Improved high-resolution characterization of hydraulic conductivity through inverse modeling of HPT profiles and steady-state hydraulic tomography: Field and synthetic studies

•Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at NCRS.•The site-specific model predicted K values that correspond well with permeameter K.•Integrating HPT-inverted K into SSHT better defined sharp b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 612; s. 128124
Hlavní autoři: Zhao, Zhanfeng, Illman, Walter A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2022
Témata:
ISSN:0022-1694
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at NCRS.•The site-specific model predicted K values that correspond well with permeameter K.•Integrating HPT-inverted K into SSHT better defined sharp boundaries of a K field. Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution estimation of hydraulic conductivity (K) for unconsolidated sediments. Although HPT surveys could be conducted rapidly, relating the 1.5-cm resolution injection logging profiles to K always involve the upscaling of centimeter-scale measurements to coarser intervals for the development of site-specific formulae. On the other hand, K fields reconstructed by HT could be smooth when pumping test data are sparse. In this study, an inverse modeling approach was firstly utilized to estimate K values directly from HPT survey data for the glaciofluvial deposits at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada. A site-specific power-law relationship was generated for the NCRS to relate HPT profiles to the vertical distributions of K. Then, the proposed inverse modeling approach was evaluated with a two-dimensional synthetic aquifer under controlled conditions, and the estimated K profiles from inverse analysis of synthetic HPT surveys were incorporated into the steady-state HT. Results of the field study showed that K estimates from the developed formula corresponded better with K values from permeameter tests, than those estimated from the empirical model of McCall and Christy (2010) for HPT surveys. Moreover, through synthetic experiments, we demonstrated that integration of K values inverted from HPT into steady-state HT analyses yielded K tomograms that were significantly better than the geostatistical inversion results relying on pumping test data alone. Overall, this study highlights the need in developing site-specific formulae for the HPT and the joint implementation of HPT and HT techniques for the more cost-effective high-resolution characterization of subsurface heterogeneity.
AbstractList Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution estimation of hydraulic conductivity (K) for unconsolidated sediments. Although HPT surveys could be conducted rapidly, relating the 1.5-cm resolution injection logging profiles to K always involve the upscaling of centimeter-scale measurements to coarser intervals for the development of site-specific formulae. On the other hand, K fields reconstructed by HT could be smooth when pumping test data are sparse. In this study, an inverse modeling approach was firstly utilized to estimate K values directly from HPT survey data for the glaciofluvial deposits at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada. A site-specific power-law relationship was generated for the NCRS to relate HPT profiles to the vertical distributions of K. Then, the proposed inverse modeling approach was evaluated with a two-dimensional synthetic aquifer under controlled conditions, and the estimated K profiles from inverse analysis of synthetic HPT surveys were incorporated into the steady-state HT. Results of the field study showed that K estimates from the developed formula corresponded better with K values from permeameter tests, than those estimated from the empirical model of McCall and Christy (2010) for HPT surveys. Moreover, through synthetic experiments, we demonstrated that integration of K values inverted from HPT into steady-state HT analyses yielded K tomograms that were significantly better than the geostatistical inversion results relying on pumping test data alone. Overall, this study highlights the need in developing site-specific formulae for the HPT and the joint implementation of HPT and HT techniques for the more cost-effective high-resolution characterization of subsurface heterogeneity.
•Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at NCRS.•The site-specific model predicted K values that correspond well with permeameter K.•Integrating HPT-inverted K into SSHT better defined sharp boundaries of a K field. Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution estimation of hydraulic conductivity (K) for unconsolidated sediments. Although HPT surveys could be conducted rapidly, relating the 1.5-cm resolution injection logging profiles to K always involve the upscaling of centimeter-scale measurements to coarser intervals for the development of site-specific formulae. On the other hand, K fields reconstructed by HT could be smooth when pumping test data are sparse. In this study, an inverse modeling approach was firstly utilized to estimate K values directly from HPT survey data for the glaciofluvial deposits at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada. A site-specific power-law relationship was generated for the NCRS to relate HPT profiles to the vertical distributions of K. Then, the proposed inverse modeling approach was evaluated with a two-dimensional synthetic aquifer under controlled conditions, and the estimated K profiles from inverse analysis of synthetic HPT surveys were incorporated into the steady-state HT. Results of the field study showed that K estimates from the developed formula corresponded better with K values from permeameter tests, than those estimated from the empirical model of McCall and Christy (2010) for HPT surveys. Moreover, through synthetic experiments, we demonstrated that integration of K values inverted from HPT into steady-state HT analyses yielded K tomograms that were significantly better than the geostatistical inversion results relying on pumping test data alone. Overall, this study highlights the need in developing site-specific formulae for the HPT and the joint implementation of HPT and HT techniques for the more cost-effective high-resolution characterization of subsurface heterogeneity.
ArticleNumber 128124
Author Zhao, Zhanfeng
Illman, Walter A.
Author_xml – sequence: 1
  givenname: Zhanfeng
  surname: Zhao
  fullname: Zhao, Zhanfeng
  email: zhaozhanfeng@igsnrr.ac.cn
  organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Walter A.
  surname: Illman
  fullname: Illman, Walter A.
  organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
BookMark eNqFkcFu1DAQhnMoEm3hEZB85JLFdkLiwAGhitJKlcqhnK2JPdnMyrEX21kpfSlekWy3B9RLfRnZ83-_R_NfFGc-eCyKD4JvBBfNp91mNy42BreRXMqNkErI-qw45-utFE1Xvy0uUtrx9VRVfV78vZ32MRzQspG2YxkxBTdnCp6ZESKYjJEe4ekhDOxoDbMjw0zwdjaZDpQXlscY5u3IyB8wJmRTsOjIb4_Iza8Htv4wkMPEwFuWMoJdypQh43-GOUxhG2E_Ll_YNaGzJ_Hi84h57ac8W8L0rngzgEv4_rleFr-vfzxc3ZR39z9vr77flaaqZS47Barte9vzCkAIoyTUIDtlDTQ971VlbAOD4tBVMPC130Fj6gaMEU3bVkN1WXw8-a6z_5kxZT1RMugceAxz0rIVSqq27tQq_XqSmhhSijhoQ_lpZTkCOS24Pkajd_o5Gn2MRp-iWenPL-h9pAni8ir37cThuoUDYdTJEHqDliKarG2gVxz-AR9ktvQ
CitedBy_id crossref_primary_10_3390_app14114521
crossref_primary_10_1016_j_jhydrol_2022_128673
crossref_primary_10_1029_2022WR034034
crossref_primary_10_1111_gwat_13348
crossref_primary_10_1016_j_jhydrol_2024_130819
crossref_primary_10_1016_j_jhydrol_2023_129060
crossref_primary_10_1029_2022GL101278
Cites_doi 10.1007/s10040-004-0404-7
10.1016/j.enggeo.2020.105967
10.1002/2016WR019058
10.1029/2006WR004877
10.1029/2008WR007180
10.1029/2011WR010429
10.1029/2006WR004932
10.1029/2009WR008949
10.1016/j.jhydrol.2007.05.011
10.1111/gwat.12119
10.1111/j.1745-6584.2012.00948.x
10.1016/j.jhydrol.2017.09.045
10.1016/j.advwatres.2020.103523
10.1016/j.jhydrol.2020.125438
10.1002/2014WR016552
10.1002/2017WR020459
10.1016/j.jhydrol.2018.09.058
10.1088/0266-5611/11/2/005
10.1016/j.jhydrol.2016.08.061
10.1029/2011WR010616
10.1002/wrcr.20519
10.1016/j.jconhyd.2019.103559
10.1111/j.1745-6584.2002.tb02488.x
10.1111/j.1745-6584.2000.tb02704.x
10.1002/wrcr.20181
10.1002/2016WR019185
10.1007/s12303-008-0017-6
10.1111/j.1745-6584.2007.00419.x
10.1002/2014WR015483
10.1111/gwat.12421
10.1007/s00767-011-0182-9
10.1016/j.jhydrol.2020.125350
10.1016/j.advwatres.2015.10.014
10.1111/gwat.13039
10.1016/j.advwatres.2014.06.008
10.1111/j.1745-6584.2010.00753.x
10.1029/2009WR008319
10.1029/2000WR900114
10.1029/2011WR010791
10.1111/gwat.12879
10.1016/j.advwatres.2021.103960
10.1061/(ASCE)0733-9372(2000)126:8(775)
10.1111/j.1745-6584.2010.00729.x
10.1002/2015WR018186
10.1016/j.jhydrol.2018.02.024
10.1029/95WR02869
10.1029/2011WR010698
10.1029/2008WR007558
10.1029/WR022i09Sp0135S
10.1029/2001WR000338
10.1111/j.1745-6584.2011.00859.x
10.1190/geo2015-0480.1
10.1111/gwat.12159
10.1016/j.advwatres.2008.12.001
10.1002/2015WR016910
10.1111/gwmr.12051
10.1111/gwat.12381
10.1029/2018WR023204
10.1016/j.jconhyd.2021.103811
10.1111/j.1745-6584.2007.00377.x
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128124
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2022_128124
S0022169422006990
GeographicLocations Ontario
GeographicLocations_xml – name: Ontario
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-98a87bbdb03aa11c82a4a298dca6b0b83cd6af80a93af01c89a6c46acc16773f3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874855100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 09:58:24 EDT 2025
Tue Nov 18 21:51:28 EST 2025
Sat Nov 29 03:07:59 EST 2025
Sat Oct 26 15:44:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Subsurface heterogeneity
Hydraulic conductivity
Hydraulic profiling tool
Hydraulic tomography
Model calibration and validation
Inverse modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-98a87bbdb03aa11c82a4a298dca6b0b83cd6af80a93af01c89a6c46acc16773f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718287498
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718287498
crossref_citationtrail_10_1016_j_jhydrol_2022_128124
crossref_primary_10_1016_j_jhydrol_2022_128124
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128124
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Doherty (b0075) 2015
Sebol (bib328) 2000
Sanchez-León, Leven, Haslauer, Cirpka (b0210) 2016; 54
Soueid Ahmed, Jardani, Revil, Dupont (b0220) 2016; 52
Wen, Chen, Yeh, Wang, Huang, Tian, Yu (b0260) 2020; 58
Zheng, Bianchi, Gorelick (b0320) 2011; 49
Fischer, Jardani, Jourde (b0080) 2020; 137
Bohling, Liu, Knobbe, Reboulet, Hyndman, Dietrich, Butler Jr (bib331) 2012; 48
Zhao, Illman (b0315) 2022; 127971
Tsai, Yeh, Cheng, Zha, Chang, Hwang, Wang, Hao (b0245) 2017; 53
Illman, Liu, Craig (b0130) 2007; 341
Luo, Illman, Zha (b0175) 2022; 127911
Li, Wang, Xu, Mao, Pan (b0145) 2021; 281
Brauchler (b0045) 2013; 49
Cho, Zhao, Thomson, Illman (bib335) 2020; 229
Gottlieb, Dietrich (b0100) 1995; 11
Illman, Berg, Zhao (b0125) 2015; 51
Bohling, Butler, Zhan, Knoll (b0030) 2007; 43
Berg, Illman (b0015) 2011; 47
Xiang, Yeh, Lee, Hsu, Wen (bib333) 2009; 45
Liu, Butler Jr, Reboulet, Knobbe (bib332) 2012; 17
Mao, Revil, Hinton (b0185) 2016; 81
Zha, Yeh, Illman, Onoe, Mok, Wen, Huang, Wang (b0285) 2017; 53
Zhao, Illman, Berg (b0300) 2016; 542
Yeh, Jin, Hanna (bib334) 1996; 32
Huang, Wen, Yeh, Lu, Juan, Tseng, Lee, Chang (b0110) 2011; 47
Robertson, Blowes, Ptacek, Cherry (bib327) 2000; 38
Butler, Healey, McCall, Garnett, Loheide (b0055) 2002; 40
Foster, Trautz, Bolster, Illangasekare, Singha (b0085) 2021; 241
Zha, Yeh, Illman, Tanaka, Bruines, Onoe, Saegusa, Mao, Takeuchi, Wen (b0290) 2016; 54
Luo, Zhao, Illman, Berg (b0165) 2017; 554
Maliva (b0180) 2016; 4
McCall, Christy (bib337) 2010
Sudicky, Illman, Goltz, Adams, McLaren (b0230) 2010; 46
Wang, Jardani, Jourde, Lonergan, Cosgrove, Gosselin, Massonnat (b0250) 2016; 87
Berg, Illman (b0020) 2011; 47
Illman, Berg, Yeh (b0120) 2012; 50
Zhao, Illman (b0305) 2018; 559
Händel, Dietrich (b0105) 2012; 50
Yeh, Lee, Hsu, Wen (b0265) 2008; 12
Carrera, Alcolea, Medina, Hidalgo, Slooten (b0065) 2005; 13
Alexander, Berg, Illman (b0005) 2011; 49
Liu, Yeh, Gardiner (b0155) 2002; 38
McCall, Christy, Pipp, Terkelsen, Christensen, Weber, Engelsen (b0200) 2014; 34
Luo, Illman, Zha, Park, Berg (b0170) 2020; 590
Yeh, Liu (b0270) 2000; 36
Bianchi, Zheng (b0025) 2016; 52
Karrow (bib336) 1979
Dietrich, Butler, Faiß (b0070) 2008; 46
Liu, Butler Jr, Bohling, Reboulet, Knobbe, Hyndman (bib330) 2009; 45
Straface, Yeh, Zhu, Troisi, Lee (b0225) 2007; 43
Zhu, Cai, Jim Yeh (b0325) 2009; 32
Aquanty Inc. (bib338) 2018
Gelhar (b0090) 1986; 22
Lee, Kitanidis (b0135) 2014; 50
Zhao, Illman, Yeh, Berg, Mao (b0310) 2015; 51
Borden, Cha, Liu (b0040) 2021; 59
Illman (b0115) 2014; 52
Li, Englert, Cirpka, Vereecken (b0150) 2008; 46
Geoprobe, 2007. Geoprobe Hydraulic Profiling Tool (HPT) System, Standard Operating procedure.
Mao (b0190) 2018; 567
Bohling, Liu, Dietrich, Butler Jr (b0035) 2016; 8970–8985
Yeh, Zhu (b0275) 2007; 43
Pouladi, Linde, Longuevergne, Bour (b0205) 2021; 154
Liu, Zhao, Dong, Wang, Sun, Mao (b0160) 2020; 590
Cardiff, Barrash, Kitanidis (b0060) 2013; 49
Soo, C.J., T., W.J., P., B.F., 2000. Measuring vertical profiles of hydraulic conductivity with in situ direct-push methods. J. Environ. Eng. 126, 775–777. 10.1061/(ASCE)0733-9372(2000)126:8(775).
Zha, Yeh, Mao, Yang, Lu (b0295) 2014; 71
Sun, D., Luo, N., Vandenhoff, A., Wang, C., Zhao, Z., Rudolph, D.L., Illman, W.A., 2022. Evaluation of the Hydraulic Profiling Tool (HPT) at a highly heterogeneous field site underlain by glaciofluvial deposits, Draft Technical Report submitted to Geoprobe Systems, 74 pp.
Berg, Illman (b0010) 2015; 53
Lessoff, Schneidewind, Leven, Blum, Dietrich, Dagan (b0140) 2010; 46
Wang, Yeh, Wen, Gao, Zhang, Huang (b0255) 2019; 55
Händel (10.1016/j.jhydrol.2022.128124_b0105) 2012; 50
Li (10.1016/j.jhydrol.2022.128124_b0145) 2021; 281
Zha (10.1016/j.jhydrol.2022.128124_b0285) 2017; 53
Liu (10.1016/j.jhydrol.2022.128124_b0160) 2020; 590
Yeh (10.1016/j.jhydrol.2022.128124_b0275) 2007; 43
Huang (10.1016/j.jhydrol.2022.128124_b0110) 2011; 47
Liu (10.1016/j.jhydrol.2022.128124_bib332) 2012; 17
Yeh (10.1016/j.jhydrol.2022.128124_bib334) 1996; 32
Illman (10.1016/j.jhydrol.2022.128124_b0130) 2007; 341
Robertson (10.1016/j.jhydrol.2022.128124_bib327) 2000; 38
Pouladi (10.1016/j.jhydrol.2022.128124_b0205) 2021; 154
Li (10.1016/j.jhydrol.2022.128124_b0150) 2008; 46
Zha (10.1016/j.jhydrol.2022.128124_b0290) 2016; 54
Gottlieb (10.1016/j.jhydrol.2022.128124_b0100) 1995; 11
Berg (10.1016/j.jhydrol.2022.128124_b0020) 2011; 47
Carrera (10.1016/j.jhydrol.2022.128124_b0065) 2005; 13
Illman (10.1016/j.jhydrol.2022.128124_b0125) 2015; 51
Dietrich (10.1016/j.jhydrol.2022.128124_b0070) 2008; 46
Wang (10.1016/j.jhydrol.2022.128124_b0250) 2016; 87
Berg (10.1016/j.jhydrol.2022.128124_b0010) 2015; 53
Cho (10.1016/j.jhydrol.2022.128124_bib335) 2020; 229
Zhao (10.1016/j.jhydrol.2022.128124_b0315) 2022; 127971
Straface (10.1016/j.jhydrol.2022.128124_b0225) 2007; 43
Yeh (10.1016/j.jhydrol.2022.128124_b0270) 2000; 36
Illman (10.1016/j.jhydrol.2022.128124_b0120) 2012; 50
Xiang (10.1016/j.jhydrol.2022.128124_bib333) 2009; 45
Gelhar (10.1016/j.jhydrol.2022.128124_b0090) 1986; 22
Maliva (10.1016/j.jhydrol.2022.128124_b0180) 2016; 4
Yeh (10.1016/j.jhydrol.2022.128124_b0265) 2008; 12
Sebol (10.1016/j.jhydrol.2022.128124_bib328) 2000
Soueid Ahmed (10.1016/j.jhydrol.2022.128124_b0220) 2016; 52
10.1016/j.jhydrol.2022.128124_b0235
Zhao (10.1016/j.jhydrol.2022.128124_b0310) 2015; 51
Foster (10.1016/j.jhydrol.2022.128124_b0085) 2021; 241
Lee (10.1016/j.jhydrol.2022.128124_b0135) 2014; 50
Bohling (10.1016/j.jhydrol.2022.128124_b0035) 2016; 8970–8985
Cardiff (10.1016/j.jhydrol.2022.128124_b0060) 2013; 49
Zhu (10.1016/j.jhydrol.2022.128124_b0325) 2009; 32
Zheng (10.1016/j.jhydrol.2022.128124_b0320) 2011; 49
Tsai (10.1016/j.jhydrol.2022.128124_b0245) 2017; 53
Mao (10.1016/j.jhydrol.2022.128124_b0185) 2016; 81
Mao (10.1016/j.jhydrol.2022.128124_b0190) 2018; 567
Brauchler (10.1016/j.jhydrol.2022.128124_b0045) 2013; 49
Liu (10.1016/j.jhydrol.2022.128124_bib330) 2009; 45
Lessoff (10.1016/j.jhydrol.2022.128124_b0140) 2010; 46
Luo (10.1016/j.jhydrol.2022.128124_b0170) 2020; 590
Butler (10.1016/j.jhydrol.2022.128124_b0055) 2002; 40
Liu (10.1016/j.jhydrol.2022.128124_b0155) 2002; 38
Wang (10.1016/j.jhydrol.2022.128124_b0255) 2019; 55
Aquanty Inc. (10.1016/j.jhydrol.2022.128124_bib338) 2018
Zhao (10.1016/j.jhydrol.2022.128124_b0300) 2016; 542
Luo (10.1016/j.jhydrol.2022.128124_b0165) 2017; 554
Wen (10.1016/j.jhydrol.2022.128124_b0260) 2020; 58
McCall (10.1016/j.jhydrol.2022.128124_bib337) 2010
Fischer (10.1016/j.jhydrol.2022.128124_b0080) 2020; 137
Sanchez-León (10.1016/j.jhydrol.2022.128124_b0210) 2016; 54
Borden (10.1016/j.jhydrol.2022.128124_b0040) 2021; 59
Karrow (10.1016/j.jhydrol.2022.128124_bib336) 1979
Bohling (10.1016/j.jhydrol.2022.128124_b0030) 2007; 43
Alexander (10.1016/j.jhydrol.2022.128124_b0005) 2011; 49
Bohling (10.1016/j.jhydrol.2022.128124_bib331) 2012; 48
Bianchi (10.1016/j.jhydrol.2022.128124_b0025) 2016; 52
Zha (10.1016/j.jhydrol.2022.128124_b0295) 2014; 71
10.1016/j.jhydrol.2022.128124_b0215
Berg (10.1016/j.jhydrol.2022.128124_b0015) 2011; 47
Sudicky (10.1016/j.jhydrol.2022.128124_b0230) 2010; 46
McCall (10.1016/j.jhydrol.2022.128124_b0200) 2014; 34
10.1016/j.jhydrol.2022.128124_b0095
Illman (10.1016/j.jhydrol.2022.128124_b0115) 2014; 52
Luo (10.1016/j.jhydrol.2022.128124_b0175) 2022; 127911
Zhao (10.1016/j.jhydrol.2022.128124_b0305) 2018; 559
Doherty (10.1016/j.jhydrol.2022.128124_b0075) 2015
References_xml – volume: 154
  year: 2021
  ident: b0205
  article-title: Individual and joint inversion of head and flux data by geostatistical hydraulic tomography
  publication-title: Adv. Water Resour.
– reference: Sun, D., Luo, N., Vandenhoff, A., Wang, C., Zhao, Z., Rudolph, D.L., Illman, W.A., 2022. Evaluation of the Hydraulic Profiling Tool (HPT) at a highly heterogeneous field site underlain by glaciofluvial deposits, Draft Technical Report submitted to Geoprobe Systems, 74 pp.
– volume: 229
  year: 2020
  ident: bib335
  article-title: Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system
  publication-title: J. Contam. Hydrol.
– volume: 47
  start-page: 1
  year: 2011
  end-page: 17
  ident: b0015
  article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments
  publication-title: Water Resour. Res.
– volume: 4
  start-page: 383
  year: 2016
  end-page: 402
  ident: b0180
  publication-title: Direct-Push Technology BT - Aquifer Characterization Techniques: Schlumberger Methods in Water Resources Evaluation Series No
– volume: 36
  start-page: 2095
  year: 2000
  ident: b0270
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resour. Res.
– volume: 127971
  year: 2022
  ident: b0315
  article-title: Integrating Hydraulic Profiling Tool Pressure Logs and Hydraulic Tomography for Improved High-Resolution Characterization of Subsurface Heterogeneity
  publication-title: J. Hydrol.
– volume: 48
  year: 2012
  ident: bib331
  article-title: Geostatistical analysis of centimeter-scale hydraulic conductivity variations at the MADE site
  publication-title: Water Resour. Res.
– reference: Soo, C.J., T., W.J., P., B.F., 2000. Measuring vertical profiles of hydraulic conductivity with in situ direct-push methods. J. Environ. Eng. 126, 775–777. 10.1061/(ASCE)0733-9372(2000)126:8(775).
– volume: 46
  start-page: 1
  year: 2010
  end-page: 9
  ident: b0140
  article-title: Spatial characterization of the hydraulic conductivity using direct-push injection logging
  publication-title: Water Resour. Res.
– year: 2000
  ident: bib328
  publication-title: Determination of groundwater age using CFC’s in three shallow aquifers in Southern Ontario
– volume: 542
  start-page: 156
  year: 2016
  end-page: 171
  ident: b0300
  article-title: On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
  publication-title: J. Hydrol.
– volume: 281
  year: 2021
  ident: b0145
  article-title: Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity
  publication-title: Eng. Geol.
– volume: 52
  start-page: 659
  year: 2014
  end-page: 684
  ident: b0115
  article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks
  publication-title: Groundwater
– volume: 43
  start-page: 1
  year: 2007
  end-page: 23
  ident: b0030
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
– volume: 8970–8985
  year: 2016
  ident: b0035
  article-title: Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure
  publication-title: Water Resour. Res.
– reference: Geoprobe, 2007. Geoprobe Hydraulic Profiling Tool (HPT) System, Standard Operating procedure.
– volume: 32
  start-page: 391
  year: 2009
  end-page: 400
  ident: b0325
  article-title: Analysis of tracer tomography using temporal moments of tracer breakthrough curves
  publication-title: Adv. Water Resour.
– volume: 81
  start-page: D359
  year: 2016
  end-page: D375
  ident: b0185
  article-title: Induced polarization response of porous media with metallic particles — Part 4: Detection of metallic and nonmetallic targets in time-domain induced polarization tomography
  publication-title: Geophysics
– volume: 53
  start-page: 8554
  year: 2017
  end-page: 8571
  ident: b0245
  article-title: Fusion of time-lapse gravity survey and hydraulic tomography for estimating spatially varying hydraulic conductivity and specific yield fields
  publication-title: Water Resour. Res.
– volume: 559
  start-page: 392
  year: 2018
  end-page: 410
  ident: b0305
  article-title: Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site
  publication-title: J. Hydrol.
– volume: 17
  start-page: 19
  year: 2012
  end-page: 29
  ident: bib332
  article-title: Hydraulic conductivity profiling with direct push methods
  publication-title: Grundwasser
– volume: 127911
  year: 2022
  ident: b0175
  article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations
  publication-title: J. Hydrol.
– volume: 38
  start-page: 2
  year: 2002
  end-page: 10
  ident: b0155
  article-title: Effectiveness of hydraulic tomography: Sandbox experiments
  publication-title: Water Resour. Res.
– volume: 567
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0190
  article-title: An application of hydraulic tomography to a deep coal mine: Combining traditional pumping tests with water inrush incidents
  publication-title: J. Hydrol.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 16
  ident: b0275
  article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones
  publication-title: Water Resour. Res.
– volume: 13
  start-page: 206
  year: 2005
  end-page: 222
  ident: b0065
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
– volume: 590
  year: 2020
  ident: b0170
  article-title: Three-dimensional hydraulic tomography analysis of long-term municipal wellfield operations: Validation with synthetic flow and solute transport data
  publication-title: J. Hydrol.
– volume: 49
  start-page: 649
  year: 2011
  end-page: 662
  ident: b0320
  article-title: Lessons Learned from 25 Years of Research at the MADE Site
  publication-title: Groundwater
– volume: 51
  start-page: 3219
  year: 2015
  end-page: 3237
  ident: b0125
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0225
  article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo
  publication-title: Italy. Water Resour. Res.
– volume: 59
  start-page: 266
  year: 2021
  end-page: 272
  ident: b0040
  article-title: A physically based approach for estimating hydraulic conductivity from HPT pressure and flowrate
  publication-title: Groundwater
– volume: 47
  year: 2011
  ident: b0020
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
– volume: 241
  year: 2021
  ident: b0085
  article-title: Effects of large-scale heterogeneity and temporally varying hydrologic processes on estimating immobile pore space: A mesoscale-laboratory experimental and numerical modeling investigation
  publication-title: J. Contam. Hydrol.
– volume: 46
  start-page: 323
  year: 2008
  end-page: 328
  ident: b0070
  article-title: A rapid method for hydraulic profiling in unconsolidated formations
  publication-title: Groundwater
– volume: 53
  start-page: 2850
  year: 2017
  end-page: 2876
  ident: b0285
  article-title: Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 1
  year: 2011
  end-page: 18
  ident: b0110
  article-title: Robustness of joint interpretation of sequential pumping tests: Numerical and field experiments
  publication-title: Water Resour. Res.
– year: 2015
  ident: b0075
  article-title: Calibration and uncertainty analysis for complex environmental models
– volume: 11
  start-page: 353
  year: 1995
  end-page: 360
  ident: b0100
  article-title: Identification of the permeability distribution in soil by hydraulic tomography
  publication-title: Inverse Probl.
– volume: 51
  start-page: 4137
  year: 2015
  end-page: 4155
  ident: b0310
  article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study
  publication-title: Water Resour. Res.
– volume: 40
  start-page: 25
  year: 2002
  end-page: 36
  ident: b0055
  article-title: Hydraulic tests with direct-push equipment
  publication-title: Groundwater
– volume: 54
  start-page: 498
  year: 2016
  end-page: 507
  ident: b0210
  article-title: Combining 3d hydraulic tomography with tracer tests for improved transport characterization
  publication-title: Groundwater
– volume: 50
  start-page: 935
  year: 2012
  end-page: 942
  ident: b0105
  article-title: Relevance of deterministic structures for modeling of transport: The Lauswiesen case study
  publication-title: Ground Water
– volume: 49
  start-page: 7311
  year: 2013
  end-page: 7326
  ident: b0060
  article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resour. Res.
– start-page: 6
  year: 2010
  end-page: 10
  ident: bib337
  publication-title: Tech guide for calculation of estimated hydraulic conductivity (Est. K) log from HPT data
– volume: 34
  start-page: 85
  year: 2014
  end-page: 95
  ident: b0200
  article-title: Field Application of the Combined Membrane-Interface Probe and Hydraulic Profiling Tool (MiHpt)
  publication-title: Groundw. Monit. Remediat.
– volume: 32
  start-page: 85
  year: 1996
  end-page: 92
  ident: bib334
  article-title: An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 365
  year: 2011
  end-page: 382
  ident: b0005
  article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer
  publication-title: Ground Water
– volume: 49
  year: 2013
  ident: b0045
  article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments
  publication-title: Water Resour. Res.
– year: 2018
  ident: bib338
  publication-title: HydroGeoSphere. A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport
– volume: 554
  start-page: 758
  year: 2017
  end-page: 779
  ident: b0165
  article-title: Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation
  publication-title: J. Hydrol.
– volume: 12
  start-page: 159
  year: 2008
  end-page: 167
  ident: b0265
  article-title: Fusion of hydrologic and geophysical tomographic surveys
  publication-title: Geosci. J.
– volume: 341
  start-page: 222
  year: 2007
  end-page: 234
  ident: b0130
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
– volume: 38
  start-page: 689
  year: 2000
  end-page: 695
  ident: bib327
  article-title: Long-term performance of in situ reactive barriers for nitrate remediation
  publication-title: Groundwater
– volume: 137
  year: 2020
  ident: b0080
  article-title: Hydraulic tomography in coupled discrete-continuum concept to image hydraulic properties of a fractured and karstified aquifer (Lez aquifer, France)
  publication-title: Adv. Water Resour.
– volume: 46
  year: 2010
  ident: b0230
  article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: From measurements to a practical application of stochastic flow and transport theory
  publication-title: Water Resour. Res.
– volume: 55
  start-page: 4974
  year: 2019
  end-page: 4993
  ident: b0255
  article-title: Resolution and ergodicity issues of river stage tomography with different excitations
  publication-title: Water Resour. Res.
– volume: 45
  start-page: 1
  year: 2009
  end-page: 14
  ident: bib333
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 6769
  year: 2016
  end-page: 6791
  ident: b0220
  article-title: Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests
  publication-title: Water Resour. Res.
– volume: 54
  start-page: 793
  year: 2016
  end-page: 804
  ident: b0290
  article-title: An application of hydraulic tomography to a large-scale fractured granite site, Mizunami
  publication-title: Japan. Groundwater
– volume: 50
  start-page: 5410
  year: 2014
  end-page: 5427
  ident: b0135
  article-title: Large-scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA)
  publication-title: Water Resour. Res.
– year: 1979
  ident: bib336
  publication-title: Geology of the University of Waterloo Campus. Waterloo, Ontario, Canada.
– volume: 87
  start-page: 106
  year: 2016
  end-page: 121
  ident: b0250
  article-title: Characterisation of the transmissivity field of a fractured and karstic aquifer
  publication-title: Southern France. Adv. Water Resour.
– volume: 52
  start-page: 552
  year: 2016
  end-page: 565
  ident: b0025
  article-title: A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial aquifer
  publication-title: Water Resour. Res.
– volume: 590
  year: 2020
  ident: b0160
  article-title: Scanning for water hazard threats with sequential water releasing tests in underground coal mines
  publication-title: J. Hydrol.
– volume: 45
  year: 2009
  ident: bib330
  article-title: A new method for high-resolution characterization of hydraulic conductivity
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 421
  year: 2012
  end-page: 431
  ident: b0120
  article-title: Comparison of approaches for predicting solute transport: Sandbox experiments
  publication-title: Ground Water
– volume: 46
  start-page: 193
  year: 2008
  end-page: 201
  ident: b0150
  article-title: Three-dimensional geostatistical inversion of flowmeter and pumping test data
  publication-title: Ground Water
– volume: 58
  start-page: 79
  year: 2020
  end-page: 92
  ident: b0260
  article-title: Redundant and nonredundant information for model calibration or hydraulic tomography
  publication-title: Groundwater
– volume: 71
  start-page: 162
  year: 2014
  end-page: 176
  ident: b0295
  article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium
  publication-title: Adv. Water Resour.
– volume: 53
  start-page: 71
  year: 2015
  end-page: 89
  ident: b0010
  article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site
  publication-title: Groundwater
– volume: 22
  start-page: 135S
  year: 1986
  end-page: 145S
  ident: b0090
  article-title: Stochastic subsurface hydrology from theory to applications
  publication-title: Water Resour. Res.
– volume: 13
  start-page: 206
  year: 2005
  ident: 10.1016/j.jhydrol.2022.128124_b0065
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0404-7
– volume: 281
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128124_b0145
  article-title: Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105967
– volume: 52
  start-page: 6769
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0220
  article-title: Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019058
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128124_b0275
  article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR004877
– volume: 45
  start-page: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128124_bib333
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007180
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128124_b0015
  article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010429
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128124_b0030
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR004932
– volume: 46
  start-page: 1
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128124_b0140
  article-title: Spatial characterization of the hydraulic conductivity using direct-push injection logging
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008949
– volume: 341
  start-page: 222
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128124_b0130
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.05.011
– volume: 52
  start-page: 659
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128124_b0115
  article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks
  publication-title: Groundwater
  doi: 10.1111/gwat.12119
– ident: 10.1016/j.jhydrol.2022.128124_b0095
– volume: 50
  start-page: 935
  issue: 6
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128124_b0105
  article-title: Relevance of deterministic structures for modeling of transport: The Lauswiesen case study
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2012.00948.x
– volume: 554
  start-page: 758
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128124_b0165
  article-title: Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.09.045
– volume: 127911
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128124_b0175
  article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations
  publication-title: J. Hydrol.
– volume: 137
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128124_b0080
  article-title: Hydraulic tomography in coupled discrete-continuum concept to image hydraulic properties of a fractured and karstified aquifer (Lez aquifer, France)
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103523
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128124_b0170
  article-title: Three-dimensional hydraulic tomography analysis of long-term municipal wellfield operations: Validation with synthetic flow and solute transport data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125438
– volume: 51
  start-page: 3219
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128124_b0125
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016552
– volume: 53
  start-page: 8554
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128124_b0245
  article-title: Fusion of time-lapse gravity survey and hydraulic tomography for estimating spatially varying hydraulic conductivity and specific yield fields
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020459
– volume: 567
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128124_b0190
  article-title: An application of hydraulic tomography to a deep coal mine: Combining traditional pumping tests with water inrush incidents
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.058
– year: 2000
  ident: 10.1016/j.jhydrol.2022.128124_bib328
– volume: 11
  start-page: 353
  year: 1995
  ident: 10.1016/j.jhydrol.2022.128124_b0100
  article-title: Identification of the permeability distribution in soil by hydraulic tomography
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/11/2/005
– volume: 542
  start-page: 156
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0300
  article-title: On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.061
– volume: 47
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128124_b0020
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010616
– volume: 8970–8985
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0035
  article-title: Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 7311
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128124_b0060
  article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20519
– volume: 229
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128124_bib335
  article-title: Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2019.103559
– volume: 40
  start-page: 25
  year: 2002
  ident: 10.1016/j.jhydrol.2022.128124_b0055
  article-title: Hydraulic tests with direct-push equipment
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2002.tb02488.x
– volume: 38
  start-page: 689
  issue: 5
  year: 2000
  ident: 10.1016/j.jhydrol.2022.128124_bib327
  article-title: Long-term performance of in situ reactive barriers for nitrate remediation
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2000.tb02704.x
– year: 2018
  ident: 10.1016/j.jhydrol.2022.128124_bib338
– volume: 49
  issue: 4
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128124_b0045
  article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20181
– volume: 53
  start-page: 2850
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128124_b0285
  article-title: Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019185
– volume: 12
  start-page: 159
  year: 2008
  ident: 10.1016/j.jhydrol.2022.128124_b0265
  article-title: Fusion of hydrologic and geophysical tomographic surveys
  publication-title: Geosci. J.
  doi: 10.1007/s12303-008-0017-6
– volume: 46
  start-page: 193
  year: 2008
  ident: 10.1016/j.jhydrol.2022.128124_b0150
  article-title: Three-dimensional geostatistical inversion of flowmeter and pumping test data
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00419.x
– volume: 50
  start-page: 5410
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128124_b0135
  article-title: Large-scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA)
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015483
– volume: 54
  start-page: 793
  issue: 6
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0290
  article-title: An application of hydraulic tomography to a large-scale fractured granite site, Mizunami
  publication-title: Japan. Groundwater
  doi: 10.1111/gwat.12421
– volume: 17
  start-page: 19
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128124_bib332
  article-title: Hydraulic conductivity profiling with direct push methods
  publication-title: Grundwasser
  doi: 10.1007/s00767-011-0182-9
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128124_b0160
  article-title: Scanning for water hazard threats with sequential water releasing tests in underground coal mines
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125350
– volume: 87
  start-page: 106
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0250
  article-title: Characterisation of the transmissivity field of a fractured and karstic aquifer
  publication-title: Southern France. Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.10.014
– volume: 59
  start-page: 266
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128124_b0040
  article-title: A physically based approach for estimating hydraulic conductivity from HPT pressure and flowrate
  publication-title: Groundwater
  doi: 10.1111/gwat.13039
– volume: 71
  start-page: 162
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128124_b0295
  article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.06.008
– volume: 49
  start-page: 649
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128124_b0320
  article-title: Lessons Learned from 25 Years of Research at the MADE Site
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2010.00753.x
– volume: 45
  issue: 8
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128124_bib330
  article-title: A new method for high-resolution characterization of hydraulic conductivity
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008319
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128124_b0225
  article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo
  publication-title: Italy. Water Resour. Res.
– volume: 36
  start-page: 2095
  year: 2000
  ident: 10.1016/j.jhydrol.2022.128124_b0270
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900114
– volume: 48
  issue: 2
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128124_bib331
  article-title: Geostatistical analysis of centimeter-scale hydraulic conductivity variations at the MADE site
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010791
– volume: 58
  start-page: 79
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128124_b0260
  article-title: Redundant and nonredundant information for model calibration or hydraulic tomography
  publication-title: Groundwater
  doi: 10.1111/gwat.12879
– volume: 154
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128124_b0205
  article-title: Individual and joint inversion of head and flux data by geostatistical hydraulic tomography
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.103960
– ident: 10.1016/j.jhydrol.2022.128124_b0215
  doi: 10.1061/(ASCE)0733-9372(2000)126:8(775)
– volume: 49
  start-page: 365
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128124_b0005
  article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2010.00729.x
– volume: 52
  start-page: 552
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0025
  article-title: A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial aquifer
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR018186
– year: 2015
  ident: 10.1016/j.jhydrol.2022.128124_b0075
– volume: 559
  start-page: 392
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128124_b0305
  article-title: Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.024
– ident: 10.1016/j.jhydrol.2022.128124_b0235
– volume: 32
  start-page: 85
  year: 1996
  ident: 10.1016/j.jhydrol.2022.128124_bib334
  article-title: An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02869
– volume: 127971
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128124_b0315
  article-title: Integrating Hydraulic Profiling Tool Pressure Logs and Hydraulic Tomography for Improved High-Resolution Characterization of Subsurface Heterogeneity
  publication-title: J. Hydrol.
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128124_b0110
  article-title: Robustness of joint interpretation of sequential pumping tests: Numerical and field experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010698
– volume: 46
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128124_b0230
  article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: From measurements to a practical application of stochastic flow and transport theory
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007558
– volume: 22
  start-page: 135S
  year: 1986
  ident: 10.1016/j.jhydrol.2022.128124_b0090
  article-title: Stochastic subsurface hydrology from theory to applications
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i09Sp0135S
– volume: 38
  start-page: 2
  year: 2002
  ident: 10.1016/j.jhydrol.2022.128124_b0155
  article-title: Effectiveness of hydraulic tomography: Sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000338
– volume: 50
  start-page: 421
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128124_b0120
  article-title: Comparison of approaches for predicting solute transport: Sandbox experiments
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2011.00859.x
– volume: 81
  start-page: D359
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0185
  article-title: Induced polarization response of porous media with metallic particles — Part 4: Detection of metallic and nonmetallic targets in time-domain induced polarization tomography
  publication-title: Geophysics
  doi: 10.1190/geo2015-0480.1
– volume: 53
  start-page: 71
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128124_b0010
  article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site
  publication-title: Groundwater
  doi: 10.1111/gwat.12159
– volume: 32
  start-page: 391
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128124_b0325
  article-title: Analysis of tracer tomography using temporal moments of tracer breakthrough curves
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.12.001
– start-page: 6
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128124_bib337
– volume: 51
  start-page: 4137
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128124_b0310
  article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016910
– volume: 4
  start-page: 383
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0180
– volume: 34
  start-page: 85
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128124_b0200
  article-title: Field Application of the Combined Membrane-Interface Probe and Hydraulic Profiling Tool (MiHpt)
  publication-title: Groundw. Monit. Remediat.
  doi: 10.1111/gwmr.12051
– volume: 54
  start-page: 498
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128124_b0210
  article-title: Combining 3d hydraulic tomography with tracer tests for improved transport characterization
  publication-title: Groundwater
  doi: 10.1111/gwat.12381
– volume: 55
  start-page: 4974
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128124_b0255
  article-title: Resolution and ergodicity issues of river stage tomography with different excitations
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023204
– volume: 241
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128124_b0085
  article-title: Effects of large-scale heterogeneity and temporally varying hydrologic processes on estimating immobile pore space: A mesoscale-laboratory experimental and numerical modeling investigation
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2021.103811
– year: 1979
  ident: 10.1016/j.jhydrol.2022.128124_bib336
– volume: 46
  start-page: 323
  year: 2008
  ident: 10.1016/j.jhydrol.2022.128124_b0070
  article-title: A rapid method for hydraulic profiling in unconsolidated formations
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2007.00377.x
SSID ssj0000334
Score 2.443082
Snippet •Inverse modeling approach proposed to invert cm-scale K from HPT surveys.•Based on inverted K, a new power-law model was developed for HPT surveys at...
Direct-push based hydraulic profiling tool (HPT) and geostatistically-based hydraulic tomography (HT) are two promising techniques for the high-resolution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128124
SubjectTerms aquifers
cost effectiveness
empirical models
geostatistics
Hydraulic conductivity
Hydraulic profiling tool
Hydraulic tomography
Inverse modeling
Model calibration and validation
Ontario
permeameters
Subsurface heterogeneity
surveys
tomography
Title Improved high-resolution characterization of hydraulic conductivity through inverse modeling of HPT profiles and steady-state hydraulic tomography: Field and synthetic studies
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128124
https://www.proquest.com/docview/2718287498
Volume 612
WOSCitedRecordID wos000874855100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000334
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQviE8xBshIvE0JjZ0mMW8V2hgITXsoouIlcmxHrOrSqR_Tuj_Cz-Avcm9sJ1ELGiDxElVp7FQ9J_HJzb3nEvJaFYlJEy2CSPZ5ELMCrjkVl4HR3CjOtWKq9pn9lJ6cZOOxOO31vvtamMtpWlXZ1ZW4-K9Qwz4AG0tn_wLuZlLYAZ8BdNgC7LD9I-BtmAB0JDoRB_A07c6GNb7Om_m61YlrPZcrNLqG52K0frW9JHz3nrMKszaM7Zfj8qOPT0cHrtO39XeuebIO6tKkzoTL2bmzw8aowxFmytnD1xWITvSJXXRyGLf1Mc5kDaJABA_P0dBBI3ubyMXXb7KO82LMuzRuBUaWT6curPulzgU4GIbd2AY8FvvkLRdw2yq6aQoQosT2RvY38cQmY28tCDY2MQkn9keHeJYQ3x7ayu0Nr218dc1waoaRFliob5Fdlg4E3C53hx8Oxx_bRZ7z2BvR44C2OOzNL0_2O9mzIQBqVTO6T-65v5sOLY0ekJ6pHpI7741D7hH54elEN-hEN-lEZyVt0KddOlFHJ-roRD2dcAjQiXo6UeAH7dKpM2FLp7e0JpM92JOJOjI9Jp-PDkfvjgPX5CNQPGbLQGQyS4tCF30uZRSpjMlYMpFpJZOiX2Rc6USWWV8KLss-fC9kouJEKhUlacpL_oTsVLPKPCU0LUos0wZJrUUMwgzErS4kU2JgIjHQ6R6JPQa5cg742IhlmvtUx0nuoMsRutxCt0fCZtiFtYC5aUDmAc6djrX6NAdW3jT0lSdEDvd5fHknKzNbLXIGIhJ7U4js2b9Pv0_utpfZc7KznK_MC3JbXS7PFvOXjuM_Abje3ao
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+high-resolution+characterization+of+hydraulic+conductivity+through+inverse+modeling+of+HPT+profiles+and+steady-state+hydraulic+tomography%3A+Field+and+synthetic+studies&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=612&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128124&rft.externalDocID=S0022169422006990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon