article-title: The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe publication-title: Plant and Soil – volume: 269 start-page: 91 year: 2016 end-page: 98 ident: bib41 article-title: Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia publication-title: Geoderma – volume: 55 start-page: 121 year: 2019 end-page: 134 ident: bib46 article-title: Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability publication-title: Biology and Fertility of Soils – volume: 43 start-page: 55 year: 2002 end-page: 66 ident: bib20 article-title: A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams publication-title: Microbial Ecology – volume: 62 start-page: 258 year: 2007 end-page: 267 ident: bib38 article-title: Fungal and bacterial growth in soil with plant materials of different C/N ratios publication-title: FEMS Microbiology Ecology – volume: 82 start-page: 3377 year: 2001 end-page: 3389 ident: bib26 article-title: Fire and grazing regulate belowground processes in tallgrass prairie publication-title: Ecology – volume: 83 start-page: 106 year: 2015 end-page: 115 ident: bib40 article-title: Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia publication-title: Soil Biology and Biochemistry – volume: 431 start-page: 181 year: 2004 end-page: 184 ident: bib3 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature – volume: 62 start-page: 822 year: 2011 end-page: 833 ident: bib31 article-title: Carbon storage in low‐alpine grassland soils: effects of different grazing intensities of sheep publication-title: European Journal of Soil Science – volume: 293 start-page: 73 year: 2017 end-page: 81 ident: bib48 article-title: Soil microbial community responses to long-term land use intensification in subtropical grazing lands publication-title: Geoderma – volume: 96 start-page: 251 year: 2015 end-page: 260 ident: bib1 article-title: Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland publication-title: Applied Soil Ecology – volume: 30 start-page: 49 year: 2019 end-page: 59 ident: bib52 article-title: Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow publication-title: Land Degradation & Development – year: 2017 ident: bib34 article-title: R: A Language and Environment for Statistical Computing – volume: 7 start-page: 573 year: 2016 end-page: 579 ident: bib27 article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods in Ecology and Evolution – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: bib39 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 11 start-page: 789 year: 2013 end-page: 799 ident: bib32 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nature Reviews Microbiology – volume: 3 start-page: 909 year: 2013 end-page: 912 ident: bib47 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nature Climate Change – volume: 50 start-page: 58 year: 2012 end-page: 65 ident: bib17 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil publication-title: Soil Biology and Biochemistry – volume: 40 start-page: 2803 year: 2008 end-page: 2810 ident: bib21 article-title: Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands publication-title: Soil Biology and Biochemistry – volume: 112 start-page: 15684 year: 2015 end-page: 15689 ident: bib28 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proceedings of the National Academy of Sciences – volume: 3 start-page: 360 year: 2020 end-page: 366 ident: bib42 article-title: Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores publication-title: Nature Sustainability – volume: 152 start-page: 739 year: 2007 end-page: 750 ident: bib29 article-title: Large herbivores in sagebrush steppe ecosystems: livestock and wild ungulates influence structure and function publication-title: Oecologia – volume: 6 start-page: 1 year: 2018 end-page: 13 ident: bib50 article-title: Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe publication-title: Microbiome – volume: 33 start-page: 1561 year: 2019 end-page: 1571 ident: bib11 article-title: Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau publication-title: Functional Ecology – volume: 27 start-page: 273 year: 2013 end-page: 281 ident: bib12 article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe publication-title: Functional Ecology – volume: 229 start-page: 1492 year: 2021 end-page: 1507 ident: bib44 article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species publication-title: New Phytologist – volume: 97 start-page: 170 year: 2016 end-page: 178 ident: bib13 article-title: Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China publication-title: Ecological Engineering – volume: 18 start-page: 1781 year: 2012 end-page: 1796 ident: bib16 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Global Change Biology – volume: 26 start-page: 7173 year: 2020 end-page: 7185 ident: bib37 article-title: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties publication-title: Global Change Biology – volume: 31 start-page: 2369 year: 2020 end-page: 2378 ident: bib51 article-title: Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: a hierarchical meta-analysis publication-title: Land Degradation & Development – volume: 249 start-page: 50 year: 2017 end-page: 56 ident: bib55 article-title: Grazing intensity influence soil microbial communities and their implications for soil respiration publication-title: Agriculture, Ecosystems & Environment – volume: 355 start-page: 1420 year: 2017 end-page: 1423 ident: bib33 article-title: The whole-soil carbon flux in response to warming publication-title: Science – volume: 84 year: 2018 ident: bib30 article-title: High microbial diversity promotes soil ecosystem functioning publication-title: Applied and Environmental Microbiology – volume: 23 start-page: 1167 year: 2017 end-page: 1179 ident: bib56 article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta‐analysis publication-title: Global Change Biology – volume: 70 start-page: 151 year: 2009 end-page: 162 ident: bib53 article-title: Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest publication-title: FEMS Microbiology Ecology – volume: 26 start-page: 7186 year: 2020 end-page: 7197 ident: bib24 article-title: Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta‐analysis publication-title: Global Change Biology – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: bib25 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecological Applications – volume: 18 start-page: 1781 year: 2012 ident: 10.1016/j.soilbio.2022.108629_bib16 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2012.02665.x – volume: 124 start-page: 47 year: 2018 ident: 10.1016/j.soilbio.2022.108629_bib54 article-title: Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.05.026 – volume: 35 start-page: 167 year: 2003 ident: 10.1016/j.soilbio.2022.108629_bib19 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00251-1 – volume: 15 start-page: 1230 year: 2012 ident: 10.1016/j.soilbio.2022.108629_bib14 article-title: Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2012.01844.x – volume: 152 start-page: 739 year: 2007 ident: 10.1016/j.soilbio.2022.108629_bib29 article-title: Large herbivores in sagebrush steppe ecosystems: livestock and wild ungulates influence structure and function publication-title: Oecologia doi: 10.1007/s00442-007-0689-z – volume: 112 start-page: 15684 year: 2015 ident: 10.1016/j.soilbio.2022.108629_bib28 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1516684112 – volume: 43 start-page: 55 year: 2002 ident: 10.1016/j.soilbio.2022.108629_bib20 article-title: A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams publication-title: Microbial Ecology doi: 10.1007/s00248-001-1020-x – volume: 41 start-page: 145 year: 2014 ident: 10.1016/j.soilbio.2022.108629_bib35 article-title: The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2014.01.040 – volume: 40 start-page: 2803 year: 2008 ident: 10.1016/j.soilbio.2022.108629_bib21 article-title: Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2008.08.001 – volume: 316 start-page: 847 year: 2007 ident: 10.1016/j.soilbio.2022.108629_bib36 article-title: Global desertification: building a science for dryland development publication-title: Science doi: 10.1126/science.1131634 – volume: 3 start-page: 909 year: 2013 ident: 10.1016/j.soilbio.2022.108629_bib47 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nature Climate Change doi: 10.1038/nclimate1951 – volume: 31 start-page: 2369 year: 2020 ident: 10.1016/j.soilbio.2022.108629_bib51 article-title: Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: a hierarchical meta-analysis publication-title: Land Degradation & Development doi: 10.1002/ldr.3606 – volume: 26 start-page: 7186 year: 2020 ident: 10.1016/j.soilbio.2022.108629_bib24 article-title: Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta‐analysis publication-title: Global Change Biology doi: 10.1111/gcb.15326 – volume: 7 start-page: 573 year: 2016 ident: 10.1016/j.soilbio.2022.108629_bib27 article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12512 – volume: 82 start-page: 3377 year: 2001 ident: 10.1016/j.soilbio.2022.108629_bib26 article-title: Fire and grazing regulate belowground processes in tallgrass prairie publication-title: Ecology doi: 10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2 – year: 2010 ident: 10.1016/j.soilbio.2022.108629_bib5 – volume: 46 start-page: 817 year: 2010 ident: 10.1016/j.soilbio.2022.108629_bib57 article-title: Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-010-0487-3 – volume: 84 year: 2018 ident: 10.1016/j.soilbio.2022.108629_bib30 article-title: High microbial diversity promotes soil ecosystem functioning publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02738-17 – volume: 22 start-page: 737 year: 2013 ident: 10.1016/j.soilbio.2022.108629_bib49 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecology and Biogeography doi: 10.1111/geb.12029 – volume: 98 start-page: 1922 year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib18 article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores publication-title: Ecology doi: 10.1002/ecy.1879 – volume: 10 start-page: 423 year: 2000 ident: 10.1016/j.soilbio.2022.108629_bib25 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecological Applications doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 10 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib7 article-title: Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons publication-title: mBio doi: 10.1128/mBio.01318-19 – volume: 49 start-page: 1204 year: 2012 ident: 10.1016/j.soilbio.2022.108629_bib4 article-title: Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient publication-title: Journal of Applied Ecology doi: 10.1111/j.1365-2664.2012.02205.x – volume: 33 start-page: 1561 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib11 article-title: Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau publication-title: Functional Ecology doi: 10.1111/1365-2435.13359 – volume: 97 start-page: 170 year: 2016 ident: 10.1016/j.soilbio.2022.108629_bib13 article-title: Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China publication-title: Ecological Engineering doi: 10.1016/j.ecoleng.2016.09.003 – volume: 355 start-page: 1420 year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib33 article-title: The whole-soil carbon flux in response to warming publication-title: Science doi: 10.1126/science.aal1319 – volume: 352 start-page: 143 year: 2012 ident: 10.1016/j.soilbio.2022.108629_bib2 article-title: The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe publication-title: Plant and Soil doi: 10.1007/s11104-011-0985-6 – volume: 3 start-page: 360 year: 2020 ident: 10.1016/j.soilbio.2022.108629_bib42 article-title: Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores publication-title: Nature Sustainability doi: 10.1038/s41893-020-0490-0 – volume: 139 start-page: 107611 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib10 article-title: Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.107611 – volume: 11 start-page: 789 year: 2013 ident: 10.1016/j.soilbio.2022.108629_bib32 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro3109 – volume: 8 start-page: 214 year: 2018 ident: 10.1016/j.soilbio.2022.108629_bib43 article-title: Increasing importance of precipitation variability on global livestock grazing lands publication-title: Nature Climate Change doi: 10.1038/s41558-018-0081-5 – volume: 55 start-page: 121 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib46 article-title: Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-018-01336-5 – volume: 50 start-page: 58 year: 2012 ident: 10.1016/j.soilbio.2022.108629_bib17 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2012.03.011 – volume: 14 start-page: 114003 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib45 article-title: A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands publication-title: Environmental Research Letters doi: 10.1088/1748-9326/ab4932 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.soilbio.2022.108629_bib15 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nature Communications doi: 10.1038/ncomms10541 – volume: 62 start-page: 258 year: 2007 ident: 10.1016/j.soilbio.2022.108629_bib38 article-title: Fungal and bacterial growth in soil with plant materials of different C/N ratios publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2007.00398.x – volume: 478 start-page: 49 year: 2011 ident: 10.1016/j.soilbio.2022.108629_bib39 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 26 start-page: 7173 year: 2020 ident: 10.1016/j.soilbio.2022.108629_bib37 article-title: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties publication-title: Global Change Biology doi: 10.1111/gcb.15308 – volume: 23 start-page: 1167 year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib56 article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta‐analysis publication-title: Global Change Biology doi: 10.1111/gcb.13431 – volume: 74 start-page: 1620 year: 2008 ident: 10.1016/j.soilbio.2022.108629_bib23 article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01787-07 – volume: 70 start-page: 151 year: 2009 ident: 10.1016/j.soilbio.2022.108629_bib53 article-title: Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2009.00733.x – volume: 62 start-page: 822 year: 2011 ident: 10.1016/j.soilbio.2022.108629_bib31 article-title: Carbon storage in low‐alpine grassland soils: effects of different grazing intensities of sheep publication-title: European Journal of Soil Science doi: 10.1111/j.1365-2389.2011.01393.x – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.soilbio.2022.108629_bib50 article-title: Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe publication-title: Microbiome doi: 10.1186/s40168-018-0544-y – volume: 269 start-page: 91 year: 2016 ident: 10.1016/j.soilbio.2022.108629_bib41 article-title: Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia publication-title: Geoderma doi: 10.1016/j.geoderma.2016.01.041 – volume: 293 start-page: 73 year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib48 article-title: Soil microbial community responses to long-term land use intensification in subtropical grazing lands publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.019 – volume: 83 start-page: 106 year: 2015 ident: 10.1016/j.soilbio.2022.108629_bib40 article-title: Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.01.016 – volume: 13 start-page: 581 year: 2016 ident: 10.1016/j.soilbio.2022.108629_bib8 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nature Methods doi: 10.1038/nmeth.3869 – volume: 27 start-page: 273 year: 2013 ident: 10.1016/j.soilbio.2022.108629_bib12 article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe publication-title: Functional Ecology doi: 10.1111/1365-2435.12027 – volume: 249 start-page: 50 year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib55 article-title: Grazing intensity influence soil microbial communities and their implications for soil respiration publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2017.08.007 – volume: 96 start-page: 251 year: 2015 ident: 10.1016/j.soilbio.2022.108629_bib1 article-title: Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2015.08.013 – volume: 117 start-page: 117 year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib22 article-title: Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2017.04.005 – volume: 431 start-page: 181 year: 2004 ident: 10.1016/j.soilbio.2022.108629_bib3 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature doi: 10.1038/nature02850 – volume: 229 start-page: 1492 year: 2021 ident: 10.1016/j.soilbio.2022.108629_bib44 article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species publication-title: New Phytologist doi: 10.1111/nph.16976 – year: 2017 ident: 10.1016/j.soilbio.2022.108629_bib34 – volume: 37 start-page: 852 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib6 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nature Biotechnology doi: 10.1038/s41587-019-0209-9 – volume: 30 start-page: 49 year: 2019 ident: 10.1016/j.soilbio.2022.108629_bib52 article-title: Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow publication-title: Land Degradation & Development doi: 10.1002/ldr.3189 – volume: 328 start-page: 1388 year: 2010 ident: 10.1016/j.soilbio.2022.108629_bib9 article-title: Stochastic community assembly causes higher biodiversity in more productive environments publication-title: Science doi: 10.1126/science.1187820 |
| SSID | ssj0002513 |
| Score | 2.5976496 |
| Snippet | Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108629 |
| SubjectTerms | arid lands bacterial biomass biochemistry biodiversity carbon nitrogen ratio Central Asia community structure Depth profile Drylands Ecosystem functions ecosystems edaphic factors field experimentation fungal communities fungi land use livestock Livestock grazing Microbial community structure Microbial diversity mineralization phytomass Plant–soil (below-ground) interactions soil biology soil microorganisms Soil mineralization topsoil |
| Title | Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers |
| URI | https://dx.doi.org/10.1016/j.soilbio.2022.108629 https://www.proquest.com/docview/2648845750 |
| Volume | 168 |
| WOSCitedRecordID | wos000793635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-3428 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513 issn: 0038-0717 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLRJwQFBAlJeMxG2VJWmcxj4upQhQVSG1SHuLYsdJU4VktY-q8Df4Pfw3ZuLHtuVReuASZb3riXfn25mxPf6GkFdFrGSpdnaCREgRQPwvwQ4KrPWiyhJciowT1RebSA8O-HQqPg0GP9xZmNMmbVt-diZm_1XV0AbKxqOz11C3FwoNcA9KhyuoHa7_pPj9rq0CNLgjLLrQL_RpWzrUJQScS-JokHZ2CUZxVM2RabrC3YNFVzejL3XP0dTzh_SHSCBcN2yzbs8BfaJPRV-s5mVuTx8UWs-MkCb_alPsXQR8iM2O-glxB_fKVZ3zLmLVuwbnVvv0A2sf67UjeaubKi-64E0Ozm1ef-vM4aN2pX3ayH7dSzo8xuTd9vwSB8yOfUKhM9tglXHiecFsm3I81vBiwSizdPKLTzDLEydIjtzAVxrjE8brz1_k4L7kG33GokuGO8msmAzFZEbMDbKxnSaCD8nG5MPe9KMPBSB4tKzPZvzrI2SvfzuePwVHl8KEPvY5ukfu2kkLnRiw3ScD3W6SO5Nqbolb9Ca5tet0-IB89xCkDoLUQZB2JQUIUgtBfOkhSC0EaddSHDb1EKQegtRDkALSqIcgraGPgWD_BkLQCDEQfEg-v9s72n0f2OIfgYrZ9jLIw6QQMH3WnAvNc1kkqZBMlFylAhxPHKpCpqVKZCJ5wXUuiqgMIxlpJqJEljx-RIZt1-rHhIasiDmHzjELmZJa6EhrJgWLBPgrFW4R5n71TFlmfCzQ0mR_1foWGftuM0MNc1UH7lSa2fjWxK0ZQPWqri8dBDJQJm7q5a3uVosMM1Q5g0lX-OS643lKbq__bc_IEPSnn5Ob6nRZL-YvLJZ_AjH33Xo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+regional+evidence+of+the+effects+of+livestock+grazing+on+soil+microbial+community+structure+and+functions+in+surface+and+deep+soil+layers&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Wu%2C+Ying&rft.au=Chen%2C+Dima&rft.au=Delgado-Baquerizo%2C+Manuel&rft.au=Liu%2C+Shengen&rft.date=2022-05-01&rft.issn=0038-0717&rft.volume=168&rft.spage=108629&rft_id=info:doi/10.1016%2Fj.soilbio.2022.108629&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2022_108629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |