Improved high-resolution characterization of hydraulic conductivity through inverse modeling of HPT profiles and steady-state hydraulic tomography: Field and synthetic studies
•Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at NCRS.•The site-specific model predicted K values that correspond well with permeameter K.•Integrating HPT-inverted K into SSHT better defined sharp b...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 612; s. 128124 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2022
|
| Témata: | |
| ISSN: | 0022-1694 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at NCRS.•The site-specific model predicted K values that correspond well with permeameter K.•Integrating HPT-inverted K into SSHT better defined sharp boundaries of a K field.
Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution estimation of hydraulic conductivity (K) for unconsolidated sediments. Although HPT surveys could be conducted rapidly, relating the 1.5-cm resolution injection logging profiles to K always involve the upscaling of centimeter-scale measurements to coarser intervals for the development of site-specific formulae. On the other hand, K fields reconstructed by HT could be smooth when pumping test data are sparse. In this study, an inverse modeling approach was firstly utilized to estimate K values directly from HPT survey data for the glaciofluvial deposits at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada. A site-specific power-law relationship was generated for the NCRS to relate HPT profiles to the vertical distributions of K. Then, the proposed inverse modeling approach was evaluated with a two-dimensional synthetic aquifer under controlled conditions, and the estimated K profiles from inverse analysis of synthetic HPT surveys were incorporated into the steady-state HT. Results of the field study showed that K estimates from the developed formula corresponded better with K values from permeameter tests, than those estimated from the empirical model of McCall and Christy (2010) for HPT surveys. Moreover, through synthetic experiments, we demonstrated that integration of K values inverted from HPT into steady-state HT analyses yielded K tomograms that were significantly better than the geostatistical inversion results relying on pumping test data alone. Overall, this study highlights the need in developing site-specific formulae for the HPT and the joint implementation of HPT and HT techniques for the more cost-effective high-resolution characterization of subsurface heterogeneity. |
|---|---|
| AbstractList | Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution estimation of hydraulic conductivity (K) for unconsolidated sediments. Although HPT surveys could be conducted rapidly, relating the 1.5-cm resolution injection logging profiles to K always involve the upscaling of centimeter-scale measurements to coarser intervals for the development of site-specific formulae. On the other hand, K fields reconstructed by HT could be smooth when pumping test data are sparse. In this study, an inverse modeling approach was firstly utilized to estimate K values directly from HPT survey data for the glaciofluvial deposits at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada. A site-specific power-law relationship was generated for the NCRS to relate HPT profiles to the vertical distributions of K. Then, the proposed inverse modeling approach was evaluated with a two-dimensional synthetic aquifer under controlled conditions, and the estimated K profiles from inverse analysis of synthetic HPT surveys were incorporated into the steady-state HT. Results of the field study showed that K estimates from the developed formula corresponded better with K values from permeameter tests, than those estimated from the empirical model of McCall and Christy (2010) for HPT surveys. Moreover, through synthetic experiments, we demonstrated that integration of K values inverted from HPT into steady-state HT analyses yielded K tomograms that were significantly better than the geostatistical inversion results relying on pumping test data alone. Overall, this study highlights the need in developing site-specific formulae for the HPT and the joint implementation of HPT and HT techniques for the more cost-effective high-resolution characterization of subsurface heterogeneity. •Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at NCRS.•The site-specific model predicted K values that correspond well with permeameter K.•Integrating HPT-inverted K into SSHT better defined sharp boundaries of a K field. Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution estimation of hydraulic conductivity (K) for unconsolidated sediments. Although HPT surveys could be conducted rapidly, relating the 1.5-cm resolution injection logging profiles to K always involve the upscaling of centimeter-scale measurements to coarser intervals for the development of site-specific formulae. On the other hand, K fields reconstructed by HT could be smooth when pumping test data are sparse. In this study, an inverse modeling approach was firstly utilized to estimate K values directly from HPT survey data for the glaciofluvial deposits at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada. A site-specific power-law relationship was generated for the NCRS to relate HPT profiles to the vertical distributions of K. Then, the proposed inverse modeling approach was evaluated with a two-dimensional synthetic aquifer under controlled conditions, and the estimated K profiles from inverse analysis of synthetic HPT surveys were incorporated into the steady-state HT. Results of the field study showed that K estimates from the developed formula corresponded better with K values from permeameter tests, than those estimated from the empirical model of McCall and Christy (2010) for HPT surveys. Moreover, through synthetic experiments, we demonstrated that integration of K values inverted from HPT into steady-state HT analyses yielded K tomograms that were significantly better than the geostatistical inversion results relying on pumping test data alone. Overall, this study highlights the need in developing site-specific formulae for the HPT and the joint implementation of HPT and HT techniques for the more cost-effective high-resolution characterization of subsurface heterogeneity. |
| ArticleNumber | 128124 |
| Author | Zhao, Zhanfeng Illman, Walter A. |
| Author_xml | – sequence: 1 givenname: Zhanfeng surname: Zhao fullname: Zhao, Zhanfeng email: zhaozhanfeng@igsnrr.ac.cn organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Walter A. surname: Illman fullname: Illman, Walter A. organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada |
| BookMark | eNqFkcFu1DAQhnMoEm3hEZB85JLFdkLiwAGhitJKlcqhnK2JPdnMyrEX21kpfSlekWy3B9RLfRnZ83-_R_NfFGc-eCyKD4JvBBfNp91mNy42BreRXMqNkErI-qw45-utFE1Xvy0uUtrx9VRVfV78vZ32MRzQspG2YxkxBTdnCp6ZESKYjJEe4ekhDOxoDbMjw0zwdjaZDpQXlscY5u3IyB8wJmRTsOjIb4_Iza8Htv4wkMPEwFuWMoJdypQh43-GOUxhG2E_Ll_YNaGzJ_Hi84h57ac8W8L0rngzgEv4_rleFr-vfzxc3ZR39z9vr77flaaqZS47Barte9vzCkAIoyTUIDtlDTQ971VlbAOD4tBVMPC130Fj6gaMEU3bVkN1WXw8-a6z_5kxZT1RMugceAxz0rIVSqq27tQq_XqSmhhSijhoQ_lpZTkCOS24Pkajd_o5Gn2MRp-iWenPL-h9pAni8ir37cThuoUDYdTJEHqDliKarG2gVxz-AR9ktvQ |
| CitedBy_id | crossref_primary_10_3390_app14114521 crossref_primary_10_1016_j_jhydrol_2022_128673 crossref_primary_10_1029_2022WR034034 crossref_primary_10_1111_gwat_13348 crossref_primary_10_1016_j_jhydrol_2024_130819 crossref_primary_10_1016_j_jhydrol_2023_129060 crossref_primary_10_1029_2022GL101278 |
| Cites_doi | 10.1007/s10040-004-0404-7 10.1016/j.enggeo.2020.105967 10.1002/2016WR019058 10.1029/2006WR004877 10.1029/2008WR007180 10.1029/2011WR010429 10.1029/2006WR004932 10.1029/2009WR008949 10.1016/j.jhydrol.2007.05.011 10.1111/gwat.12119 10.1111/j.1745-6584.2012.00948.x 10.1016/j.jhydrol.2017.09.045 10.1016/j.advwatres.2020.103523 10.1016/j.jhydrol.2020.125438 10.1002/2014WR016552 10.1002/2017WR020459 10.1016/j.jhydrol.2018.09.058 10.1088/0266-5611/11/2/005 10.1016/j.jhydrol.2016.08.061 10.1029/2011WR010616 10.1002/wrcr.20519 10.1016/j.jconhyd.2019.103559 10.1111/j.1745-6584.2002.tb02488.x 10.1111/j.1745-6584.2000.tb02704.x 10.1002/wrcr.20181 10.1002/2016WR019185 10.1007/s12303-008-0017-6 10.1111/j.1745-6584.2007.00419.x 10.1002/2014WR015483 10.1111/gwat.12421 10.1007/s00767-011-0182-9 10.1016/j.jhydrol.2020.125350 10.1016/j.advwatres.2015.10.014 10.1111/gwat.13039 10.1016/j.advwatres.2014.06.008 10.1111/j.1745-6584.2010.00753.x 10.1029/2009WR008319 10.1029/2000WR900114 10.1029/2011WR010791 10.1111/gwat.12879 10.1016/j.advwatres.2021.103960 10.1061/(ASCE)0733-9372(2000)126:8(775) 10.1111/j.1745-6584.2010.00729.x 10.1002/2015WR018186 10.1016/j.jhydrol.2018.02.024 10.1029/95WR02869 10.1029/2011WR010698 10.1029/2008WR007558 10.1029/WR022i09Sp0135S 10.1029/2001WR000338 10.1111/j.1745-6584.2011.00859.x 10.1190/geo2015-0480.1 10.1111/gwat.12159 10.1016/j.advwatres.2008.12.001 10.1002/2015WR016910 10.1111/gwmr.12051 10.1111/gwat.12381 10.1029/2018WR023204 10.1016/j.jconhyd.2021.103811 10.1111/j.1745-6584.2007.00377.x |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2022.128124 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| ExternalDocumentID | 10_1016_j_jhydrol_2022_128124 S0022169422006990 |
| GeographicLocations | Ontario |
| GeographicLocations_xml | – name: Ontario |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEKER AENEX AEQOU AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AATTM AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-98a87bbdb03aa11c82a4a298dca6b0b83cd6af80a93af01c89a6c46acc16773f3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874855100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Sep 28 09:58:24 EDT 2025 Tue Nov 18 21:51:28 EST 2025 Sat Nov 29 03:07:59 EST 2025 Sat Oct 26 15:44:16 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Subsurface heterogeneity Hydraulic conductivity Hydraulic profiling tool Hydraulic tomography Model calibration and validation Inverse modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-98a87bbdb03aa11c82a4a298dca6b0b83cd6af80a93af01c89a6c46acc16773f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2718287498 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718287498 crossref_citationtrail_10_1016_j_jhydrol_2022_128124 crossref_primary_10_1016_j_jhydrol_2022_128124 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128124 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Doherty (b0075) 2015 Sebol (bib328) 2000 Sanchez-León, Leven, Haslauer, Cirpka (b0210) 2016; 54 Soueid Ahmed, Jardani, Revil, Dupont (b0220) 2016; 52 Wen, Chen, Yeh, Wang, Huang, Tian, Yu (b0260) 2020; 58 Zheng, Bianchi, Gorelick (b0320) 2011; 49 Fischer, Jardani, Jourde (b0080) 2020; 137 Bohling, Liu, Knobbe, Reboulet, Hyndman, Dietrich, Butler Jr (bib331) 2012; 48 Zhao, Illman (b0315) 2022; 127971 Tsai, Yeh, Cheng, Zha, Chang, Hwang, Wang, Hao (b0245) 2017; 53 Illman, Liu, Craig (b0130) 2007; 341 Luo, Illman, Zha (b0175) 2022; 127911 Li, Wang, Xu, Mao, Pan (b0145) 2021; 281 Brauchler (b0045) 2013; 49 Cho, Zhao, Thomson, Illman (bib335) 2020; 229 Gottlieb, Dietrich (b0100) 1995; 11 Illman, Berg, Zhao (b0125) 2015; 51 Bohling, Butler, Zhan, Knoll (b0030) 2007; 43 Berg, Illman (b0015) 2011; 47 Xiang, Yeh, Lee, Hsu, Wen (bib333) 2009; 45 Liu, Butler Jr, Reboulet, Knobbe (bib332) 2012; 17 Mao, Revil, Hinton (b0185) 2016; 81 Zha, Yeh, Illman, Onoe, Mok, Wen, Huang, Wang (b0285) 2017; 53 Zhao, Illman, Berg (b0300) 2016; 542 Yeh, Jin, Hanna (bib334) 1996; 32 Huang, Wen, Yeh, Lu, Juan, Tseng, Lee, Chang (b0110) 2011; 47 Robertson, Blowes, Ptacek, Cherry (bib327) 2000; 38 Butler, Healey, McCall, Garnett, Loheide (b0055) 2002; 40 Foster, Trautz, Bolster, Illangasekare, Singha (b0085) 2021; 241 Zha, Yeh, Illman, Tanaka, Bruines, Onoe, Saegusa, Mao, Takeuchi, Wen (b0290) 2016; 54 Luo, Zhao, Illman, Berg (b0165) 2017; 554 Maliva (b0180) 2016; 4 McCall, Christy (bib337) 2010 Sudicky, Illman, Goltz, Adams, McLaren (b0230) 2010; 46 Wang, Jardani, Jourde, Lonergan, Cosgrove, Gosselin, Massonnat (b0250) 2016; 87 Berg, Illman (b0020) 2011; 47 Illman, Berg, Yeh (b0120) 2012; 50 Zhao, Illman (b0305) 2018; 559 Händel, Dietrich (b0105) 2012; 50 Yeh, Lee, Hsu, Wen (b0265) 2008; 12 Carrera, Alcolea, Medina, Hidalgo, Slooten (b0065) 2005; 13 Alexander, Berg, Illman (b0005) 2011; 49 Liu, Yeh, Gardiner (b0155) 2002; 38 McCall, Christy, Pipp, Terkelsen, Christensen, Weber, Engelsen (b0200) 2014; 34 Luo, Illman, Zha, Park, Berg (b0170) 2020; 590 Yeh, Liu (b0270) 2000; 36 Bianchi, Zheng (b0025) 2016; 52 Karrow (bib336) 1979 Dietrich, Butler, Faiß (b0070) 2008; 46 Liu, Butler Jr, Bohling, Reboulet, Knobbe, Hyndman (bib330) 2009; 45 Straface, Yeh, Zhu, Troisi, Lee (b0225) 2007; 43 Zhu, Cai, Jim Yeh (b0325) 2009; 32 Aquanty Inc. (bib338) 2018 Gelhar (b0090) 1986; 22 Lee, Kitanidis (b0135) 2014; 50 Zhao, Illman, Yeh, Berg, Mao (b0310) 2015; 51 Borden, Cha, Liu (b0040) 2021; 59 Illman (b0115) 2014; 52 Li, Englert, Cirpka, Vereecken (b0150) 2008; 46 Geoprobe, 2007. Geoprobe Hydraulic Profiling Tool (HPT) System, Standard Operating procedure. Mao (b0190) 2018; 567 Bohling, Liu, Dietrich, Butler Jr (b0035) 2016; 8970–8985 Yeh, Zhu (b0275) 2007; 43 Pouladi, Linde, Longuevergne, Bour (b0205) 2021; 154 Liu, Zhao, Dong, Wang, Sun, Mao (b0160) 2020; 590 Cardiff, Barrash, Kitanidis (b0060) 2013; 49 Soo, C.J., T., W.J., P., B.F., 2000. Measuring vertical profiles of hydraulic conductivity with in situ direct-push methods. J. Environ. Eng. 126, 775–777. 10.1061/(ASCE)0733-9372(2000)126:8(775). Zha, Yeh, Mao, Yang, Lu (b0295) 2014; 71 Sun, D., Luo, N., Vandenhoff, A., Wang, C., Zhao, Z., Rudolph, D.L., Illman, W.A., 2022. Evaluation of the Hydraulic Profiling Tool (HPT) at a highly heterogeneous field site underlain by glaciofluvial deposits, Draft Technical Report submitted to Geoprobe Systems, 74 pp. Berg, Illman (b0010) 2015; 53 Lessoff, Schneidewind, Leven, Blum, Dietrich, Dagan (b0140) 2010; 46 Wang, Yeh, Wen, Gao, Zhang, Huang (b0255) 2019; 55 Händel (10.1016/j.jhydrol.2022.128124_b0105) 2012; 50 Li (10.1016/j.jhydrol.2022.128124_b0145) 2021; 281 Zha (10.1016/j.jhydrol.2022.128124_b0285) 2017; 53 Liu (10.1016/j.jhydrol.2022.128124_b0160) 2020; 590 Yeh (10.1016/j.jhydrol.2022.128124_b0275) 2007; 43 Huang (10.1016/j.jhydrol.2022.128124_b0110) 2011; 47 Liu (10.1016/j.jhydrol.2022.128124_bib332) 2012; 17 Yeh (10.1016/j.jhydrol.2022.128124_bib334) 1996; 32 Illman (10.1016/j.jhydrol.2022.128124_b0130) 2007; 341 Robertson (10.1016/j.jhydrol.2022.128124_bib327) 2000; 38 Pouladi (10.1016/j.jhydrol.2022.128124_b0205) 2021; 154 Li (10.1016/j.jhydrol.2022.128124_b0150) 2008; 46 Zha (10.1016/j.jhydrol.2022.128124_b0290) 2016; 54 Gottlieb (10.1016/j.jhydrol.2022.128124_b0100) 1995; 11 Berg (10.1016/j.jhydrol.2022.128124_b0020) 2011; 47 Carrera (10.1016/j.jhydrol.2022.128124_b0065) 2005; 13 Illman (10.1016/j.jhydrol.2022.128124_b0125) 2015; 51 Dietrich (10.1016/j.jhydrol.2022.128124_b0070) 2008; 46 Wang (10.1016/j.jhydrol.2022.128124_b0250) 2016; 87 Berg (10.1016/j.jhydrol.2022.128124_b0010) 2015; 53 Cho (10.1016/j.jhydrol.2022.128124_bib335) 2020; 229 Zhao (10.1016/j.jhydrol.2022.128124_b0315) 2022; 127971 Straface (10.1016/j.jhydrol.2022.128124_b0225) 2007; 43 Yeh (10.1016/j.jhydrol.2022.128124_b0270) 2000; 36 Illman (10.1016/j.jhydrol.2022.128124_b0120) 2012; 50 Xiang (10.1016/j.jhydrol.2022.128124_bib333) 2009; 45 Gelhar (10.1016/j.jhydrol.2022.128124_b0090) 1986; 22 Maliva (10.1016/j.jhydrol.2022.128124_b0180) 2016; 4 Yeh (10.1016/j.jhydrol.2022.128124_b0265) 2008; 12 Sebol (10.1016/j.jhydrol.2022.128124_bib328) 2000 Soueid Ahmed (10.1016/j.jhydrol.2022.128124_b0220) 2016; 52 10.1016/j.jhydrol.2022.128124_b0235 Zhao (10.1016/j.jhydrol.2022.128124_b0310) 2015; 51 Foster (10.1016/j.jhydrol.2022.128124_b0085) 2021; 241 Lee (10.1016/j.jhydrol.2022.128124_b0135) 2014; 50 Bohling (10.1016/j.jhydrol.2022.128124_b0035) 2016; 8970–8985 Cardiff (10.1016/j.jhydrol.2022.128124_b0060) 2013; 49 Zhu (10.1016/j.jhydrol.2022.128124_b0325) 2009; 32 Zheng (10.1016/j.jhydrol.2022.128124_b0320) 2011; 49 Tsai (10.1016/j.jhydrol.2022.128124_b0245) 2017; 53 Mao (10.1016/j.jhydrol.2022.128124_b0185) 2016; 81 Mao (10.1016/j.jhydrol.2022.128124_b0190) 2018; 567 Brauchler (10.1016/j.jhydrol.2022.128124_b0045) 2013; 49 Liu (10.1016/j.jhydrol.2022.128124_bib330) 2009; 45 Lessoff (10.1016/j.jhydrol.2022.128124_b0140) 2010; 46 Luo (10.1016/j.jhydrol.2022.128124_b0170) 2020; 590 Butler (10.1016/j.jhydrol.2022.128124_b0055) 2002; 40 Liu (10.1016/j.jhydrol.2022.128124_b0155) 2002; 38 Wang (10.1016/j.jhydrol.2022.128124_b0255) 2019; 55 Aquanty Inc. (10.1016/j.jhydrol.2022.128124_bib338) 2018 Zhao (10.1016/j.jhydrol.2022.128124_b0300) 2016; 542 Luo (10.1016/j.jhydrol.2022.128124_b0165) 2017; 554 Wen (10.1016/j.jhydrol.2022.128124_b0260) 2020; 58 McCall (10.1016/j.jhydrol.2022.128124_bib337) 2010 Fischer (10.1016/j.jhydrol.2022.128124_b0080) 2020; 137 Sanchez-León (10.1016/j.jhydrol.2022.128124_b0210) 2016; 54 Borden (10.1016/j.jhydrol.2022.128124_b0040) 2021; 59 Karrow (10.1016/j.jhydrol.2022.128124_bib336) 1979 Bohling (10.1016/j.jhydrol.2022.128124_b0030) 2007; 43 Alexander (10.1016/j.jhydrol.2022.128124_b0005) 2011; 49 Bohling (10.1016/j.jhydrol.2022.128124_bib331) 2012; 48 Bianchi (10.1016/j.jhydrol.2022.128124_b0025) 2016; 52 Zha (10.1016/j.jhydrol.2022.128124_b0295) 2014; 71 10.1016/j.jhydrol.2022.128124_b0215 Berg (10.1016/j.jhydrol.2022.128124_b0015) 2011; 47 Sudicky (10.1016/j.jhydrol.2022.128124_b0230) 2010; 46 McCall (10.1016/j.jhydrol.2022.128124_b0200) 2014; 34 10.1016/j.jhydrol.2022.128124_b0095 Illman (10.1016/j.jhydrol.2022.128124_b0115) 2014; 52 Luo (10.1016/j.jhydrol.2022.128124_b0175) 2022; 127911 Zhao (10.1016/j.jhydrol.2022.128124_b0305) 2018; 559 Doherty (10.1016/j.jhydrol.2022.128124_b0075) 2015 |
| References_xml | – volume: 154 year: 2021 ident: b0205 article-title: Individual and joint inversion of head and flux data by geostatistical hydraulic tomography publication-title: Adv. Water Resour. – reference: Sun, D., Luo, N., Vandenhoff, A., Wang, C., Zhao, Z., Rudolph, D.L., Illman, W.A., 2022. Evaluation of the Hydraulic Profiling Tool (HPT) at a highly heterogeneous field site underlain by glaciofluvial deposits, Draft Technical Report submitted to Geoprobe Systems, 74 pp. – volume: 229 year: 2020 ident: bib335 article-title: Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system publication-title: J. Contam. Hydrol. – volume: 47 start-page: 1 year: 2011 end-page: 17 ident: b0015 article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments publication-title: Water Resour. Res. – volume: 4 start-page: 383 year: 2016 end-page: 402 ident: b0180 publication-title: Direct-Push Technology BT - Aquifer Characterization Techniques: Schlumberger Methods in Water Resources Evaluation Series No – volume: 36 start-page: 2095 year: 2000 ident: b0270 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. – volume: 127971 year: 2022 ident: b0315 article-title: Integrating Hydraulic Profiling Tool Pressure Logs and Hydraulic Tomography for Improved High-Resolution Characterization of Subsurface Heterogeneity publication-title: J. Hydrol. – volume: 48 year: 2012 ident: bib331 article-title: Geostatistical analysis of centimeter-scale hydraulic conductivity variations at the MADE site publication-title: Water Resour. Res. – reference: Soo, C.J., T., W.J., P., B.F., 2000. Measuring vertical profiles of hydraulic conductivity with in situ direct-push methods. J. Environ. Eng. 126, 775–777. 10.1061/(ASCE)0733-9372(2000)126:8(775). – volume: 46 start-page: 1 year: 2010 end-page: 9 ident: b0140 article-title: Spatial characterization of the hydraulic conductivity using direct-push injection logging publication-title: Water Resour. Res. – year: 2000 ident: bib328 publication-title: Determination of groundwater age using CFC’s in three shallow aquifers in Southern Ontario – volume: 542 start-page: 156 year: 2016 end-page: 171 ident: b0300 article-title: On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study publication-title: J. Hydrol. – volume: 281 year: 2021 ident: b0145 article-title: Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity publication-title: Eng. Geol. – volume: 52 start-page: 659 year: 2014 end-page: 684 ident: b0115 article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks publication-title: Groundwater – volume: 43 start-page: 1 year: 2007 end-page: 23 ident: b0030 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resour. Res. – volume: 8970–8985 year: 2016 ident: b0035 article-title: Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure publication-title: Water Resour. Res. – reference: Geoprobe, 2007. Geoprobe Hydraulic Profiling Tool (HPT) System, Standard Operating procedure. – volume: 32 start-page: 391 year: 2009 end-page: 400 ident: b0325 article-title: Analysis of tracer tomography using temporal moments of tracer breakthrough curves publication-title: Adv. Water Resour. – volume: 81 start-page: D359 year: 2016 end-page: D375 ident: b0185 article-title: Induced polarization response of porous media with metallic particles — Part 4: Detection of metallic and nonmetallic targets in time-domain induced polarization tomography publication-title: Geophysics – volume: 53 start-page: 8554 year: 2017 end-page: 8571 ident: b0245 article-title: Fusion of time-lapse gravity survey and hydraulic tomography for estimating spatially varying hydraulic conductivity and specific yield fields publication-title: Water Resour. Res. – volume: 559 start-page: 392 year: 2018 end-page: 410 ident: b0305 article-title: Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site publication-title: J. Hydrol. – volume: 17 start-page: 19 year: 2012 end-page: 29 ident: bib332 article-title: Hydraulic conductivity profiling with direct push methods publication-title: Grundwasser – volume: 127911 year: 2022 ident: b0175 article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations publication-title: J. Hydrol. – volume: 38 start-page: 2 year: 2002 end-page: 10 ident: b0155 article-title: Effectiveness of hydraulic tomography: Sandbox experiments publication-title: Water Resour. Res. – volume: 567 start-page: 1 year: 2018 end-page: 11 ident: b0190 article-title: An application of hydraulic tomography to a deep coal mine: Combining traditional pumping tests with water inrush incidents publication-title: J. Hydrol. – volume: 43 start-page: 1 year: 2007 end-page: 16 ident: b0275 article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones publication-title: Water Resour. Res. – volume: 13 start-page: 206 year: 2005 end-page: 222 ident: b0065 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. – volume: 590 year: 2020 ident: b0170 article-title: Three-dimensional hydraulic tomography analysis of long-term municipal wellfield operations: Validation with synthetic flow and solute transport data publication-title: J. Hydrol. – volume: 49 start-page: 649 year: 2011 end-page: 662 ident: b0320 article-title: Lessons Learned from 25 Years of Research at the MADE Site publication-title: Groundwater – volume: 51 start-page: 3219 year: 2015 end-page: 3237 ident: b0125 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation publication-title: Water Resour. Res. – volume: 43 start-page: 1 year: 2007 end-page: 13 ident: b0225 article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo publication-title: Italy. Water Resour. Res. – volume: 59 start-page: 266 year: 2021 end-page: 272 ident: b0040 article-title: A physically based approach for estimating hydraulic conductivity from HPT pressure and flowrate publication-title: Groundwater – volume: 47 year: 2011 ident: b0020 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. – volume: 241 year: 2021 ident: b0085 article-title: Effects of large-scale heterogeneity and temporally varying hydrologic processes on estimating immobile pore space: A mesoscale-laboratory experimental and numerical modeling investigation publication-title: J. Contam. Hydrol. – volume: 46 start-page: 323 year: 2008 end-page: 328 ident: b0070 article-title: A rapid method for hydraulic profiling in unconsolidated formations publication-title: Groundwater – volume: 53 start-page: 2850 year: 2017 end-page: 2876 ident: b0285 article-title: Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach publication-title: Water Resour. Res. – volume: 47 start-page: 1 year: 2011 end-page: 18 ident: b0110 article-title: Robustness of joint interpretation of sequential pumping tests: Numerical and field experiments publication-title: Water Resour. Res. – year: 2015 ident: b0075 article-title: Calibration and uncertainty analysis for complex environmental models – volume: 11 start-page: 353 year: 1995 end-page: 360 ident: b0100 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Probl. – volume: 51 start-page: 4137 year: 2015 end-page: 4155 ident: b0310 article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study publication-title: Water Resour. Res. – volume: 40 start-page: 25 year: 2002 end-page: 36 ident: b0055 article-title: Hydraulic tests with direct-push equipment publication-title: Groundwater – volume: 54 start-page: 498 year: 2016 end-page: 507 ident: b0210 article-title: Combining 3d hydraulic tomography with tracer tests for improved transport characterization publication-title: Groundwater – volume: 50 start-page: 935 year: 2012 end-page: 942 ident: b0105 article-title: Relevance of deterministic structures for modeling of transport: The Lauswiesen case study publication-title: Ground Water – volume: 49 start-page: 7311 year: 2013 end-page: 7326 ident: b0060 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. – start-page: 6 year: 2010 end-page: 10 ident: bib337 publication-title: Tech guide for calculation of estimated hydraulic conductivity (Est. K) log from HPT data – volume: 34 start-page: 85 year: 2014 end-page: 95 ident: b0200 article-title: Field Application of the Combined Membrane-Interface Probe and Hydraulic Profiling Tool (MiHpt) publication-title: Groundw. Monit. Remediat. – volume: 32 start-page: 85 year: 1996 end-page: 92 ident: bib334 article-title: An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields publication-title: Water Resour. Res. – volume: 49 start-page: 365 year: 2011 end-page: 382 ident: b0005 article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer publication-title: Ground Water – volume: 49 year: 2013 ident: b0045 article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments publication-title: Water Resour. Res. – year: 2018 ident: bib338 publication-title: HydroGeoSphere. A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport – volume: 554 start-page: 758 year: 2017 end-page: 779 ident: b0165 article-title: Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation publication-title: J. Hydrol. – volume: 12 start-page: 159 year: 2008 end-page: 167 ident: b0265 article-title: Fusion of hydrologic and geophysical tomographic surveys publication-title: Geosci. J. – volume: 341 start-page: 222 year: 2007 end-page: 234 ident: b0130 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. – volume: 38 start-page: 689 year: 2000 end-page: 695 ident: bib327 article-title: Long-term performance of in situ reactive barriers for nitrate remediation publication-title: Groundwater – volume: 137 year: 2020 ident: b0080 article-title: Hydraulic tomography in coupled discrete-continuum concept to image hydraulic properties of a fractured and karstified aquifer (Lez aquifer, France) publication-title: Adv. Water Resour. – volume: 46 year: 2010 ident: b0230 article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: From measurements to a practical application of stochastic flow and transport theory publication-title: Water Resour. Res. – volume: 55 start-page: 4974 year: 2019 end-page: 4993 ident: b0255 article-title: Resolution and ergodicity issues of river stage tomography with different excitations publication-title: Water Resour. Res. – volume: 45 start-page: 1 year: 2009 end-page: 14 ident: bib333 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. – volume: 52 start-page: 6769 year: 2016 end-page: 6791 ident: b0220 article-title: Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests publication-title: Water Resour. Res. – volume: 54 start-page: 793 year: 2016 end-page: 804 ident: b0290 article-title: An application of hydraulic tomography to a large-scale fractured granite site, Mizunami publication-title: Japan. Groundwater – volume: 50 start-page: 5410 year: 2014 end-page: 5427 ident: b0135 article-title: Large-scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) publication-title: Water Resour. Res. – year: 1979 ident: bib336 publication-title: Geology of the University of Waterloo Campus. Waterloo, Ontario, Canada. – volume: 87 start-page: 106 year: 2016 end-page: 121 ident: b0250 article-title: Characterisation of the transmissivity field of a fractured and karstic aquifer publication-title: Southern France. Adv. Water Resour. – volume: 52 start-page: 552 year: 2016 end-page: 565 ident: b0025 article-title: A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial aquifer publication-title: Water Resour. Res. – volume: 590 year: 2020 ident: b0160 article-title: Scanning for water hazard threats with sequential water releasing tests in underground coal mines publication-title: J. Hydrol. – volume: 45 year: 2009 ident: bib330 article-title: A new method for high-resolution characterization of hydraulic conductivity publication-title: Water Resour. Res. – volume: 50 start-page: 421 year: 2012 end-page: 431 ident: b0120 article-title: Comparison of approaches for predicting solute transport: Sandbox experiments publication-title: Ground Water – volume: 46 start-page: 193 year: 2008 end-page: 201 ident: b0150 article-title: Three-dimensional geostatistical inversion of flowmeter and pumping test data publication-title: Ground Water – volume: 58 start-page: 79 year: 2020 end-page: 92 ident: b0260 article-title: Redundant and nonredundant information for model calibration or hydraulic tomography publication-title: Groundwater – volume: 71 start-page: 162 year: 2014 end-page: 176 ident: b0295 article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium publication-title: Adv. Water Resour. – volume: 53 start-page: 71 year: 2015 end-page: 89 ident: b0010 article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site publication-title: Groundwater – volume: 22 start-page: 135S year: 1986 end-page: 145S ident: b0090 article-title: Stochastic subsurface hydrology from theory to applications publication-title: Water Resour. Res. – volume: 13 start-page: 206 year: 2005 ident: 10.1016/j.jhydrol.2022.128124_b0065 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0404-7 – volume: 281 year: 2021 ident: 10.1016/j.jhydrol.2022.128124_b0145 article-title: Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105967 – volume: 52 start-page: 6769 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0220 article-title: Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests publication-title: Water Resour. Res. doi: 10.1002/2016WR019058 – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2022.128124_b0275 article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones publication-title: Water Resour. Res. doi: 10.1029/2006WR004877 – volume: 45 start-page: 1 year: 2009 ident: 10.1016/j.jhydrol.2022.128124_bib333 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. doi: 10.1029/2008WR007180 – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2022.128124_b0015 article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments publication-title: Water Resour. Res. doi: 10.1029/2011WR010429 – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2022.128124_b0030 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resour. Res. doi: 10.1029/2006WR004932 – volume: 46 start-page: 1 year: 2010 ident: 10.1016/j.jhydrol.2022.128124_b0140 article-title: Spatial characterization of the hydraulic conductivity using direct-push injection logging publication-title: Water Resour. Res. doi: 10.1029/2009WR008949 – volume: 341 start-page: 222 year: 2007 ident: 10.1016/j.jhydrol.2022.128124_b0130 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.05.011 – volume: 52 start-page: 659 year: 2014 ident: 10.1016/j.jhydrol.2022.128124_b0115 article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks publication-title: Groundwater doi: 10.1111/gwat.12119 – ident: 10.1016/j.jhydrol.2022.128124_b0095 – volume: 50 start-page: 935 issue: 6 year: 2012 ident: 10.1016/j.jhydrol.2022.128124_b0105 article-title: Relevance of deterministic structures for modeling of transport: The Lauswiesen case study publication-title: Ground Water doi: 10.1111/j.1745-6584.2012.00948.x – volume: 554 start-page: 758 year: 2017 ident: 10.1016/j.jhydrol.2022.128124_b0165 article-title: Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.09.045 – volume: 127911 year: 2022 ident: 10.1016/j.jhydrol.2022.128124_b0175 article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations publication-title: J. Hydrol. – volume: 137 year: 2020 ident: 10.1016/j.jhydrol.2022.128124_b0080 article-title: Hydraulic tomography in coupled discrete-continuum concept to image hydraulic properties of a fractured and karstified aquifer (Lez aquifer, France) publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103523 – volume: 590 year: 2020 ident: 10.1016/j.jhydrol.2022.128124_b0170 article-title: Three-dimensional hydraulic tomography analysis of long-term municipal wellfield operations: Validation with synthetic flow and solute transport data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125438 – volume: 51 start-page: 3219 year: 2015 ident: 10.1016/j.jhydrol.2022.128124_b0125 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation publication-title: Water Resour. Res. doi: 10.1002/2014WR016552 – volume: 53 start-page: 8554 year: 2017 ident: 10.1016/j.jhydrol.2022.128124_b0245 article-title: Fusion of time-lapse gravity survey and hydraulic tomography for estimating spatially varying hydraulic conductivity and specific yield fields publication-title: Water Resour. Res. doi: 10.1002/2017WR020459 – volume: 567 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2022.128124_b0190 article-title: An application of hydraulic tomography to a deep coal mine: Combining traditional pumping tests with water inrush incidents publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.058 – year: 2000 ident: 10.1016/j.jhydrol.2022.128124_bib328 – volume: 11 start-page: 353 year: 1995 ident: 10.1016/j.jhydrol.2022.128124_b0100 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Probl. doi: 10.1088/0266-5611/11/2/005 – volume: 542 start-page: 156 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0300 article-title: On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.061 – volume: 47 year: 2011 ident: 10.1016/j.jhydrol.2022.128124_b0020 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. doi: 10.1029/2011WR010616 – volume: 8970–8985 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0035 article-title: Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure publication-title: Water Resour. Res. – volume: 49 start-page: 7311 year: 2013 ident: 10.1016/j.jhydrol.2022.128124_b0060 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. doi: 10.1002/wrcr.20519 – volume: 229 year: 2020 ident: 10.1016/j.jhydrol.2022.128124_bib335 article-title: Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2019.103559 – volume: 40 start-page: 25 year: 2002 ident: 10.1016/j.jhydrol.2022.128124_b0055 article-title: Hydraulic tests with direct-push equipment publication-title: Groundwater doi: 10.1111/j.1745-6584.2002.tb02488.x – volume: 38 start-page: 689 issue: 5 year: 2000 ident: 10.1016/j.jhydrol.2022.128124_bib327 article-title: Long-term performance of in situ reactive barriers for nitrate remediation publication-title: Groundwater doi: 10.1111/j.1745-6584.2000.tb02704.x – year: 2018 ident: 10.1016/j.jhydrol.2022.128124_bib338 – volume: 49 issue: 4 year: 2013 ident: 10.1016/j.jhydrol.2022.128124_b0045 article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments publication-title: Water Resour. Res. doi: 10.1002/wrcr.20181 – volume: 53 start-page: 2850 year: 2017 ident: 10.1016/j.jhydrol.2022.128124_b0285 article-title: Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach publication-title: Water Resour. Res. doi: 10.1002/2016WR019185 – volume: 12 start-page: 159 year: 2008 ident: 10.1016/j.jhydrol.2022.128124_b0265 article-title: Fusion of hydrologic and geophysical tomographic surveys publication-title: Geosci. J. doi: 10.1007/s12303-008-0017-6 – volume: 46 start-page: 193 year: 2008 ident: 10.1016/j.jhydrol.2022.128124_b0150 article-title: Three-dimensional geostatistical inversion of flowmeter and pumping test data publication-title: Ground Water doi: 10.1111/j.1745-6584.2007.00419.x – volume: 50 start-page: 5410 year: 2014 ident: 10.1016/j.jhydrol.2022.128124_b0135 article-title: Large-scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) publication-title: Water Resour. Res. doi: 10.1002/2014WR015483 – volume: 54 start-page: 793 issue: 6 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0290 article-title: An application of hydraulic tomography to a large-scale fractured granite site, Mizunami publication-title: Japan. Groundwater doi: 10.1111/gwat.12421 – volume: 17 start-page: 19 year: 2012 ident: 10.1016/j.jhydrol.2022.128124_bib332 article-title: Hydraulic conductivity profiling with direct push methods publication-title: Grundwasser doi: 10.1007/s00767-011-0182-9 – volume: 590 year: 2020 ident: 10.1016/j.jhydrol.2022.128124_b0160 article-title: Scanning for water hazard threats with sequential water releasing tests in underground coal mines publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125350 – volume: 87 start-page: 106 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0250 article-title: Characterisation of the transmissivity field of a fractured and karstic aquifer publication-title: Southern France. Adv. Water Resour. doi: 10.1016/j.advwatres.2015.10.014 – volume: 59 start-page: 266 year: 2021 ident: 10.1016/j.jhydrol.2022.128124_b0040 article-title: A physically based approach for estimating hydraulic conductivity from HPT pressure and flowrate publication-title: Groundwater doi: 10.1111/gwat.13039 – volume: 71 start-page: 162 year: 2014 ident: 10.1016/j.jhydrol.2022.128124_b0295 article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.06.008 – volume: 49 start-page: 649 year: 2011 ident: 10.1016/j.jhydrol.2022.128124_b0320 article-title: Lessons Learned from 25 Years of Research at the MADE Site publication-title: Groundwater doi: 10.1111/j.1745-6584.2010.00753.x – volume: 45 issue: 8 year: 2009 ident: 10.1016/j.jhydrol.2022.128124_bib330 article-title: A new method for high-resolution characterization of hydraulic conductivity publication-title: Water Resour. Res. doi: 10.1029/2009WR008319 – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2022.128124_b0225 article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo publication-title: Italy. Water Resour. Res. – volume: 36 start-page: 2095 year: 2000 ident: 10.1016/j.jhydrol.2022.128124_b0270 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. doi: 10.1029/2000WR900114 – volume: 48 issue: 2 year: 2012 ident: 10.1016/j.jhydrol.2022.128124_bib331 article-title: Geostatistical analysis of centimeter-scale hydraulic conductivity variations at the MADE site publication-title: Water Resour. Res. doi: 10.1029/2011WR010791 – volume: 58 start-page: 79 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2022.128124_b0260 article-title: Redundant and nonredundant information for model calibration or hydraulic tomography publication-title: Groundwater doi: 10.1111/gwat.12879 – volume: 154 year: 2021 ident: 10.1016/j.jhydrol.2022.128124_b0205 article-title: Individual and joint inversion of head and flux data by geostatistical hydraulic tomography publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.103960 – ident: 10.1016/j.jhydrol.2022.128124_b0215 doi: 10.1061/(ASCE)0733-9372(2000)126:8(775) – volume: 49 start-page: 365 year: 2011 ident: 10.1016/j.jhydrol.2022.128124_b0005 article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer publication-title: Ground Water doi: 10.1111/j.1745-6584.2010.00729.x – volume: 52 start-page: 552 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0025 article-title: A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial aquifer publication-title: Water Resour. Res. doi: 10.1002/2015WR018186 – year: 2015 ident: 10.1016/j.jhydrol.2022.128124_b0075 – volume: 559 start-page: 392 year: 2018 ident: 10.1016/j.jhydrol.2022.128124_b0305 article-title: Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.024 – ident: 10.1016/j.jhydrol.2022.128124_b0235 – volume: 32 start-page: 85 year: 1996 ident: 10.1016/j.jhydrol.2022.128124_bib334 article-title: An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields publication-title: Water Resour. Res. doi: 10.1029/95WR02869 – volume: 127971 year: 2022 ident: 10.1016/j.jhydrol.2022.128124_b0315 article-title: Integrating Hydraulic Profiling Tool Pressure Logs and Hydraulic Tomography for Improved High-Resolution Characterization of Subsurface Heterogeneity publication-title: J. Hydrol. – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2022.128124_b0110 article-title: Robustness of joint interpretation of sequential pumping tests: Numerical and field experiments publication-title: Water Resour. Res. doi: 10.1029/2011WR010698 – volume: 46 year: 2010 ident: 10.1016/j.jhydrol.2022.128124_b0230 article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: From measurements to a practical application of stochastic flow and transport theory publication-title: Water Resour. Res. doi: 10.1029/2008WR007558 – volume: 22 start-page: 135S year: 1986 ident: 10.1016/j.jhydrol.2022.128124_b0090 article-title: Stochastic subsurface hydrology from theory to applications publication-title: Water Resour. Res. doi: 10.1029/WR022i09Sp0135S – volume: 38 start-page: 2 year: 2002 ident: 10.1016/j.jhydrol.2022.128124_b0155 article-title: Effectiveness of hydraulic tomography: Sandbox experiments publication-title: Water Resour. Res. doi: 10.1029/2001WR000338 – volume: 50 start-page: 421 year: 2012 ident: 10.1016/j.jhydrol.2022.128124_b0120 article-title: Comparison of approaches for predicting solute transport: Sandbox experiments publication-title: Ground Water doi: 10.1111/j.1745-6584.2011.00859.x – volume: 81 start-page: D359 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0185 article-title: Induced polarization response of porous media with metallic particles — Part 4: Detection of metallic and nonmetallic targets in time-domain induced polarization tomography publication-title: Geophysics doi: 10.1190/geo2015-0480.1 – volume: 53 start-page: 71 year: 2015 ident: 10.1016/j.jhydrol.2022.128124_b0010 article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site publication-title: Groundwater doi: 10.1111/gwat.12159 – volume: 32 start-page: 391 year: 2009 ident: 10.1016/j.jhydrol.2022.128124_b0325 article-title: Analysis of tracer tomography using temporal moments of tracer breakthrough curves publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.12.001 – start-page: 6 year: 2010 ident: 10.1016/j.jhydrol.2022.128124_bib337 – volume: 51 start-page: 4137 year: 2015 ident: 10.1016/j.jhydrol.2022.128124_b0310 article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study publication-title: Water Resour. Res. doi: 10.1002/2015WR016910 – volume: 4 start-page: 383 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0180 – volume: 34 start-page: 85 year: 2014 ident: 10.1016/j.jhydrol.2022.128124_b0200 article-title: Field Application of the Combined Membrane-Interface Probe and Hydraulic Profiling Tool (MiHpt) publication-title: Groundw. Monit. Remediat. doi: 10.1111/gwmr.12051 – volume: 54 start-page: 498 year: 2016 ident: 10.1016/j.jhydrol.2022.128124_b0210 article-title: Combining 3d hydraulic tomography with tracer tests for improved transport characterization publication-title: Groundwater doi: 10.1111/gwat.12381 – volume: 55 start-page: 4974 year: 2019 ident: 10.1016/j.jhydrol.2022.128124_b0255 article-title: Resolution and ergodicity issues of river stage tomography with different excitations publication-title: Water Resour. Res. doi: 10.1029/2018WR023204 – volume: 241 year: 2021 ident: 10.1016/j.jhydrol.2022.128124_b0085 article-title: Effects of large-scale heterogeneity and temporally varying hydrologic processes on estimating immobile pore space: A mesoscale-laboratory experimental and numerical modeling investigation publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2021.103811 – year: 1979 ident: 10.1016/j.jhydrol.2022.128124_bib336 – volume: 46 start-page: 323 year: 2008 ident: 10.1016/j.jhydrol.2022.128124_b0070 article-title: A rapid method for hydraulic profiling in unconsolidated formations publication-title: Groundwater doi: 10.1111/j.1745-6584.2007.00377.x |
| SSID | ssj0000334 |
| Score | 2.443082 |
| Snippet | •Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at... Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 128124 |
| SubjectTerms | aquifers cost effectiveness empirical models geostatistics Hydraulic conductivity Hydraulic profiling tool Hydraulic tomography Inverse modeling Model calibration and validation Ontario permeameters Subsurface heterogeneity surveys tomography |
| Title | Improved high-resolution characterization of hydraulic conductivity through inverse modeling of HPT profiles and steady-state hydraulic tomography: Field and synthetic studies |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2022.128124 https://www.proquest.com/docview/2718287498 |
| Volume | 612 |
| WOSCitedRecordID | wos000874855100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000334 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQviKsYl8lIvE0JTZyLzVuFdkNo2kOBipfIcRxtVZdOvUwrf4SfwV_knNhOonZogMRLVKW-RP2-xsfH53yHkLehLuMEDGEP1lYsYVYWnpSR8riMA61YrlkdRPPlU3pywkcjcdrr_XC5MFeTtKr49bW4_K9Qwz0AG1Nn_wLuZlC4AZ8BdLgC7HD9I-CNmwDsSFQi9mA3bWfDHF-rzfy9tRNXxUwuUega9sUo_WpqSbjqPecVRm1oUy_HxkcfnQ73bKVvo-9c82Tl1alJnQEX0wsrh41ehwOMlDPNVxUYnagTO-_EMG7axziSEYgCI3hwgYIOBbK38Vx8O5O1nxd93qW2KzCyfDKxbt2vdSzA3sDv-jZgW-yCt6zDbSPppklACBJTG9m9xBMTjL2xIBjfxNgfm4f2cRYfTw9N5vaa1jYeXYc4dIieFlio75DtMI0FvC63B8f7o4_tIs9Y5ITosUObHPbuxsl-Z_asGQC1VTN8SB7Yn5sODI0ekZ6uHpN7h9oi94T8dHSia3Si63Si05I26NMunailE7V0oo5O2AXoRB2dKPCDdunUGbCl03tak8k0dmSilkxPyeeD_eGHI88W-fAUi8KFJ7jkaZ4XeZ9JGQSKhzKSoeCFkknezzlTRSJL3peCybIP3wuZqCiRSgVJmrKSPSNb1bTSzwlNNLRksWSpQJnNMg9UFOioUHHMRajlDokcBpmyCvhYiGWSuVDHcWahyxC6zEC3Q_ym26WRgLmtA3cAZ9aONfZpBqy8resbR4gM3vN4eCcrPV3OsxCMSKxNIfiLfx_-Jbnf_s1eka3FbKlfk7vqanE-n-1ajv8CnYndsw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+high-resolution+characterization+of+hydraulic+conductivity+through+inverse+modeling+of+HPT+profiles+and+steady-state+hydraulic+tomography%3A+Field+and+synthetic+studies&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=612&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128124&rft.externalDocID=S0022169422006990 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |