Applicability evaluation of soil moisture constraint algorithms in remote sensing evapotranspiration models

•We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The algorithms with better performance in ET simulations are also better in SM simulations. Remotely sensed (RS) evapotranspiration (ET) models have...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydrology (Amsterdam) Ročník 623; s. 129870
Hlavní autori: Bai, Peng, Cai, Changxin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2023
Predmet:
ISSN:0022-1694, 1879-2707
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The algorithms with better performance in ET simulations are also better in SM simulations. Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the lack of reliable soil moisture (SM) constraints. Due to the lack of reliable, spatiotemporal continuous SM profile data, existing RS-ET models tend to use atmospheric or land surface variables as proxies for SM constraints. Although several proxy algorithms for SM constraints have been developed, few studies have evaluated their performance in ET simulations. To address this gap, we evaluated the applicability of five proxy algorithms for SM constraints (namely, fVPD, fLST, fDT, fZhang, and fdrying) to ET simulations in China using the Penman-Monteith-Leuning (PML) model. These algorithms were evaluated at 14 ChinaFlux sites and 286 basins using flux tower measurements and water balance-based ET estimates, respectively. The results show that among the five algorithms, fdrying performs test at the flux sites, with a median of Kling-Gupta efficiency (KGE) of 0.75. The second-best algorithm is fZhang (KGE = 0.73), followed by fDT (KGE = 0.70), fLST (KGE = 0.68), and fVPD (KGE = 0.65). The performance ranking of the five algorithms at the basin scale is consistent with that at the flux sites. Using the flux site SM measurements as a reference, we further found that the algorithms with better performance in ET simulations also have better SM simulation capabilities. This study highlights the importance of reliable SM constraints in the RS-ET models.
AbstractList Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the lack of reliable soil moisture (SM) constraints. Due to the lack of reliable, spatiotemporal continuous SM profile data, existing RS-ET models tend to use atmospheric or land surface variables as proxies for SM constraints. Although several proxy algorithms for SM constraints have been developed, few studies have evaluated their performance in ET simulations. To address this gap, we evaluated the applicability of five proxy algorithms for SM constraints (namely, fVPD, fLST, fDT, fZₕₐₙg, and fdᵣyᵢₙg) to ET simulations in China using the Penman-Monteith-Leuning (PML) model. These algorithms were evaluated at 14 ChinaFlux sites and 286 basins using flux tower measurements and water balance-based ET estimates, respectively. The results show that among the five algorithms, fdᵣyᵢₙg performs test at the flux sites, with a median of Kling-Gupta efficiency (KGE) of 0.75. The second-best algorithm is fZₕₐₙg (KGE = 0.73), followed by fDT (KGE = 0.70), fLST (KGE = 0.68), and fVPD (KGE = 0.65). The performance ranking of the five algorithms at the basin scale is consistent with that at the flux sites. Using the flux site SM measurements as a reference, we further found that the algorithms with better performance in ET simulations also have better SM simulation capabilities. This study highlights the importance of reliable SM constraints in the RS-ET models.
•We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The algorithms with better performance in ET simulations are also better in SM simulations. Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the lack of reliable soil moisture (SM) constraints. Due to the lack of reliable, spatiotemporal continuous SM profile data, existing RS-ET models tend to use atmospheric or land surface variables as proxies for SM constraints. Although several proxy algorithms for SM constraints have been developed, few studies have evaluated their performance in ET simulations. To address this gap, we evaluated the applicability of five proxy algorithms for SM constraints (namely, fVPD, fLST, fDT, fZhang, and fdrying) to ET simulations in China using the Penman-Monteith-Leuning (PML) model. These algorithms were evaluated at 14 ChinaFlux sites and 286 basins using flux tower measurements and water balance-based ET estimates, respectively. The results show that among the five algorithms, fdrying performs test at the flux sites, with a median of Kling-Gupta efficiency (KGE) of 0.75. The second-best algorithm is fZhang (KGE = 0.73), followed by fDT (KGE = 0.70), fLST (KGE = 0.68), and fVPD (KGE = 0.65). The performance ranking of the five algorithms at the basin scale is consistent with that at the flux sites. Using the flux site SM measurements as a reference, we further found that the algorithms with better performance in ET simulations also have better SM simulation capabilities. This study highlights the importance of reliable SM constraints in the RS-ET models.
ArticleNumber 129870
Author Bai, Peng
Cai, Changxin
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-9711-7069
  surname: Bai
  fullname: Bai, Peng
  email: baip@igsnrr.ac.cn
  organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Changxin
  surname: Cai
  fullname: Cai, Changxin
  organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
BookMark eNqFkD1vFDEQhi0UJC6Bn4DkkmYPf-x6vaJAUUQAKRIN1JZjj5M5vPZi-yLdv2ePTUWTaaZ5n1czzyW5SDkBIe8523PG1cfD_vB48iXHvWBC7rmY9MhekR3X49SJkY0XZMeYEB1XU_-GXNZ6YOtI2e_I7-tliejsPUZsJwpPNh5tw5xoDrRmjHTOWNuxAHU51VYspkZtfMgF2-NcKSZaYM4NaIVUMT2cO5a8BlNdsGxdc_YQ61vyOthY4d3zviK_br_8vPnW3f34-v3m-q5zshet00FPmjsXpFbCWpA9TF5Ng7_XftSKBcEDD4ODSUmuvQ1TL11QXlrhnYQgr8iHrXcp-c8RajMzVgcx2gT5WI3QelSsHwa1Rj9tUVdyrQWCcdj-3Xz-NBrOzFmxOZhnxeas2GyKV3r4j14KzracXuQ-b9wqBZ4QiqkOITnwWMA14zO-0PAXBNqfug
CitedBy_id crossref_primary_10_1088_1748_9326_ad7f70
crossref_primary_10_1016_j_jhydrol_2025_133472
crossref_primary_10_1016_j_jhydrol_2025_132979
crossref_primary_10_3390_rs16152783
Cites_doi 10.5194/hess-27-363-2023
10.1080/01431160210161724
10.1002/2016MS000702
10.1080/2150704X.2020.1820614
10.1029/2004GL020873
10.1016/j.agrformet.2014.12.005
10.1016/j.rse.2018.09.023
10.1002/hyp.8379
10.1016/j.agrformet.2012.11.016
10.1029/2019WR027019
10.1038/nature09396
10.1016/j.rse.2012.12.016
10.1080/16742834.2019.1569456
10.1002/eco.19
10.1016/j.rse.2010.01.022
10.1016/S0034-4257(03)00051-8
10.1002/2016GL068675
10.1088/1748-9326/ac3532
10.1029/2011RG000373
10.1016/j.jhydrol.2019.124162
10.1016/j.jhydrol.2020.125054
10.1029/2009WR008716
10.1029/2009WR008800
10.1002/2017JD027025
10.1016/j.jhydrol.2022.128514
10.1016/j.jhydrol.2022.128347
10.1016/j.jhydrol.2020.125301
10.1002/qj.3803
10.1002/2016WR019340
10.5194/hess-24-515-2020
10.1016/j.scitotenv.2018.06.233
10.1016/j.rse.2011.02.019
10.1038/nclimate3114
10.1029/2010JG001566
10.1016/j.jhydrol.2022.128446
10.1016/j.jhydrol.2021.127026
10.1002/wat2.1168
10.1007/s40333-019-0098-2
10.1029/2020WR027392
10.3390/s90503801
10.1016/j.jhydrol.2022.128856
10.1038/s41597-020-00693-x
10.1002/wrcr.20468
10.5194/gmd-10-1903-2017
10.1016/j.jhydrol.2009.08.003
10.2136/sssaj1986.03615995005000040039x
10.1016/j.rse.2006.02.007
10.1080/17538947.2013.805262
10.1016/j.rse.2007.06.025
10.1007/s00484-016-1205-0
10.1029/2007WR006562
10.1016/j.rse.2005.12.016
10.1007/s10712-008-9037-z
10.1109/TGRS.2009.2015656
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2023.129870
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2023_129870
S0022169423008120
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-8f8981ccf3862aae34e9d695db8d7860f21f1f5ce96318daf943cf6d3a2dc3ef3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030138500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 08:58:56 EST 2025
Sat Nov 29 07:30:20 EST 2025
Tue Nov 18 21:53:57 EST 2025
Fri Feb 23 02:34:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Evaporation
Remote sensing
Evapotranspiration
Soil moisture constraint
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-8f8981ccf3862aae34e9d695db8d7860f21f1f5ce96318daf943cf6d3a2dc3ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9711-7069
PQID 2887604556
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2887604556
crossref_citationtrail_10_1016_j_jhydrol_2023_129870
crossref_primary_10_1016_j_jhydrol_2023_129870
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129870
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Castle, Reager, Thomas, Purdy, Lo, Famiglietti, Tang (b0040) 2016; 43
Glenn, Morino, Didan, Jordan, C. Carroll, Nagler, Hultine, Sheader, Waugh (b0075) 2008; 1
Tang, Li (b0220) 2015; 202
Zhang, Leuning, Hutley, Beringer, McHugh, Walker (b0295) 2010; 46
Ge, Pitman, Guo, Zan, Fu (b0070) 2020; 24
Hutchinson, Xu (b0095) 2004
Senay, Leake, Nagler (b0200) 2011; 25
Shi, C., Jiang, L., Zhang, T. et al., 2014. Status and Plans of CMA Land Data Assimilation System (CLDAS) Project. EGU General Assembly 2014, 16(National Meteorological Information Center).
Zhang, Peña-Arancibia, McVicar, Chiew, Vaze, Liu, Lu, Zheng, Wang, Liu, Miralles, Pan (b0300) 2016; 6
Tramutoli, Claps, Marella (b0230) 2000
Peerbhai, Chetty, Clark, Gokool (b0180) 2022; 613
Zhang, Kimball, Nemani, Running (b0285) 2010; 46
Purdy, Fisher, Goulden, Colliander, Halverson, Tu, Famiglietti (b0185) 2018; 219
Bai, Liu, Zhang, Liu (b0015) 2018; 643
Allen, R.G., Pereira, L.S. et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.
Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz‐Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, Rosnay, Rozum, Vamborg, Villaume, Thépaut (b0090) 2020; 146
Jung, Reichstein, Margolis, Cescatti, Richardson, Arain, Arneth, Bernhofer, Bonal, Chen, Gianelle, Gobron, Kiely, Kutsch, Lasslop, Law, Lindroth, Merbold, Montagnani, Moors, Papale, Sottocornola, Vaccari, Williams (b0110) 2011; 116
Wang, Dickinson (b0240) 2012; 50
Yao, Liang, Cheng, Liu, Fisher, Zhang, Jia, Zhao, Qin, Zhao, Han, Zhou, Zhou, Li, Zhao (b0275) 2013; 171-172
Novick, Ficklin, Stoy, Williams, Bohrer, Oishi, Papuga, Blanken, Noormets, Sulman, Scott, Wang, Phillips (b0175) 2016; 6
Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (b0125) 2009; 9
Wang, Liu, Li, Yang, Bai, Liu, Chen (b0255) 2019; 579
Gupta, Kling, Yilmaz, Martinez (b0080) 2009; 377
Liu, Liu, Brutsaert (b0140) 2016; 52
Brutsaert, Govindaraju, Anderson, Arabi, Francés, Suarez, Lavado-Casimiro, Green (b0030) 2014
Dzikiti, Jovanovic, Bugan, Ramoelo, Majozi, Nickless, Cho, Le Maitre, Ntshidi, Pienaar (b0050) 2019; 11
Yang, Bai, Li (b0270) 2022; 613
Liang, Zhao, Liu, Yuan, Cheng, Xiao, Zhang, Liu, Cheng, Tang, Qu, Bo, Qu, Ren, Yu, Townshend (b0130) 2013; 6
Brutsaert, W., 2005. Review of Hydrology: An Introduction by Wilfried Brutsaert. Cambridge University Press, Cambridge, U.K., Texas A&M University, Scoates Hall, 2117 TAMU College Station, TX. 77843-2117.
Jung, Reichstein, Ciais, Seneviratne, Sheffield, Goulden, Bonan, Cescatti, Chen, de Jeu, Dolman, Eugster, Gerten, Gianelle, Gobron, Heinke, Kimball, Law, Montagnani, Mu, Mueller, Oleson, Papale, Richardson, Roupsard, Running, Tomelleri, Viovy, Weber, Williams, Wood, Zaehle, Zhang (b0105) 2010; 467
Wang, Li (b0250) 2020; 11
Feng, Zhang, Zhan (b0055) 2023; 27
Kalma, McVicar, McCabe (b0115) 2008; 29
Liu, Gudmundsson, Hauser, Qin, Li, Seneviratne (b0135) 2020; 11
Rodell (b0190) 2004; 31
Yuan, Liu, Yu, Bonnefond, Chen, Davis, Desai, Goldstein, Gianelle, Rossi, Suyker, Verma (b0280) 2010; 114
Martens, Miralles, Lievens, van der Schalie, de Jeu, Fernández-Prieto, Beck, Dorigo, Verhoest (b0155) 2017; 10
Zhang, Kimball, Running (b0290) 2016; 3
Saxton, Rawls, Romberger, Papendick (b0195) 1986; 50
Zhang, Zhang, Ma, Kong, Tian, Shao, Tang (b0310) 2021; 16
Leuning, Zhang, Rajaud, Cleugh, Tu (b0120) 2008; 44
Song, Lyu, Wen (b0215) 2020; 591
Morillas, Leuning, Villagarcía, García, Serrano-Ortiz, Domingo (b0160) 2013; 49
Zhang, Chiew, Peña‐Arancibia, Sun, Li, Leuning (b0305) 2017; 122
Bai, Zhang, Zhang, Koju, Yao, Igbawua (b0025) 2017; 9
Jiang, Xie, Wang, Liang, Zhu, Meng, Zhang, Chen, Liu (b0100) 2022; 614
Fisher, Tu, Baldocchi (b0060) 2008; 112
Soltani, Bjerre, Koch, Stisen (b0210) 2021; 603
Bai, Liu, Zhang, Liu (b0020) 2020; 56
Bai (b0010) 2023; 617
Tong, Zhang, Meng, Li, Zheng (b0225) 2017; 61
Xiao, Shunlin, Jindi (b0265) 2009; 47
Majumdar (b0150) 2003; 24
Lv, Ma, Peng (b0145) 2019; 12
Mu, Zhao, Running (b0165) 2011; 115
Wigneron, Calvet, Pellarin, Van de Griend, Berger, Ferrazzoli (b0260) 2003; 85
Chen, Yuan (b0045) 2020; 588
García, Sandholt, Ceccato, Ridler, Mougin, Kergoat, Morillas, Timouk, Fensholt, Domingo (b0065) 2013; 131
Verstraeten, Veroustraete, van der Sande, Grootaers, Feyen (b0235) 2006; 101
Niu, He, Zhu, Ren, Zhang, Zhang (b0170) 2020; 7
Wang, Li, Cribb (b0245) 2006; 102
Han, Yang, Roderick, McVicar, Yang, Zhang, Beck (b0085) 2020; 56
10.1016/j.jhydrol.2023.129870_b0205
10.1016/j.jhydrol.2023.129870_b0005
Song (10.1016/j.jhydrol.2023.129870_b0215) 2020; 591
Bai (10.1016/j.jhydrol.2023.129870_b0015) 2018; 643
Senay (10.1016/j.jhydrol.2023.129870_b0200) 2011; 25
Jung (10.1016/j.jhydrol.2023.129870_b0110) 2011; 116
Tramutoli (10.1016/j.jhydrol.2023.129870_b0230) 2000
Peerbhai (10.1016/j.jhydrol.2023.129870_b0180) 2022; 613
Yuan (10.1016/j.jhydrol.2023.129870_b0280) 2010; 114
Feng (10.1016/j.jhydrol.2023.129870_b0055) 2023; 27
Brutsaert (10.1016/j.jhydrol.2023.129870_b0030) 2014
Zhang (10.1016/j.jhydrol.2023.129870_b0285) 2010; 46
Chen (10.1016/j.jhydrol.2023.129870_b0045) 2020; 588
Saxton (10.1016/j.jhydrol.2023.129870_b0195) 1986; 50
Dzikiti (10.1016/j.jhydrol.2023.129870_b0050) 2019; 11
Liu (10.1016/j.jhydrol.2023.129870_b0135) 2020; 11
Li (10.1016/j.jhydrol.2023.129870_b0125) 2009; 9
Wang (10.1016/j.jhydrol.2023.129870_b0240) 2012; 50
Zhang (10.1016/j.jhydrol.2023.129870_b0295) 2010; 46
Bai (10.1016/j.jhydrol.2023.129870_b0025) 2017; 9
10.1016/j.jhydrol.2023.129870_b0035
Castle (10.1016/j.jhydrol.2023.129870_b0040) 2016; 43
Soltani (10.1016/j.jhydrol.2023.129870_b0210) 2021; 603
Kalma (10.1016/j.jhydrol.2023.129870_b0115) 2008; 29
Wigneron (10.1016/j.jhydrol.2023.129870_b0260) 2003; 85
Morillas (10.1016/j.jhydrol.2023.129870_b0160) 2013; 49
Verstraeten (10.1016/j.jhydrol.2023.129870_b0235) 2006; 101
Glenn (10.1016/j.jhydrol.2023.129870_b0075) 2008; 1
Mu (10.1016/j.jhydrol.2023.129870_b0165) 2011; 115
Hersbach (10.1016/j.jhydrol.2023.129870_b0090) 2020; 146
Zhang (10.1016/j.jhydrol.2023.129870_b0305) 2017; 122
Hutchinson (10.1016/j.jhydrol.2023.129870_b0095) 2004
Ge (10.1016/j.jhydrol.2023.129870_b0070) 2020; 24
Liu (10.1016/j.jhydrol.2023.129870_b0140) 2016; 52
Tong (10.1016/j.jhydrol.2023.129870_b0225) 2017; 61
Purdy (10.1016/j.jhydrol.2023.129870_b0185) 2018; 219
Novick (10.1016/j.jhydrol.2023.129870_b0175) 2016; 6
Wang (10.1016/j.jhydrol.2023.129870_b0255) 2019; 579
Yao (10.1016/j.jhydrol.2023.129870_b0275) 2013; 171-172
Liang (10.1016/j.jhydrol.2023.129870_b0130) 2013; 6
Zhang (10.1016/j.jhydrol.2023.129870_b0300) 2016; 6
Jung (10.1016/j.jhydrol.2023.129870_b0105) 2010; 467
Wang (10.1016/j.jhydrol.2023.129870_b0245) 2006; 102
Zhang (10.1016/j.jhydrol.2023.129870_b0290) 2016; 3
Yang (10.1016/j.jhydrol.2023.129870_b0270) 2022; 613
García (10.1016/j.jhydrol.2023.129870_b0065) 2013; 131
Xiao (10.1016/j.jhydrol.2023.129870_b0265) 2009; 47
Jiang (10.1016/j.jhydrol.2023.129870_b0100) 2022; 614
Rodell (10.1016/j.jhydrol.2023.129870_b0190) 2004; 31
Bai (10.1016/j.jhydrol.2023.129870_b0020) 2020; 56
Niu (10.1016/j.jhydrol.2023.129870_b0170) 2020; 7
Zhang (10.1016/j.jhydrol.2023.129870_b0310) 2021; 16
Han (10.1016/j.jhydrol.2023.129870_b0085) 2020; 56
Bai (10.1016/j.jhydrol.2023.129870_b0010) 2023; 617
Leuning (10.1016/j.jhydrol.2023.129870_b0120) 2008; 44
Martens (10.1016/j.jhydrol.2023.129870_b0155) 2017; 10
Fisher (10.1016/j.jhydrol.2023.129870_b0060) 2008; 112
Tang (10.1016/j.jhydrol.2023.129870_b0220) 2015; 202
Gupta (10.1016/j.jhydrol.2023.129870_b0080) 2009; 377
Wang (10.1016/j.jhydrol.2023.129870_b0250) 2020; 11
Lv (10.1016/j.jhydrol.2023.129870_b0145) 2019; 12
Majumdar (10.1016/j.jhydrol.2023.129870_b0150) 2003; 24
References_xml – volume: 10
  start-page: 1903
  year: 2017
  end-page: 1925
  ident: b0155
  article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture
  publication-title: Geosci. Model Dev.
– volume: 6
  start-page: 1023
  year: 2016
  end-page: 1027
  ident: b0175
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nature Climate Change
– volume: 3
  start-page: 834
  year: 2016
  end-page: 853
  ident: b0290
  article-title: A review of remote sensing based actual evapotranspiration estimation
  publication-title: WIREs Water
– volume: 56
  year: 2020
  ident: b0085
  article-title: Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments
  publication-title: Water Resources Research
– volume: 614
  start-page: 128514
  year: 2022
  ident: b0100
  article-title: Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau
  publication-title: Journal of Hydrology
– volume: 27
  start-page: 363
  year: 2023
  end-page: 383
  ident: b0055
  article-title: Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
  publication-title: Hydrology and Earth System Sciences
– volume: 613
  start-page: 128446
  year: 2022
  ident: b0270
  article-title: Quantifying the effect of vegetation greening on evapotranspiration and its components on the Loess Plateau
  publication-title: Journal of Hydrology
– volume: 131
  start-page: 103
  year: 2013
  end-page: 118
  ident: b0065
  article-title: Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints
  publication-title: Remote Sensing of Environment
– volume: 11
  year: 2020
  ident: b0135
  article-title: Soil moisture dominates dryness stress on ecosystem production globally
  publication-title: Nature Communications
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  ident: b0090
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– reference: Shi, C., Jiang, L., Zhang, T. et al., 2014. Status and Plans of CMA Land Data Assimilation System (CLDAS) Project. EGU General Assembly 2014, 16(National Meteorological Information Center).
– volume: 49
  start-page: 6572
  year: 2013
  end-page: 6586
  ident: b0160
  article-title: Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation
  publication-title: Water Resources Research
– volume: 171-172
  start-page: 187
  year: 2013
  end-page: 202
  ident: b0275
  article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm
  publication-title: Agricultural and Forest Meteorology
– volume: 25
  start-page: 4037
  year: 2011
  end-page: 4049
  ident: b0200
  article-title: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods
  publication-title: Hydrological Processes
– volume: 61
  start-page: 227
  year: 2017
  end-page: 238
  ident: b0225
  article-title: Environmental controls of evapotranspiration in a mixed plantation in North China
  publication-title: Int J Biometeorol
– volume: 588
  start-page: 125054
  year: 2020
  ident: b0045
  article-title: Evaluation of nine sub-daily soil moisture model products over China using high-resolution in situ observations
  publication-title: Journal of Hydrology
– volume: 7
  year: 2020
  ident: b0170
  article-title: A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015
  publication-title: Sci Data
– volume: 591
  start-page: 125301
  year: 2020
  ident: b0215
  article-title: Limitation of soil moisture on the response of transpiration to vapor pressure deficit in a subtropical coniferous plantation subjected to seasonal drought
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 3801
  year: 2009
  end-page: 3853
  ident: b0125
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors (Basel)
– volume: 46
  year: 2010
  ident: b0295
  article-title: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution: ESTIMATION OF SURFACE CONDUCTANCES AND EVAPORATION
  publication-title: Water Resour. Res.
– volume: 50
  year: 2012
  ident: b0240
  article-title: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability
  publication-title: Reviews of Geophysics
– volume: 85
  start-page: 489
  year: 2003
  end-page: 506
  ident: b0260
  article-title: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans
  publication-title: Remote Sensing of Environment
– volume: 6
  start-page: 5
  year: 2013
  end-page: 33
  ident: b0130
  article-title: A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies
  publication-title: International Journal of Digital Earth
– volume: 24
  start-page: 515
  year: 2020
  end-page: 533
  ident: b0070
  article-title: Impact of revegetation of the Loess Plateau of China on the regional growing season water balance
  publication-title: Hydrology and Earth System Sciences
– volume: 116
  year: 2011
  ident: b0110
  article-title: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
  publication-title: Journal of Geophysical Research
– volume: 50
  start-page: 1031
  year: 1986
  end-page: 1036
  ident: b0195
  article-title: Estimating Generalized Soil-water Characteristics from Texture
  publication-title: Soil Science Society of America Journal
– volume: 1
  start-page: 316
  year: 2008
  end-page: 329
  ident: b0075
  article-title: Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing
  publication-title: Ecohydrology
– volume: 101
  start-page: 299
  year: 2006
  end-page: 314
  ident: b0235
  article-title: Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 495
  year: 2019
  end-page: 512
  ident: b0050
  article-title: Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa
  publication-title: Journal of Arid Land
– volume: 56
  year: 2020
  ident: b0020
  article-title: Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China
  publication-title: Water Resources Research
– volume: 44
  year: 2008
  ident: b0120
  article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation
  publication-title: Water Resources Research
– volume: 617
  year: 2023
  ident: b0010
  article-title: Comparison of remote sensing evapotranspiration models: Consistency, merits, and pitfalls
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 421
  year: 2008
  end-page: 469
  ident: b0115
  article-title: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data
  publication-title: Surveys in Geophysics
– start-page: 16
  year: 2000
  end-page: 18
  ident: b0230
  article-title: 2nd Plinius Conference on Mediterranean Storms
– volume: 11
  start-page: 1060
  year: 2020
  end-page: 1069
  ident: b0250
  article-title: Evaluation of simulated soil moisture from China Land Data Assimilation System (CLDAS) land surface models
  publication-title: Remote Sensing Letters
– volume: 613
  start-page: 128347
  year: 2022
  ident: b0180
  article-title: Estimating evapotranspiration using earth observation data: A comparison between hydrological and energy balance modelling approaches
  publication-title: Journal of Hydrology
– volume: 643
  start-page: 610
  year: 2018
  end-page: 622
  ident: b0015
  article-title: Incorporating vegetation dynamics noticeably improved performance of hydrological model under vegetation greening
  publication-title: Sci Total Environ
– volume: 6
  year: 2016
  ident: b0300
  article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components
  publication-title: Sci Rep
– volume: 16
  start-page: 124008
  year: 2021
  ident: b0310
  article-title: Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure
  publication-title: Environmental Research Letters
– volume: 43
  start-page: 5089
  year: 2016
  end-page: 5097
  ident: b0040
  article-title: Remote detection of water management impacts on evapotranspiration in the Colorado River Basin
  publication-title: Geophysical Research Letters
– start-page: 54
  year: 2004
  ident: b0095
  article-title: Anusplin version 4.2 user guide
  publication-title: Centre for Resource and Environmental Studies
– volume: 12
  start-page: 116
  year: 2019
  end-page: 123
  ident: b0145
  article-title: Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin
  publication-title: Atmospheric and Oceanic Science Letters
– volume: 202
  start-page: 69
  year: 2015
  end-page: 82
  ident: b0220
  article-title: Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data
  publication-title: Agricultural and Forest Meteorology
– volume: 46
  year: 2010
  ident: b0285
  article-title: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006: GLOBAL RECORD OF LAND SURFACE EVAPOTRANSPIRATION
  publication-title: Water Resour. Res.
– volume: 603
  start-page: 127026
  year: 2021
  ident: b0210
  article-title: Integrating remote sensing data in optimization of a national water resources model to improve the spatial pattern performance of evapotranspiration
  publication-title: Journal of Hydrology
– volume: 24
  start-page: 2207
  year: 2003
  end-page: 2220
  ident: b0150
  article-title: Regional thermal inertia mapping over the Indian subcontinent using INSAT-1D VHRR data and its possible geological applications
  publication-title: International Journal of Remote Sensing
– volume: 31
  year: 2004
  ident: b0190
  article-title: Basin scale estimates of evapotranspiration using GRACE and other observations
  publication-title: Geophysical Research Letters
– volume: 579
  start-page: 124162
  year: 2019
  ident: b0255
  article-title: Deriving a long-term pan evaporation reanalysis dataset for two Chinese pan types
  publication-title: Journal of Hydrology
– start-page: 1
  year: 2014
  end-page: 126
  ident: b0030
  article-title: Introduction to Hydrology, Modern Water Resources Engineering
  publication-title: Modern Water Resources Engineering
– volume: 9
  start-page: 168
  year: 2017
  end-page: 192
  ident: b0025
  article-title: Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 467
  start-page: 951
  year: 2010
  end-page: 954
  ident: b0105
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
– volume: 102
  start-page: 293
  year: 2006
  end-page: 305
  ident: b0245
  article-title: Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter
  publication-title: Remote Sensing of Environment
– volume: 47
  start-page: 2536
  year: 2009
  end-page: 2545
  ident: b0265
  article-title: A Temporally Integrated Inversion Method for Estimating Leaf Area Index From MODIS Data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 122
  start-page: 6868
  year: 2017
  end-page: 6881
  ident: b0305
  article-title: Global variation of transpiration and soil evaporation and the role of their major climate drivers
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 219
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0185
  article-title: SMAP soil moisture improves global evapotranspiration
  publication-title: Remote Sensing of Environment
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  ident: b0080
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 112
  start-page: 901
  year: 2008
  end-page: 919
  ident: b0060
  article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sensing of Environment
– volume: 115
  start-page: 1781
  year: 2011
  end-page: 1800
  ident: b0165
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sensing of Environment
– volume: 114
  start-page: 1416
  year: 2010
  end-page: 1431
  ident: b0280
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data
  publication-title: Remote Sensing of Environment
– reference: Brutsaert, W., 2005. Review of Hydrology: An Introduction by Wilfried Brutsaert. Cambridge University Press, Cambridge, U.K., Texas A&M University, Scoates Hall, 2117 TAMU College Station, TX. 77843-2117.
– volume: 52
  start-page: 9511
  year: 2016
  end-page: 9521
  ident: b0140
  article-title: Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle
  publication-title: Water Resources Research
– reference: Allen, R.G., Pereira, L.S. et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.
– volume: 27
  start-page: 363
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2023.129870_b0055
  article-title: Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-27-363-2023
– volume: 24
  start-page: 2207
  issue: 11
  year: 2003
  ident: 10.1016/j.jhydrol.2023.129870_b0150
  article-title: Regional thermal inertia mapping over the Indian subcontinent using INSAT-1D VHRR data and its possible geological applications
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160210161724
– volume: 9
  start-page: 168
  issue: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129870_b0025
  article-title: Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1002/2016MS000702
– volume: 11
  start-page: 1060
  issue: 12
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0250
  article-title: Evaluation of simulated soil moisture from China Land Data Assimilation System (CLDAS) land surface models
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2020.1820614
– volume: 31
  issue: 20
  year: 2004
  ident: 10.1016/j.jhydrol.2023.129870_b0190
  article-title: Basin scale estimates of evapotranspiration using GRACE and other observations
  publication-title: Geophysical Research Letters
  doi: 10.1029/2004GL020873
– volume: 202
  start-page: 69
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129870_b0220
  article-title: Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2014.12.005
– volume: 219
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129870_b0185
  article-title: SMAP soil moisture improves global evapotranspiration
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.09.023
– volume: 25
  start-page: 4037
  issue: 26
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129870_b0200
  article-title: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.8379
– volume: 171-172
  start-page: 187
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129870_b0275
  article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2012.11.016
– start-page: 54
  year: 2004
  ident: 10.1016/j.jhydrol.2023.129870_b0095
  article-title: Anusplin version 4.2 user guide
– volume: 56
  issue: 10
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0020
  article-title: Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China
  publication-title: Water Resources Research
  doi: 10.1029/2019WR027019
– volume: 467
  start-page: 951
  issue: 7318
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129870_b0105
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
  doi: 10.1038/nature09396
– volume: 131
  start-page: 103
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129870_b0065
  article-title: Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.12.016
– volume: 12
  start-page: 116
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129870_b0145
  article-title: Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin
  publication-title: Atmospheric and Oceanic Science Letters
  doi: 10.1080/16742834.2019.1569456
– volume: 1
  start-page: 316
  issue: 4
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129870_b0075
  article-title: Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing
  publication-title: Ecohydrology
  doi: 10.1002/eco.19
– volume: 114
  start-page: 1416
  issue: 7
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129870_b0280
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.01.022
– volume: 85
  start-page: 489
  issue: 4
  year: 2003
  ident: 10.1016/j.jhydrol.2023.129870_b0260
  article-title: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(03)00051-8
– volume: 43
  start-page: 5089
  issue: 10
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129870_b0040
  article-title: Remote detection of water management impacts on evapotranspiration in the Colorado River Basin
  publication-title: Geophysical Research Letters
  doi: 10.1002/2016GL068675
– volume: 16
  start-page: 124008
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129870_b0310
  article-title: Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/ac3532
– volume: 50
  issue: 2
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129870_b0240
  article-title: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability
  publication-title: Reviews of Geophysics
  doi: 10.1029/2011RG000373
– ident: 10.1016/j.jhydrol.2023.129870_b0205
– volume: 579
  start-page: 124162
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129870_b0255
  article-title: Deriving a long-term pan evaporation reanalysis dataset for two Chinese pan types
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.124162
– volume: 588
  start-page: 125054
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0045
  article-title: Evaluation of nine sub-daily soil moisture model products over China using high-resolution in situ observations
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.125054
– volume: 46
  issue: 5
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129870_b0295
  article-title: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution: ESTIMATION OF SURFACE CONDUCTANCES AND EVAPORATION
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008716
– ident: 10.1016/j.jhydrol.2023.129870_b0035
– start-page: 16
  year: 2000
  ident: 10.1016/j.jhydrol.2023.129870_b0230
– volume: 46
  issue: 9
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129870_b0285
  article-title: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006: GLOBAL RECORD OF LAND SURFACE EVAPOTRANSPIRATION
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008800
– volume: 122
  start-page: 6868
  issue: 13
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129870_b0305
  article-title: Global variation of transpiration and soil evaporation and the role of their major climate drivers
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1002/2017JD027025
– volume: 614
  start-page: 128514
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129870_b0100
  article-title: Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2022.128514
– volume: 613
  start-page: 128347
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129870_b0180
  article-title: Estimating evapotranspiration using earth observation data: A comparison between hydrological and energy balance modelling approaches
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2022.128347
– volume: 591
  start-page: 125301
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0215
  article-title: Limitation of soil moisture on the response of transpiration to vapor pressure deficit in a subtropical coniferous plantation subjected to seasonal drought
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.125301
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0090
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
  doi: 10.1002/qj.3803
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0135
  article-title: Soil moisture dominates dryness stress on ecosystem production globally
  publication-title: Nature Communications
– volume: 52
  start-page: 9511
  issue: 12
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129870_b0140
  article-title: Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle
  publication-title: Water Resources Research
  doi: 10.1002/2016WR019340
– volume: 24
  start-page: 515
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0070
  article-title: Impact of revegetation of the Loess Plateau of China on the regional growing season water balance
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-24-515-2020
– volume: 643
  start-page: 610
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129870_b0015
  article-title: Incorporating vegetation dynamics noticeably improved performance of hydrological model under vegetation greening
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.233
– volume: 115
  start-page: 1781
  issue: 8
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129870_b0165
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.02.019
– volume: 6
  start-page: 1023
  issue: 11
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129870_b0175
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate3114
– volume: 116
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129870_b0110
  article-title: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2010JG001566
– volume: 613
  start-page: 128446
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129870_b0270
  article-title: Quantifying the effect of vegetation greening on evapotranspiration and its components on the Loess Plateau
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2022.128446
– volume: 603
  start-page: 127026
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129870_b0210
  article-title: Integrating remote sensing data in optimization of a national water resources model to improve the spatial pattern performance of evapotranspiration
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2021.127026
– start-page: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129870_b0030
  article-title: Introduction to Hydrology, Modern Water Resources Engineering
– volume: 3
  start-page: 834
  issue: 6
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129870_b0290
  article-title: A review of remote sensing based actual evapotranspiration estimation
  publication-title: WIREs Water
  doi: 10.1002/wat2.1168
– volume: 11
  start-page: 495
  issue: 4
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129870_b0050
  article-title: Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa
  publication-title: Journal of Arid Land
  doi: 10.1007/s40333-019-0098-2
– volume: 56
  issue: 7
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0085
  article-title: Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments
  publication-title: Water Resources Research
  doi: 10.1029/2020WR027392
– volume: 9
  start-page: 3801
  issue: 5
  year: 2009
  ident: 10.1016/j.jhydrol.2023.129870_b0125
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors (Basel)
  doi: 10.3390/s90503801
– volume: 617
  year: 2023
  ident: 10.1016/j.jhydrol.2023.129870_b0010
  article-title: Comparison of remote sensing evapotranspiration models: Consistency, merits, and pitfalls
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2022.128856
– volume: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129870_b0170
  article-title: A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015
  publication-title: Sci Data
  doi: 10.1038/s41597-020-00693-x
– volume: 49
  start-page: 6572
  issue: 10
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129870_b0160
  article-title: Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation
  publication-title: Water Resources Research
  doi: 10.1002/wrcr.20468
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129870_b0300
  article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components
  publication-title: Sci Rep
– volume: 10
  start-page: 1903
  issue: 5
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129870_b0155
  article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-1903-2017
– volume: 377
  start-page: 80
  issue: 1-2
  year: 2009
  ident: 10.1016/j.jhydrol.2023.129870_b0080
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2009.08.003
– volume: 50
  start-page: 1031
  issue: 4
  year: 1986
  ident: 10.1016/j.jhydrol.2023.129870_b0195
  article-title: Estimating Generalized Soil-water Characteristics from Texture
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1986.03615995005000040039x
– ident: 10.1016/j.jhydrol.2023.129870_b0005
– volume: 102
  start-page: 293
  issue: 3–4
  year: 2006
  ident: 10.1016/j.jhydrol.2023.129870_b0245
  article-title: Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.02.007
– volume: 6
  start-page: 5
  issue: sup1
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129870_b0130
  article-title: A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2013.805262
– volume: 112
  start-page: 901
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129870_b0060
  article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.06.025
– volume: 61
  start-page: 227
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129870_b0225
  article-title: Environmental controls of evapotranspiration in a mixed plantation in North China
  publication-title: Int J Biometeorol
  doi: 10.1007/s00484-016-1205-0
– volume: 44
  issue: 10
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129870_b0120
  article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation
  publication-title: Water Resources Research
  doi: 10.1029/2007WR006562
– volume: 101
  start-page: 299
  issue: 3
  year: 2006
  ident: 10.1016/j.jhydrol.2023.129870_b0235
  article-title: Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.12.016
– volume: 29
  start-page: 421
  issue: 4
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129870_b0115
  article-title: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data
  publication-title: Surveys in Geophysics
  doi: 10.1007/s10712-008-9037-z
– volume: 47
  start-page: 2536
  issue: 8
  year: 2009
  ident: 10.1016/j.jhydrol.2023.129870_b0265
  article-title: A Temporally Integrated Inversion Method for Estimating Leaf Area Index From MODIS Data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2009.2015656
SSID ssj0000334
Score 2.4437785
Snippet •We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The...
Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129870
SubjectTerms algorithms
basins
China
Evaporation
Evapotranspiration
Remote sensing
Soil moisture constraint
soil water
Title Applicability evaluation of soil moisture constraint algorithms in remote sensing evapotranspiration models
URI https://dx.doi.org/10.1016/j.jhydrol.2023.129870
https://www.proquest.com/docview/2887604556
Volume 623
WOSCitedRecordID wos001030138500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgiwQXxFOUl4zErUpI7Dzs44KKgEPVQ5H2FiV-7GbbTVabFO3-e8axk5QuVQGJSxRFsp14voy_8XhmEHqvCglEIFReEmjtRaGWHudEgdUKqi_OYVFUois2kZ6csNmMn7pzuk1XTiCtKrbd8vV_FTU8A2Gb0Nm_EPfQKTyAexA6XEHscP0jwU-tS7o79Lq7ks3b0MKmLi-OVjWI1vgNhOGGpkSE2fad15uyXawaG-ACAlRHjTncXs1NH-u67bKglw4wXQGd5gZmu9jJjU3tBPR1ujKpGKTB3bDn8NHWwD5VbtnsfCCl8_5X863LBu42IwgdjsK5HbK9KJkhYiBMbDFjX1lFy1JuYuHSq5o4saHHe1rdbjAs_aV9f9-M7ANRYbbmyLWE2cb_TMxwYF0B4SHBXXRA0pizCTqYfj2efRtXakqjPpu8aTBGeH347WA3cZdrq3hHTc4eoYdu5vHUYuExuqOqJ-i-K2-_2D1F579gAo-YwLXGBhO4xwQeMYFHTOCywhYT2GEC72MCW0w8Q98_H599-uK5KhueoBFpPaYZZ6EQmoJxm-eKRorLhMeyYDJl8AuTUIc6FgpUdchkrnlEhU4kzYkUVGn6HE2qulIvEAbTP2cBL1igoig2bL4IRQiMNilIkQTyEEX9_GXCpaA3n3SR9WcNl5mb9sxMe2an_RD5Q7O1zcFyWwPWCydzRNISxAwQdVvTd70wM1C0xnuWV6q-bDICy3ECBlCcvPz37l-hB-Nv8xpN2s2leoPuiR9t2WzeOnz-BLwirEo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+evaluation+of+soil+moisture+constraint+algorithms+in+remote+sensing+evapotranspiration+models&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Bai%2C+Peng&rft.au=Cai%2C+Changxin&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=623&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129870&rft.externalDocID=S0022169423008120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon