Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers

Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry Jg. 168; S. 108629
Hauptverfasser: Wu, Ying, Chen, Dima, Delgado-Baquerizo, Manuel, Liu, Shengen, Wang, Bing, Wu, Jianping, Hu, Shuijin, Bai, Yongfei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2022
Schlagworte:
ISSN:0038-0717, 1879-3428
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomass and diversity. Here, we used paired grazed and ungrazed (fenced) plots at 10 locations across the Mongolian Plateau to investigate how long-term (>10 years) livestock grazing affects the biomass, diversity, composition, and function of microbial communities in surface (0–20 cm) and deep soil layers (40–60 cm). Livestock grazing increased bacterial diversity by 5–9% in both soil layers but increased fungal diversity by 10% only in the topsoil. Livestock grazing also strongly altered bacterial and fungal community composition in both soil layers. Livestock grazing decreased soil C mineralization rates by 11–25% in both soil layers, and decreased soil N mineralization rates by 16% and bacterial biomass by 20% only in the topsoil. The grazing-induced increase in microbial diversity in both soil layers was mainly explained by the changes in plant C:N ratio and plant biomass rather than by soil abiotic variables, especially for the deep soil layer. The grazing-induced negative effects on ecosystem functions (soil C and N mineralization) were mainly associated with soil abiotic variables together with plant variables or microbial diversity in the surface soil layer and were mainly associated with plant variables and soil microbial diversity in the deep soil layer. Overall, our regional field experiment provides the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate the deep soil in arid and semi-arid grasslands. This knowledge suggests that models should consider the dynamic interactions between land use and both soil microbial diversity and biomass across soil depths in global drylands. Conceptual diagram showing the effects of livestock grazing on the soil microbial community structure and functions in surface and deep soil layers on the Mongolia Plateau. We investigated how large herbivore grazing affects biomass and diversities of soil bacterial and fungal communities and ecosystem functions in both surface and deep soil layers using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results provide the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate to a deep soil layer on arid and semi-arid grasslands. The findings suggest that models should consider the dynamic interactions between land use and both soil microbial biomass and diversity across soil depths in global drylands. [Display omitted] •Livestock grazing increased soil bacterial diversity in both topsoil and deep soils.•Livestock grazing increased soil fungal diversity only in the topsoil.•Livestock grazing decreased soil bacterial biomass only in the topsoil.•Grazing effects on soil bacteria were stronger than on soil fungi across soil depths.•Grazing effects on soil microbes and functions can penetrate the deeper soils.
AbstractList Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomass and diversity. Here, we used paired grazed and ungrazed (fenced) plots at 10 locations across the Mongolian Plateau to investigate how long-term (>10 years) livestock grazing affects the biomass, diversity, composition, and function of microbial communities in surface (0–20 cm) and deep soil layers (40–60 cm). Livestock grazing increased bacterial diversity by 5–9% in both soil layers but increased fungal diversity by 10% only in the topsoil. Livestock grazing also strongly altered bacterial and fungal community composition in both soil layers. Livestock grazing decreased soil C mineralization rates by 11–25% in both soil layers, and decreased soil N mineralization rates by 16% and bacterial biomass by 20% only in the topsoil. The grazing-induced increase in microbial diversity in both soil layers was mainly explained by the changes in plant C:N ratio and plant biomass rather than by soil abiotic variables, especially for the deep soil layer. The grazing-induced negative effects on ecosystem functions (soil C and N mineralization) were mainly associated with soil abiotic variables together with plant variables or microbial diversity in the surface soil layer and were mainly associated with plant variables and soil microbial diversity in the deep soil layer. Overall, our regional field experiment provides the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate the deep soil in arid and semi-arid grasslands. This knowledge suggests that models should consider the dynamic interactions between land use and both soil microbial diversity and biomass across soil depths in global drylands. Conceptual diagram showing the effects of livestock grazing on the soil microbial community structure and functions in surface and deep soil layers on the Mongolia Plateau. We investigated how large herbivore grazing affects biomass and diversities of soil bacterial and fungal communities and ecosystem functions in both surface and deep soil layers using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results provide the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate to a deep soil layer on arid and semi-arid grasslands. The findings suggest that models should consider the dynamic interactions between land use and both soil microbial biomass and diversity across soil depths in global drylands. [Display omitted] •Livestock grazing increased soil bacterial diversity in both topsoil and deep soils.•Livestock grazing increased soil fungal diversity only in the topsoil.•Livestock grazing decreased soil bacterial biomass only in the topsoil.•Grazing effects on soil bacteria were stronger than on soil fungi across soil depths.•Grazing effects on soil microbes and functions can penetrate the deeper soils.
Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or penetrate into deep layers (via changes in soil environment and resource locations) of soil is lacking, especially for soil microbial biomass and diversity. Here, we used paired grazed and ungrazed (fenced) plots at 10 locations across the Mongolian Plateau to investigate how long-term (>10 years) livestock grazing affects the biomass, diversity, composition, and function of microbial communities in surface (0–20 cm) and deep soil layers (40–60 cm). Livestock grazing increased bacterial diversity by 5–9% in both soil layers but increased fungal diversity by 10% only in the topsoil. Livestock grazing also strongly altered bacterial and fungal community composition in both soil layers. Livestock grazing decreased soil C mineralization rates by 11–25% in both soil layers, and decreased soil N mineralization rates by 16% and bacterial biomass by 20% only in the topsoil. The grazing-induced increase in microbial diversity in both soil layers was mainly explained by the changes in plant C:N ratio and plant biomass rather than by soil abiotic variables, especially for the deep soil layer. The grazing-induced negative effects on ecosystem functions (soil C and N mineralization) were mainly associated with soil abiotic variables together with plant variables or microbial diversity in the surface soil layer and were mainly associated with plant variables and soil microbial diversity in the deep soil layer. Overall, our regional field experiment provides the first evidence that the strong effects of livestock grazing on soil microbial biomass, diversity, composition, and function can penetrate the deep soil in arid and semi-arid grasslands. This knowledge suggests that models should consider the dynamic interactions between land use and both soil microbial diversity and biomass across soil depths in global drylands.
ArticleNumber 108629
Author Delgado-Baquerizo, Manuel
Wu, Jianping
Bai, Yongfei
Liu, Shengen
Chen, Dima
Wang, Bing
Wu, Ying
Hu, Shuijin
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0003-4035-7015
  surname: Wu
  fullname: Wu, Ying
  organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
– sequence: 2
  givenname: Dima
  orcidid: 0000-0002-1687-0401
  surname: Chen
  fullname: Chen, Dima
  email: chendima@ctgu.edu.cn
  organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
– sequence: 3
  givenname: Manuel
  surname: Delgado-Baquerizo
  fullname: Delgado-Baquerizo, Manuel
  organization: Laboratorio de Biodiversidad y Funcionamiento Ecosistemico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
– sequence: 4
  givenname: Shengen
  surname: Liu
  fullname: Liu, Shengen
  organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
– sequence: 5
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
  organization: Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
– sequence: 6
  givenname: Jianping
  surname: Wu
  fullname: Wu, Jianping
  organization: Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
– sequence: 7
  givenname: Shuijin
  surname: Hu
  fullname: Hu, Shuijin
  organization: Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
– sequence: 8
  givenname: Yongfei
  surname: Bai
  fullname: Bai, Yongfei
  email: yfbai@ibcas.ac.cn
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
BookMark eNqFkc9u3CAQh1GVSt2keYRIHHvxBmyzBvVQVVHbVFopl_SM-DNs2dqwBbzS9jX6wsVyTr3khGDmm9GP7xpdhRgAoTtKtpTQ3f1xm6MftY_blrRtfeO7VrxBG8oH0XR9y6_QhpCON2Sgwzt0nfORENIy2m3Q330Mh6ZAmnCCg49BjRjO3kIwgKPD5SdgcA5Myct19GfIJZpf-JDUHx8OOAa8bMeTNylqX3ETp2kOvlxwLmk2ZU6AVbDYzcGUuiFjX5k5OWXWggU4rUNGdYGU36O3To0Zbl_OG_Tj65fnh8dm__Tt-8PnfWNqqNIowqxgjADnArjSlg1C98JxMwjSk44YqwdnmGaaWw5KWOoI1RR6QZl2vLtBH9a5pxR_zzWXnHw2MI4qQJyzbHc95z0bGKmtH9fWGjLnBE4aX9SSpiTlR0mJXFTIo3xRIRcVclVRafYffUp-UunyKvdp5aD-wtlDktn4xYz1qRqRNvpXJvwDqQqslA
CitedBy_id crossref_primary_10_1016_j_agee_2023_108541
crossref_primary_10_1016_j_apsoil_2025_105886
crossref_primary_10_1002_ece3_71082
crossref_primary_10_1016_j_envres_2023_116656
crossref_primary_10_1007_s11104_023_06015_5
crossref_primary_10_1016_j_ecolind_2024_112097
crossref_primary_10_1016_j_apsoil_2024_105646
crossref_primary_10_1016_j_soilbio_2024_109508
crossref_primary_10_1016_j_soilbio_2023_109226
crossref_primary_10_1016_j_jenvman_2025_126432
crossref_primary_10_3389_fpls_2023_1238077
crossref_primary_10_1016_j_catena_2024_108629
crossref_primary_10_1016_j_ecolind_2023_110957
crossref_primary_10_1016_j_jenvman_2022_116859
crossref_primary_10_1007_s00374_025_01896_3
crossref_primary_10_1016_j_scitotenv_2023_169353
crossref_primary_10_1016_j_scitotenv_2023_169358
crossref_primary_10_1016_j_still_2025_106679
crossref_primary_10_1002_ldr_4939
crossref_primary_10_1016_j_gecco_2025_e03456
crossref_primary_10_3389_fenvs_2023_1109298
crossref_primary_10_1016_j_jenvman_2025_125236
crossref_primary_10_1016_j_agee_2023_108825
crossref_primary_10_1016_j_catena_2023_107306
crossref_primary_10_1016_j_jenvman_2024_120668
crossref_primary_10_3390_microorganisms12112274
crossref_primary_10_1016_j_apsoil_2023_104851
crossref_primary_10_1016_j_still_2024_106180
crossref_primary_10_3390_f16040626
crossref_primary_10_1016_j_rama_2024_06_002
crossref_primary_10_1080_02571862_2025_2538216
crossref_primary_10_1016_j_scitotenv_2023_165814
crossref_primary_10_3390_microbiolres16070153
crossref_primary_10_1098_rsos_230963
crossref_primary_10_1016_j_jare_2025_08_033
crossref_primary_10_7717_peerj_17031
crossref_primary_10_1002_ldr_4766
crossref_primary_10_1016_j_geoderma_2024_117070
crossref_primary_10_1016_j_indcrop_2023_117838
crossref_primary_10_1093_ismejo_wrae056
crossref_primary_10_1016_j_scitotenv_2025_179516
crossref_primary_10_3389_fmicb_2024_1458777
crossref_primary_10_1007_s11104_025_07343_4
crossref_primary_10_1016_j_ecolind_2025_113766
crossref_primary_10_1016_j_envres_2024_118922
crossref_primary_10_1111_1365_2435_14449
crossref_primary_10_3390_atmos13071145
crossref_primary_10_1016_j_jenvman_2024_121509
crossref_primary_10_3389_fsci_2025_1575468
crossref_primary_10_1099_mic_0_001517
crossref_primary_10_3390_plants13050666
crossref_primary_10_1016_j_geoderma_2025_117451
crossref_primary_10_7717_peerj_18433
crossref_primary_10_1016_j_agrformet_2024_110176
crossref_primary_10_1111_1365_2435_70131
crossref_primary_10_1002_ldr_5369
crossref_primary_10_7717_peerj_18791
crossref_primary_10_1016_j_jenvman_2025_126545
crossref_primary_10_1007_s11104_025_07792_x
crossref_primary_10_1007_s13593_024_00973_5
crossref_primary_10_3389_fpls_2024_1366821
Cites_doi 10.1111/j.1365-2486.2012.02665.x
10.1016/j.soilbio.2018.05.026
10.1016/S0038-0717(02)00251-1
10.1111/j.1461-0248.2012.01844.x
10.1007/s00442-007-0689-z
10.1073/pnas.1516684112
10.1007/s00248-001-1020-x
10.1016/j.ecolind.2014.01.040
10.1016/j.soilbio.2008.08.001
10.1126/science.1131634
10.1038/nclimate1951
10.1002/ldr.3606
10.1111/gcb.15326
10.1111/2041-210X.12512
10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2
10.1007/s00374-010-0487-3
10.1128/AEM.02738-17
10.1111/geb.12029
10.1002/ecy.1879
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1128/mBio.01318-19
10.1111/j.1365-2664.2012.02205.x
10.1111/1365-2435.13359
10.1016/j.ecoleng.2016.09.003
10.1126/science.aal1319
10.1007/s11104-011-0985-6
10.1038/s41893-020-0490-0
10.1016/j.soilbio.2019.107611
10.1038/nrmicro3109
10.1038/s41558-018-0081-5
10.1007/s00374-018-01336-5
10.1016/j.soilbio.2012.03.011
10.1088/1748-9326/ab4932
10.1038/ncomms10541
10.1111/j.1574-6941.2007.00398.x
10.1038/nature10386
10.1111/gcb.15308
10.1111/gcb.13431
10.1128/AEM.01787-07
10.1111/j.1574-6941.2009.00733.x
10.1111/j.1365-2389.2011.01393.x
10.1186/s40168-018-0544-y
10.1016/j.geoderma.2016.01.041
10.1016/j.geoderma.2017.01.019
10.1016/j.soilbio.2015.01.016
10.1038/nmeth.3869
10.1111/1365-2435.12027
10.1016/j.agee.2017.08.007
10.1016/j.apsoil.2015.08.013
10.1016/j.apsoil.2017.04.005
10.1038/nature02850
10.1111/nph.16976
10.1038/s41587-019-0209-9
10.1002/ldr.3189
10.1126/science.1187820
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2022.108629
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2022_108629
S0038071722000864
GeographicLocations Central Asia
GeographicLocations_xml – name: Central Asia
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-a05d9550e889e8abd579b49f8c7904030cdb7fc5b5b8d8ea9d1f01b1e4915bf83
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-0717
IngestDate Wed Oct 01 15:12:21 EDT 2025
Tue Nov 18 21:45:13 EST 2025
Sat Nov 29 07:29:09 EST 2025
Fri Feb 23 02:40:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Livestock grazing
Soil mineralization
Plant–soil (below-ground) interactions
Depth profile
Ecosystem functions
Microbial diversity
Drylands
Microbial community structure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-a05d9550e889e8abd579b49f8c7904030cdb7fc5b5b8d8ea9d1f01b1e4915bf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1687-0401
0000-0003-4035-7015
PQID 2648845750
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2648845750
crossref_citationtrail_10_1016_j_soilbio_2022_108629
crossref_primary_10_1016_j_soilbio_2022_108629
elsevier_sciencedirect_doi_10_1016_j_soilbio_2022_108629
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chase (bib9) 2010; 328
Delgado Baquerizo, Maestre, Reich, Jeffries, Gaitan, Encinar, Berdugo, Campbell, Singh (bib15) 2016; 7
Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Alexander, Alm, Arumugam, Asnicar (bib6) 2019; 37
Johnson, Matchett (bib26) 2001; 82
Rousk, Bååth (bib38) 2007; 62
Callahan, McMurdie, Rosen, Han, Johnson, Holmes (bib8) 2016; 13
Aldezabal, Moragues, Odriozola, Mijangos (bib1) 2015; 96
Che, Wang, Wang, Xu, Wang, Rui, Wang, Hu, Tao, Cui (bib10) 2019; 139
Xun, Yan, Ren, Jin, Xiong, Zhang, Cui, Xin, Zhang (bib50) 2018; 6
Maron, Sarr, Kaisermann, Lévêque, Mathieu, Guigue, Karimi, Bernard, Dequiedt, Terrat (bib30) 2018; 84
Sloat, Gerber, Samberg, Smith, Herrero, Ferreira, Godde, West (bib43) 2018; 8
Pries, Castanha, Porras, Torn (bib33) 2017; 355
Wieder, Bonan, Allison (bib47) 2013; 3
Fierer, Schimel, Holden (bib19) 2003; 35
Garcia-Pausas, Casals, Camarero, Huguet, Thompson, Sebastia, Romanya (bib21) 2008; 40
Hansel, Fendorf, Jardine, Francis (bib23) 2008; 74
Bai, Wu, Clark, Pan, Zhang, Chen, Wang, Han (bib4) 2012; 49
Maestre, Delgado-Baquerizo, Jeffries, Eldridge, Ochoa, Gozalo, Quero, Garcia-Gomez, Gallardo, Ulrich (bib28) 2015; 112
Lefcheck (bib27) 2016; 7
Ba, Ning, Wang, Facelli, Facelli, Yang, Zhang (bib2) 2012; 352
Martinsen, Mulder, Austrheim, Mysterud (bib31) 2011; 62
Sweeney, de Vries, van Dongen, Bardgett (bib44) 2021; 229
Jiang, Hu, Lai, Han, Wang, Liu, Zhang, Guo (bib24) 2020; 26
Brewer, Aronson, Arogyaswamy, Billings, Botthoff, Campbell, Dove, Fairbanks, Gallery, Hart (bib7) 2019; 10
Schnecker, Wild, Takriti, Eloy Alves, Gentsch, Gittel, Hofer, Klaus, Knoltsch, Lashchinskiy, Mikutta, Richter (bib40) 2015; 83
Yarwood, Myrold, Högberg (bib53) 2009; 70
Zhao, Ren, Shelton, Wang, Pang, Chen, Wang (bib55) 2017; 249
Dungait, Hopkins, Gregory, Whitmore (bib16) 2012; 18
Reynolds, Stafford Smith, Lambin, Turner, Mortimore, Batterbury, Downing, Dowlatadi, Fernandez, Herrick (bib36) 2007; 316
Yan, Li, Wang, Zhang, Wang, Wu, Yan, Zhang, Kang (bib51) 2020; 31
Chen, Zheng, Shan, Taube, Bai (bib12) 2013; 27
R Core Team (bib34) 2017
Wang, Tang (bib45) 2019; 14
Cheng, Jing, Wei, Jing (bib13) 2016; 97
Sharkhuu, Plante, Enkhmandal, Gonneau, Casper, Boldgiv, Petraitis (bib41) 2016; 269
Philippot, Raaijmakers, Lemanceau, Van Der Putten (bib32) 2013; 11
Manier, Hobbs (bib29) 2007; 152
Sitters, Kimuyu, Young, Claeys, Olde Venterink (bib42) 2020; 3
Zhou, Zhou, He, Shao, Hu, Liu, Zhou, Hosseinibai (bib56) 2017; 23
Eldridge, Delgado‐Baquerizo, Travers, Val, Oliver, Hamonts, Singh (bib18) 2017; 98
de Vries, Manning, Tallowin, Mortimer, Pilgrim, Harrison, Hobbs, Quirk, Shipley, Cornelissen, Kattge, Bardgett (bib14) 2012; 15
Bai, Han, Wu, Chen, Li (bib3) 2004; 431
Yang, Niu, Collins, Yan, Ji, Ling, Zhou, Du, Guo, Hu (bib52) 2019; 30
Eilers, Debenport, Anderson, Fierer (bib17) 2012; 50
Zhang, Liu, Song, Wang, Guo (bib54) 2018; 124
Findlay, Tank, Dye, Valett, Mulholland, McDowell, Johnson, Hamilton, Edmonds, Dodds (bib20) 2002; 43
Jobbágy, Jackson (bib25) 2000; 10
Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning (bib39) 2011; 478
Zhou, Wang, Hao, Wang (bib57) 2010; 46
Bardgett, Wardle (bib5) 2010
Raiesi, Riahi (bib35) 2014; 41
Hamonts, Bissett, Macdonald, Barton, Manning, Young (bib22) 2017; 117
Wang, Zhang, Staley, Gao, Ishii, Wei, Liu, Cheng, Hao, Sadowsky (bib46) 2019; 55
Xu, Silveira, Inglett, Sollenberger, Gerber (bib48) 2017; 293
Risch, Zimmermann, Moser, Schütz, Hagedorn, Firn, Fay, Biederman, Blair, Borer (bib37) 2020; 26
Chen, Saleem, Cheng, Mi, Chu, Tuvshintogtokh, Hu, Bai (bib11) 2019; 33
Xu, Thornton, Post (bib49) 2013; 22
Bai (10.1016/j.soilbio.2022.108629_bib4) 2012; 49
Zhou (10.1016/j.soilbio.2022.108629_bib57) 2010; 46
Risch (10.1016/j.soilbio.2022.108629_bib37) 2020; 26
Chen (10.1016/j.soilbio.2022.108629_bib11) 2019; 33
Lefcheck (10.1016/j.soilbio.2022.108629_bib27) 2016; 7
Rousk (10.1016/j.soilbio.2022.108629_bib38) 2007; 62
Xu (10.1016/j.soilbio.2022.108629_bib48) 2017; 293
Zhou (10.1016/j.soilbio.2022.108629_bib56) 2017; 23
Bolyen (10.1016/j.soilbio.2022.108629_bib6) 2019; 37
R Core Team (10.1016/j.soilbio.2022.108629_bib34) 2017
Dungait (10.1016/j.soilbio.2022.108629_bib16) 2012; 18
Wieder (10.1016/j.soilbio.2022.108629_bib47) 2013; 3
Yang (10.1016/j.soilbio.2022.108629_bib52) 2019; 30
Chen (10.1016/j.soilbio.2022.108629_bib12) 2013; 27
Manier (10.1016/j.soilbio.2022.108629_bib29) 2007; 152
Bardgett (10.1016/j.soilbio.2022.108629_bib5) 2010
Maestre (10.1016/j.soilbio.2022.108629_bib28) 2015; 112
Xun (10.1016/j.soilbio.2022.108629_bib50) 2018; 6
Sitters (10.1016/j.soilbio.2022.108629_bib42) 2020; 3
Che (10.1016/j.soilbio.2022.108629_bib10) 2019; 139
Hansel (10.1016/j.soilbio.2022.108629_bib23) 2008; 74
Wang (10.1016/j.soilbio.2022.108629_bib45) 2019; 14
Aldezabal (10.1016/j.soilbio.2022.108629_bib1) 2015; 96
Chase (10.1016/j.soilbio.2022.108629_bib9) 2010; 328
Eilers (10.1016/j.soilbio.2022.108629_bib17) 2012; 50
Martinsen (10.1016/j.soilbio.2022.108629_bib31) 2011; 62
Schmidt (10.1016/j.soilbio.2022.108629_bib39) 2011; 478
Cheng (10.1016/j.soilbio.2022.108629_bib13) 2016; 97
Jiang (10.1016/j.soilbio.2022.108629_bib24) 2020; 26
Johnson (10.1016/j.soilbio.2022.108629_bib26) 2001; 82
Sharkhuu (10.1016/j.soilbio.2022.108629_bib41) 2016; 269
Pries (10.1016/j.soilbio.2022.108629_bib33) 2017; 355
Wang (10.1016/j.soilbio.2022.108629_bib46) 2019; 55
Sloat (10.1016/j.soilbio.2022.108629_bib43) 2018; 8
Findlay (10.1016/j.soilbio.2022.108629_bib20) 2002; 43
Zhang (10.1016/j.soilbio.2022.108629_bib54) 2018; 124
Fierer (10.1016/j.soilbio.2022.108629_bib19) 2003; 35
Eldridge (10.1016/j.soilbio.2022.108629_bib18) 2017; 98
Yarwood (10.1016/j.soilbio.2022.108629_bib53) 2009; 70
Garcia-Pausas (10.1016/j.soilbio.2022.108629_bib21) 2008; 40
Yan (10.1016/j.soilbio.2022.108629_bib51) 2020; 31
de Vries (10.1016/j.soilbio.2022.108629_bib14) 2012; 15
Schnecker (10.1016/j.soilbio.2022.108629_bib40) 2015; 83
Sweeney (10.1016/j.soilbio.2022.108629_bib44) 2021; 229
Ba (10.1016/j.soilbio.2022.108629_bib2) 2012; 352
Zhao (10.1016/j.soilbio.2022.108629_bib55) 2017; 249
Raiesi (10.1016/j.soilbio.2022.108629_bib35) 2014; 41
Maron (10.1016/j.soilbio.2022.108629_bib30) 2018; 84
Philippot (10.1016/j.soilbio.2022.108629_bib32) 2013; 11
Callahan (10.1016/j.soilbio.2022.108629_bib8) 2016; 13
Reynolds (10.1016/j.soilbio.2022.108629_bib36) 2007; 316
Hamonts (10.1016/j.soilbio.2022.108629_bib22) 2017; 117
Delgado Baquerizo (10.1016/j.soilbio.2022.108629_bib15) 2016; 7
Bai (10.1016/j.soilbio.2022.108629_bib3) 2004; 431
Brewer (10.1016/j.soilbio.2022.108629_bib7) 2019; 10
Jobbágy (10.1016/j.soilbio.2022.108629_bib25) 2000; 10
Xu (10.1016/j.soilbio.2022.108629_bib49) 2013; 22
References_xml – volume: 10
  year: 2019
  ident: bib7
  article-title: Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons
  publication-title: mBio
– volume: 37
  start-page: 852
  year: 2019
  ident: bib6
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nature Biotechnology
– volume: 41
  start-page: 145
  year: 2014
  end-page: 154
  ident: bib35
  article-title: The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands
  publication-title: Ecological Indicators
– volume: 8
  start-page: 214
  year: 2018
  end-page: 218
  ident: bib43
  article-title: Increasing importance of precipitation variability on global livestock grazing lands
  publication-title: Nature Climate Change
– volume: 49
  start-page: 1204
  year: 2012
  end-page: 1215
  ident: bib4
  article-title: Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient
  publication-title: Journal of Applied Ecology
– volume: 316
  start-page: 847
  year: 2007
  end-page: 851
  ident: bib36
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
– volume: 124
  start-page: 47
  year: 2018
  end-page: 58
  ident: bib54
  article-title: Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  ident: bib19
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
– volume: 22
  start-page: 737
  year: 2013
  end-page: 749
  ident: bib49
  article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems
  publication-title: Global Ecology and Biogeography
– year: 2010
  ident: bib5
  article-title: Aboveground-belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change
– volume: 139
  start-page: 107611
  year: 2019
  ident: bib10
  article-title: Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing
  publication-title: Soil Biology and Biochemistry
– volume: 328
  start-page: 1388
  year: 2010
  end-page: 1391
  ident: bib9
  article-title: Stochastic community assembly causes higher biodiversity in more productive environments
  publication-title: Science
– volume: 98
  start-page: 1922
  year: 2017
  end-page: 1931
  ident: bib18
  article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores
  publication-title: Ecology
– volume: 7
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib15
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nature Communications
– volume: 74
  start-page: 1620
  year: 2008
  end-page: 1633
  ident: bib23
  article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile
  publication-title: Applied and Environmental Microbiology
– volume: 117
  start-page: 117
  year: 2017
  end-page: 128
  ident: bib22
  article-title: Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland
  publication-title: Applied Soil Ecology
– volume: 15
  start-page: 1230
  year: 2012
  end-page: 1239
  ident: bib14
  article-title: Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities
  publication-title: Ecology Letters
– volume: 46
  start-page: 817
  year: 2010
  end-page: 824
  ident: bib57
  article-title: Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe
  publication-title: Biology and Fertility of Soils
– volume: 13
  start-page: 581
  year: 2016
  end-page: 588
  ident: bib8
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data
  publication-title: Nature Methods
– volume: 14
  start-page: 114003
  year: 2019
  ident: bib45
  article-title: A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands
  publication-title: Environmental Research Letters
– volume: 352
  start-page: 143
  year: 2012
  end-page: 156
  ident: bib2
  article-title: The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe
  publication-title: Plant and Soil
– volume: 269
  start-page: 91
  year: 2016
  end-page: 98
  ident: bib41
  article-title: Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia
  publication-title: Geoderma
– volume: 55
  start-page: 121
  year: 2019
  end-page: 134
  ident: bib46
  article-title: Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability
  publication-title: Biology and Fertility of Soils
– volume: 43
  start-page: 55
  year: 2002
  end-page: 66
  ident: bib20
  article-title: A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams
  publication-title: Microbial Ecology
– volume: 62
  start-page: 258
  year: 2007
  end-page: 267
  ident: bib38
  article-title: Fungal and bacterial growth in soil with plant materials of different C/N ratios
  publication-title: FEMS Microbiology Ecology
– volume: 82
  start-page: 3377
  year: 2001
  end-page: 3389
  ident: bib26
  article-title: Fire and grazing regulate belowground processes in tallgrass prairie
  publication-title: Ecology
– volume: 83
  start-page: 106
  year: 2015
  end-page: 115
  ident: bib40
  article-title: Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia
  publication-title: Soil Biology and Biochemistry
– volume: 431
  start-page: 181
  year: 2004
  end-page: 184
  ident: bib3
  article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland
  publication-title: Nature
– volume: 62
  start-page: 822
  year: 2011
  end-page: 833
  ident: bib31
  article-title: Carbon storage in low‐alpine grassland soils: effects of different grazing intensities of sheep
  publication-title: European Journal of Soil Science
– volume: 293
  start-page: 73
  year: 2017
  end-page: 81
  ident: bib48
  article-title: Soil microbial community responses to long-term land use intensification in subtropical grazing lands
  publication-title: Geoderma
– volume: 96
  start-page: 251
  year: 2015
  end-page: 260
  ident: bib1
  article-title: Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland
  publication-title: Applied Soil Ecology
– volume: 30
  start-page: 49
  year: 2019
  end-page: 59
  ident: bib52
  article-title: Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow
  publication-title: Land Degradation & Development
– year: 2017
  ident: bib34
  article-title: R: A Language and Environment for Statistical Computing
– volume: 7
  start-page: 573
  year: 2016
  end-page: 579
  ident: bib27
  article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods in Ecology and Evolution
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: bib39
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 11
  start-page: 789
  year: 2013
  end-page: 799
  ident: bib32
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nature Reviews Microbiology
– volume: 3
  start-page: 909
  year: 2013
  end-page: 912
  ident: bib47
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nature Climate Change
– volume: 50
  start-page: 58
  year: 2012
  end-page: 65
  ident: bib17
  article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil
  publication-title: Soil Biology and Biochemistry
– volume: 40
  start-page: 2803
  year: 2008
  end-page: 2810
  ident: bib21
  article-title: Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 112
  start-page: 15684
  year: 2015
  end-page: 15689
  ident: bib28
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  start-page: 360
  year: 2020
  end-page: 366
  ident: bib42
  article-title: Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores
  publication-title: Nature Sustainability
– volume: 152
  start-page: 739
  year: 2007
  end-page: 750
  ident: bib29
  article-title: Large herbivores in sagebrush steppe ecosystems: livestock and wild ungulates influence structure and function
  publication-title: Oecologia
– volume: 6
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib50
  article-title: Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe
  publication-title: Microbiome
– volume: 33
  start-page: 1561
  year: 2019
  end-page: 1571
  ident: bib11
  article-title: Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau
  publication-title: Functional Ecology
– volume: 27
  start-page: 273
  year: 2013
  end-page: 281
  ident: bib12
  article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe
  publication-title: Functional Ecology
– volume: 229
  start-page: 1492
  year: 2021
  end-page: 1507
  ident: bib44
  article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species
  publication-title: New Phytologist
– volume: 97
  start-page: 170
  year: 2016
  end-page: 178
  ident: bib13
  article-title: Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China
  publication-title: Ecological Engineering
– volume: 18
  start-page: 1781
  year: 2012
  end-page: 1796
  ident: bib16
  article-title: Soil organic matter turnover is governed by accessibility not recalcitrance
  publication-title: Global Change Biology
– volume: 26
  start-page: 7173
  year: 2020
  end-page: 7185
  ident: bib37
  article-title: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties
  publication-title: Global Change Biology
– volume: 31
  start-page: 2369
  year: 2020
  end-page: 2378
  ident: bib51
  article-title: Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: a hierarchical meta-analysis
  publication-title: Land Degradation & Development
– volume: 249
  start-page: 50
  year: 2017
  end-page: 56
  ident: bib55
  article-title: Grazing intensity influence soil microbial communities and their implications for soil respiration
  publication-title: Agriculture, Ecosystems & Environment
– volume: 355
  start-page: 1420
  year: 2017
  end-page: 1423
  ident: bib33
  article-title: The whole-soil carbon flux in response to warming
  publication-title: Science
– volume: 84
  year: 2018
  ident: bib30
  article-title: High microbial diversity promotes soil ecosystem functioning
  publication-title: Applied and Environmental Microbiology
– volume: 23
  start-page: 1167
  year: 2017
  end-page: 1179
  ident: bib56
  article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta‐analysis
  publication-title: Global Change Biology
– volume: 70
  start-page: 151
  year: 2009
  end-page: 162
  ident: bib53
  article-title: Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest
  publication-title: FEMS Microbiology Ecology
– volume: 26
  start-page: 7186
  year: 2020
  end-page: 7197
  ident: bib24
  article-title: Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta‐analysis
  publication-title: Global Change Biology
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  ident: bib25
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecological Applications
– volume: 18
  start-page: 1781
  year: 2012
  ident: 10.1016/j.soilbio.2022.108629_bib16
  article-title: Soil organic matter turnover is governed by accessibility not recalcitrance
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2012.02665.x
– volume: 124
  start-page: 47
  year: 2018
  ident: 10.1016/j.soilbio.2022.108629_bib54
  article-title: Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.05.026
– volume: 35
  start-page: 167
  year: 2003
  ident: 10.1016/j.soilbio.2022.108629_bib19
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00251-1
– volume: 15
  start-page: 1230
  year: 2012
  ident: 10.1016/j.soilbio.2022.108629_bib14
  article-title: Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2012.01844.x
– volume: 152
  start-page: 739
  year: 2007
  ident: 10.1016/j.soilbio.2022.108629_bib29
  article-title: Large herbivores in sagebrush steppe ecosystems: livestock and wild ungulates influence structure and function
  publication-title: Oecologia
  doi: 10.1007/s00442-007-0689-z
– volume: 112
  start-page: 15684
  year: 2015
  ident: 10.1016/j.soilbio.2022.108629_bib28
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1516684112
– volume: 43
  start-page: 55
  year: 2002
  ident: 10.1016/j.soilbio.2022.108629_bib20
  article-title: A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-001-1020-x
– volume: 41
  start-page: 145
  year: 2014
  ident: 10.1016/j.soilbio.2022.108629_bib35
  article-title: The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2014.01.040
– volume: 40
  start-page: 2803
  year: 2008
  ident: 10.1016/j.soilbio.2022.108629_bib21
  article-title: Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2008.08.001
– volume: 316
  start-page: 847
  year: 2007
  ident: 10.1016/j.soilbio.2022.108629_bib36
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
  doi: 10.1126/science.1131634
– volume: 3
  start-page: 909
  year: 2013
  ident: 10.1016/j.soilbio.2022.108629_bib47
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate1951
– volume: 31
  start-page: 2369
  year: 2020
  ident: 10.1016/j.soilbio.2022.108629_bib51
  article-title: Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: a hierarchical meta-analysis
  publication-title: Land Degradation & Development
  doi: 10.1002/ldr.3606
– volume: 26
  start-page: 7186
  year: 2020
  ident: 10.1016/j.soilbio.2022.108629_bib24
  article-title: Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta‐analysis
  publication-title: Global Change Biology
  doi: 10.1111/gcb.15326
– volume: 7
  start-page: 573
  year: 2016
  ident: 10.1016/j.soilbio.2022.108629_bib27
  article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12512
– volume: 82
  start-page: 3377
  year: 2001
  ident: 10.1016/j.soilbio.2022.108629_bib26
  article-title: Fire and grazing regulate belowground processes in tallgrass prairie
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2
– year: 2010
  ident: 10.1016/j.soilbio.2022.108629_bib5
– volume: 46
  start-page: 817
  year: 2010
  ident: 10.1016/j.soilbio.2022.108629_bib57
  article-title: Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-010-0487-3
– volume: 84
  year: 2018
  ident: 10.1016/j.soilbio.2022.108629_bib30
  article-title: High microbial diversity promotes soil ecosystem functioning
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.02738-17
– volume: 22
  start-page: 737
  year: 2013
  ident: 10.1016/j.soilbio.2022.108629_bib49
  article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.12029
– volume: 98
  start-page: 1922
  year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib18
  article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores
  publication-title: Ecology
  doi: 10.1002/ecy.1879
– volume: 10
  start-page: 423
  year: 2000
  ident: 10.1016/j.soilbio.2022.108629_bib25
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecological Applications
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 10
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib7
  article-title: Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons
  publication-title: mBio
  doi: 10.1128/mBio.01318-19
– volume: 49
  start-page: 1204
  year: 2012
  ident: 10.1016/j.soilbio.2022.108629_bib4
  article-title: Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient
  publication-title: Journal of Applied Ecology
  doi: 10.1111/j.1365-2664.2012.02205.x
– volume: 33
  start-page: 1561
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib11
  article-title: Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.13359
– volume: 97
  start-page: 170
  year: 2016
  ident: 10.1016/j.soilbio.2022.108629_bib13
  article-title: Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China
  publication-title: Ecological Engineering
  doi: 10.1016/j.ecoleng.2016.09.003
– volume: 355
  start-page: 1420
  year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib33
  article-title: The whole-soil carbon flux in response to warming
  publication-title: Science
  doi: 10.1126/science.aal1319
– volume: 352
  start-page: 143
  year: 2012
  ident: 10.1016/j.soilbio.2022.108629_bib2
  article-title: The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-0985-6
– volume: 3
  start-page: 360
  year: 2020
  ident: 10.1016/j.soilbio.2022.108629_bib42
  article-title: Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores
  publication-title: Nature Sustainability
  doi: 10.1038/s41893-020-0490-0
– volume: 139
  start-page: 107611
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib10
  article-title: Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.107611
– volume: 11
  start-page: 789
  year: 2013
  ident: 10.1016/j.soilbio.2022.108629_bib32
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/nrmicro3109
– volume: 8
  start-page: 214
  year: 2018
  ident: 10.1016/j.soilbio.2022.108629_bib43
  article-title: Increasing importance of precipitation variability on global livestock grazing lands
  publication-title: Nature Climate Change
  doi: 10.1038/s41558-018-0081-5
– volume: 55
  start-page: 121
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib46
  article-title: Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-018-01336-5
– volume: 50
  start-page: 58
  year: 2012
  ident: 10.1016/j.soilbio.2022.108629_bib17
  article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2012.03.011
– volume: 14
  start-page: 114003
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib45
  article-title: A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/ab4932
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.soilbio.2022.108629_bib15
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nature Communications
  doi: 10.1038/ncomms10541
– volume: 62
  start-page: 258
  year: 2007
  ident: 10.1016/j.soilbio.2022.108629_bib38
  article-title: Fungal and bacterial growth in soil with plant materials of different C/N ratios
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2007.00398.x
– volume: 478
  start-page: 49
  year: 2011
  ident: 10.1016/j.soilbio.2022.108629_bib39
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 26
  start-page: 7173
  year: 2020
  ident: 10.1016/j.soilbio.2022.108629_bib37
  article-title: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties
  publication-title: Global Change Biology
  doi: 10.1111/gcb.15308
– volume: 23
  start-page: 1167
  year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib56
  article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta‐analysis
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13431
– volume: 74
  start-page: 1620
  year: 2008
  ident: 10.1016/j.soilbio.2022.108629_bib23
  article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.01787-07
– volume: 70
  start-page: 151
  year: 2009
  ident: 10.1016/j.soilbio.2022.108629_bib53
  article-title: Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2009.00733.x
– volume: 62
  start-page: 822
  year: 2011
  ident: 10.1016/j.soilbio.2022.108629_bib31
  article-title: Carbon storage in low‐alpine grassland soils: effects of different grazing intensities of sheep
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2011.01393.x
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.soilbio.2022.108629_bib50
  article-title: Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0544-y
– volume: 269
  start-page: 91
  year: 2016
  ident: 10.1016/j.soilbio.2022.108629_bib41
  article-title: Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.01.041
– volume: 293
  start-page: 73
  year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib48
  article-title: Soil microbial community responses to long-term land use intensification in subtropical grazing lands
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.019
– volume: 83
  start-page: 106
  year: 2015
  ident: 10.1016/j.soilbio.2022.108629_bib40
  article-title: Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.01.016
– volume: 13
  start-page: 581
  year: 2016
  ident: 10.1016/j.soilbio.2022.108629_bib8
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3869
– volume: 27
  start-page: 273
  year: 2013
  ident: 10.1016/j.soilbio.2022.108629_bib12
  article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.12027
– volume: 249
  start-page: 50
  year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib55
  article-title: Grazing intensity influence soil microbial communities and their implications for soil respiration
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2017.08.007
– volume: 96
  start-page: 251
  year: 2015
  ident: 10.1016/j.soilbio.2022.108629_bib1
  article-title: Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2015.08.013
– volume: 117
  start-page: 117
  year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib22
  article-title: Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2017.04.005
– volume: 431
  start-page: 181
  year: 2004
  ident: 10.1016/j.soilbio.2022.108629_bib3
  article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland
  publication-title: Nature
  doi: 10.1038/nature02850
– volume: 229
  start-page: 1492
  year: 2021
  ident: 10.1016/j.soilbio.2022.108629_bib44
  article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species
  publication-title: New Phytologist
  doi: 10.1111/nph.16976
– year: 2017
  ident: 10.1016/j.soilbio.2022.108629_bib34
– volume: 37
  start-page: 852
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib6
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-019-0209-9
– volume: 30
  start-page: 49
  year: 2019
  ident: 10.1016/j.soilbio.2022.108629_bib52
  article-title: Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow
  publication-title: Land Degradation & Development
  doi: 10.1002/ldr.3189
– volume: 328
  start-page: 1388
  year: 2010
  ident: 10.1016/j.soilbio.2022.108629_bib9
  article-title: Stochastic community assembly causes higher biodiversity in more productive environments
  publication-title: Science
  doi: 10.1126/science.1187820
SSID ssj0002513
Score 2.5976496
Snippet Grazing by livestock can affect plant biodiversity and topsoil functions. However, experimental evidence on whether these impacts are limited to the topsoil or...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108629
SubjectTerms arid lands
bacterial biomass
biochemistry
biodiversity
carbon nitrogen ratio
Central Asia
community structure
Depth profile
Drylands
Ecosystem functions
ecosystems
edaphic factors
field experimentation
fungal communities
fungi
land use
livestock
Livestock grazing
Microbial community structure
Microbial diversity
mineralization
phytomass
Plant–soil (below-ground) interactions
soil biology
soil microorganisms
Soil mineralization
topsoil
Title Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers
URI https://dx.doi.org/10.1016/j.soilbio.2022.108629
https://www.proquest.com/docview/2648845750
Volume 168
WOSCitedRecordID wos000793635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-3428
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513
  issn: 0038-0717
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLRJwQFBAlJeMxG2VJWmcxj4upQhQVSG1SHuLYsdJU4VktY-q8Df4Pfw3ZuLHtuVReuASZb3riXfn25mxPf6GkFdFrGSpdnaCREgRQPwvwQ4KrPWiyhJciowT1RebSA8O-HQqPg0GP9xZmNMmbVt-diZm_1XV0AbKxqOz11C3FwoNcA9KhyuoHa7_pPj9rq0CNLgjLLrQL_RpWzrUJQScS-JokHZ2CUZxVM2RabrC3YNFVzejL3XP0dTzh_SHSCBcN2yzbs8BfaJPRV-s5mVuTx8UWs-MkCb_alPsXQR8iM2O-glxB_fKVZ3zLmLVuwbnVvv0A2sf67UjeaubKi-64E0Ozm1ef-vM4aN2pX3ayH7dSzo8xuTd9vwSB8yOfUKhM9tglXHiecFsm3I81vBiwSizdPKLTzDLEydIjtzAVxrjE8brz1_k4L7kG33GokuGO8msmAzFZEbMDbKxnSaCD8nG5MPe9KMPBSB4tKzPZvzrI2SvfzuePwVHl8KEPvY5ukfu2kkLnRiw3ScD3W6SO5Nqbolb9Ca5tet0-IB89xCkDoLUQZB2JQUIUgtBfOkhSC0EaddSHDb1EKQegtRDkALSqIcgraGPgWD_BkLQCDEQfEg-v9s72n0f2OIfgYrZ9jLIw6QQMH3WnAvNc1kkqZBMlFylAhxPHKpCpqVKZCJ5wXUuiqgMIxlpJqJEljx-RIZt1-rHhIasiDmHzjELmZJa6EhrJgWLBPgrFW4R5n71TFlmfCzQ0mR_1foWGftuM0MNc1UH7lSa2fjWxK0ZQPWqri8dBDJQJm7q5a3uVosMM1Q5g0lX-OS643lKbq__bc_IEPSnn5Ob6nRZL-YvLJZ_AjH33Xo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+regional+evidence+of+the+effects+of+livestock+grazing+on+soil+microbial+community+structure+and+functions+in+surface+and+deep+soil+layers&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Wu%2C+Ying&rft.au=Chen%2C+Dima&rft.au=Delgado-Baquerizo%2C+Manuel&rft.au=Liu%2C+Shengen&rft.date=2022-05-01&rft.issn=0038-0717&rft.volume=168&rft.spage=108629&rft_id=info:doi/10.1016%2Fj.soilbio.2022.108629&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2022_108629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon