Applicability evaluation of soil moisture constraint algorithms in remote sensing evapotranspiration models
•We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The algorithms with better performance in ET simulations are also better in SM simulations. Remotely sensed (RS) evapotranspiration (ET) models have...
Uložené v:
| Vydané v: | Journal of hydrology (Amsterdam) Ročník 623; s. 129870 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.08.2023
|
| Predmet: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The algorithms with better performance in ET simulations are also better in SM simulations.
Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the lack of reliable soil moisture (SM) constraints. Due to the lack of reliable, spatiotemporal continuous SM profile data, existing RS-ET models tend to use atmospheric or land surface variables as proxies for SM constraints. Although several proxy algorithms for SM constraints have been developed, few studies have evaluated their performance in ET simulations. To address this gap, we evaluated the applicability of five proxy algorithms for SM constraints (namely, fVPD, fLST, fDT, fZhang, and fdrying) to ET simulations in China using the Penman-Monteith-Leuning (PML) model. These algorithms were evaluated at 14 ChinaFlux sites and 286 basins using flux tower measurements and water balance-based ET estimates, respectively. The results show that among the five algorithms, fdrying performs test at the flux sites, with a median of Kling-Gupta efficiency (KGE) of 0.75. The second-best algorithm is fZhang (KGE = 0.73), followed by fDT (KGE = 0.70), fLST (KGE = 0.68), and fVPD (KGE = 0.65). The performance ranking of the five algorithms at the basin scale is consistent with that at the flux sites. Using the flux site SM measurements as a reference, we further found that the algorithms with better performance in ET simulations also have better SM simulation capabilities. This study highlights the importance of reliable SM constraints in the RS-ET models. |
|---|---|
| AbstractList | Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the lack of reliable soil moisture (SM) constraints. Due to the lack of reliable, spatiotemporal continuous SM profile data, existing RS-ET models tend to use atmospheric or land surface variables as proxies for SM constraints. Although several proxy algorithms for SM constraints have been developed, few studies have evaluated their performance in ET simulations. To address this gap, we evaluated the applicability of five proxy algorithms for SM constraints (namely, fVPD, fLST, fDT, fZₕₐₙg, and fdᵣyᵢₙg) to ET simulations in China using the Penman-Monteith-Leuning (PML) model. These algorithms were evaluated at 14 ChinaFlux sites and 286 basins using flux tower measurements and water balance-based ET estimates, respectively. The results show that among the five algorithms, fdᵣyᵢₙg performs test at the flux sites, with a median of Kling-Gupta efficiency (KGE) of 0.75. The second-best algorithm is fZₕₐₙg (KGE = 0.73), followed by fDT (KGE = 0.70), fLST (KGE = 0.68), and fVPD (KGE = 0.65). The performance ranking of the five algorithms at the basin scale is consistent with that at the flux sites. Using the flux site SM measurements as a reference, we further found that the algorithms with better performance in ET simulations also have better SM simulation capabilities. This study highlights the importance of reliable SM constraints in the RS-ET models. •We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The algorithms with better performance in ET simulations are also better in SM simulations. Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the lack of reliable soil moisture (SM) constraints. Due to the lack of reliable, spatiotemporal continuous SM profile data, existing RS-ET models tend to use atmospheric or land surface variables as proxies for SM constraints. Although several proxy algorithms for SM constraints have been developed, few studies have evaluated their performance in ET simulations. To address this gap, we evaluated the applicability of five proxy algorithms for SM constraints (namely, fVPD, fLST, fDT, fZhang, and fdrying) to ET simulations in China using the Penman-Monteith-Leuning (PML) model. These algorithms were evaluated at 14 ChinaFlux sites and 286 basins using flux tower measurements and water balance-based ET estimates, respectively. The results show that among the five algorithms, fdrying performs test at the flux sites, with a median of Kling-Gupta efficiency (KGE) of 0.75. The second-best algorithm is fZhang (KGE = 0.73), followed by fDT (KGE = 0.70), fLST (KGE = 0.68), and fVPD (KGE = 0.65). The performance ranking of the five algorithms at the basin scale is consistent with that at the flux sites. Using the flux site SM measurements as a reference, we further found that the algorithms with better performance in ET simulations also have better SM simulation capabilities. This study highlights the importance of reliable SM constraints in the RS-ET models. |
| ArticleNumber | 129870 |
| Author | Bai, Peng Cai, Changxin |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-9711-7069 surname: Bai fullname: Bai, Peng email: baip@igsnrr.ac.cn organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Changxin surname: Cai fullname: Cai, Changxin organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
| BookMark | eNqFkD1vFDEQhi0UJC6Bn4DkkmYPf-x6vaJAUUQAKRIN1JZjj5M5vPZi-yLdv2ePTUWTaaZ5n1czzyW5SDkBIe8523PG1cfD_vB48iXHvWBC7rmY9MhekR3X49SJkY0XZMeYEB1XU_-GXNZ6YOtI2e_I7-tliejsPUZsJwpPNh5tw5xoDrRmjHTOWNuxAHU51VYspkZtfMgF2-NcKSZaYM4NaIVUMT2cO5a8BlNdsGxdc_YQ61vyOthY4d3zviK_br_8vPnW3f34-v3m-q5zshet00FPmjsXpFbCWpA9TF5Ng7_XftSKBcEDD4ODSUmuvQ1TL11QXlrhnYQgr8iHrXcp-c8RajMzVgcx2gT5WI3QelSsHwa1Rj9tUVdyrQWCcdj-3Xz-NBrOzFmxOZhnxeas2GyKV3r4j14KzracXuQ-b9wqBZ4QiqkOITnwWMA14zO-0PAXBNqfug |
| CitedBy_id | crossref_primary_10_1088_1748_9326_ad7f70 crossref_primary_10_1016_j_jhydrol_2025_133472 crossref_primary_10_1016_j_jhydrol_2025_132979 crossref_primary_10_3390_rs16152783 |
| Cites_doi | 10.5194/hess-27-363-2023 10.1080/01431160210161724 10.1002/2016MS000702 10.1080/2150704X.2020.1820614 10.1029/2004GL020873 10.1016/j.agrformet.2014.12.005 10.1016/j.rse.2018.09.023 10.1002/hyp.8379 10.1016/j.agrformet.2012.11.016 10.1029/2019WR027019 10.1038/nature09396 10.1016/j.rse.2012.12.016 10.1080/16742834.2019.1569456 10.1002/eco.19 10.1016/j.rse.2010.01.022 10.1016/S0034-4257(03)00051-8 10.1002/2016GL068675 10.1088/1748-9326/ac3532 10.1029/2011RG000373 10.1016/j.jhydrol.2019.124162 10.1016/j.jhydrol.2020.125054 10.1029/2009WR008716 10.1029/2009WR008800 10.1002/2017JD027025 10.1016/j.jhydrol.2022.128514 10.1016/j.jhydrol.2022.128347 10.1016/j.jhydrol.2020.125301 10.1002/qj.3803 10.1002/2016WR019340 10.5194/hess-24-515-2020 10.1016/j.scitotenv.2018.06.233 10.1016/j.rse.2011.02.019 10.1038/nclimate3114 10.1029/2010JG001566 10.1016/j.jhydrol.2022.128446 10.1016/j.jhydrol.2021.127026 10.1002/wat2.1168 10.1007/s40333-019-0098-2 10.1029/2020WR027392 10.3390/s90503801 10.1016/j.jhydrol.2022.128856 10.1038/s41597-020-00693-x 10.1002/wrcr.20468 10.5194/gmd-10-1903-2017 10.1016/j.jhydrol.2009.08.003 10.2136/sssaj1986.03615995005000040039x 10.1016/j.rse.2006.02.007 10.1080/17538947.2013.805262 10.1016/j.rse.2007.06.025 10.1007/s00484-016-1205-0 10.1029/2007WR006562 10.1016/j.rse.2005.12.016 10.1007/s10712-008-9037-z 10.1109/TGRS.2009.2015656 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2023.129870 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2023_129870 S0022169423008120 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-8f8981ccf3862aae34e9d695db8d7860f21f1f5ce96318daf943cf6d3a2dc3ef3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030138500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Nov 09 08:58:56 EST 2025 Sat Nov 29 07:30:20 EST 2025 Tue Nov 18 21:53:57 EST 2025 Fri Feb 23 02:34:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Evaporation Remote sensing Evapotranspiration Soil moisture constraint |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-8f8981ccf3862aae34e9d695db8d7860f21f1f5ce96318daf943cf6d3a2dc3ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9711-7069 |
| PQID | 2887604556 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2887604556 crossref_citationtrail_10_1016_j_jhydrol_2023_129870 crossref_primary_10_1016_j_jhydrol_2023_129870 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129870 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Castle, Reager, Thomas, Purdy, Lo, Famiglietti, Tang (b0040) 2016; 43 Glenn, Morino, Didan, Jordan, C. Carroll, Nagler, Hultine, Sheader, Waugh (b0075) 2008; 1 Tang, Li (b0220) 2015; 202 Zhang, Leuning, Hutley, Beringer, McHugh, Walker (b0295) 2010; 46 Ge, Pitman, Guo, Zan, Fu (b0070) 2020; 24 Hutchinson, Xu (b0095) 2004 Senay, Leake, Nagler (b0200) 2011; 25 Shi, C., Jiang, L., Zhang, T. et al., 2014. Status and Plans of CMA Land Data Assimilation System (CLDAS) Project. EGU General Assembly 2014, 16(National Meteorological Information Center). Zhang, Peña-Arancibia, McVicar, Chiew, Vaze, Liu, Lu, Zheng, Wang, Liu, Miralles, Pan (b0300) 2016; 6 Tramutoli, Claps, Marella (b0230) 2000 Peerbhai, Chetty, Clark, Gokool (b0180) 2022; 613 Zhang, Kimball, Nemani, Running (b0285) 2010; 46 Purdy, Fisher, Goulden, Colliander, Halverson, Tu, Famiglietti (b0185) 2018; 219 Bai, Liu, Zhang, Liu (b0015) 2018; 643 Allen, R.G., Pereira, L.S. et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz‐Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, Rosnay, Rozum, Vamborg, Villaume, Thépaut (b0090) 2020; 146 Jung, Reichstein, Margolis, Cescatti, Richardson, Arain, Arneth, Bernhofer, Bonal, Chen, Gianelle, Gobron, Kiely, Kutsch, Lasslop, Law, Lindroth, Merbold, Montagnani, Moors, Papale, Sottocornola, Vaccari, Williams (b0110) 2011; 116 Wang, Dickinson (b0240) 2012; 50 Yao, Liang, Cheng, Liu, Fisher, Zhang, Jia, Zhao, Qin, Zhao, Han, Zhou, Zhou, Li, Zhao (b0275) 2013; 171-172 Novick, Ficklin, Stoy, Williams, Bohrer, Oishi, Papuga, Blanken, Noormets, Sulman, Scott, Wang, Phillips (b0175) 2016; 6 Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (b0125) 2009; 9 Wang, Liu, Li, Yang, Bai, Liu, Chen (b0255) 2019; 579 Gupta, Kling, Yilmaz, Martinez (b0080) 2009; 377 Liu, Liu, Brutsaert (b0140) 2016; 52 Brutsaert, Govindaraju, Anderson, Arabi, Francés, Suarez, Lavado-Casimiro, Green (b0030) 2014 Dzikiti, Jovanovic, Bugan, Ramoelo, Majozi, Nickless, Cho, Le Maitre, Ntshidi, Pienaar (b0050) 2019; 11 Yang, Bai, Li (b0270) 2022; 613 Liang, Zhao, Liu, Yuan, Cheng, Xiao, Zhang, Liu, Cheng, Tang, Qu, Bo, Qu, Ren, Yu, Townshend (b0130) 2013; 6 Brutsaert, W., 2005. Review of Hydrology: An Introduction by Wilfried Brutsaert. Cambridge University Press, Cambridge, U.K., Texas A&M University, Scoates Hall, 2117 TAMU College Station, TX. 77843-2117. Jung, Reichstein, Ciais, Seneviratne, Sheffield, Goulden, Bonan, Cescatti, Chen, de Jeu, Dolman, Eugster, Gerten, Gianelle, Gobron, Heinke, Kimball, Law, Montagnani, Mu, Mueller, Oleson, Papale, Richardson, Roupsard, Running, Tomelleri, Viovy, Weber, Williams, Wood, Zaehle, Zhang (b0105) 2010; 467 Wang, Li (b0250) 2020; 11 Feng, Zhang, Zhan (b0055) 2023; 27 Kalma, McVicar, McCabe (b0115) 2008; 29 Liu, Gudmundsson, Hauser, Qin, Li, Seneviratne (b0135) 2020; 11 Rodell (b0190) 2004; 31 Yuan, Liu, Yu, Bonnefond, Chen, Davis, Desai, Goldstein, Gianelle, Rossi, Suyker, Verma (b0280) 2010; 114 Martens, Miralles, Lievens, van der Schalie, de Jeu, Fernández-Prieto, Beck, Dorigo, Verhoest (b0155) 2017; 10 Zhang, Kimball, Running (b0290) 2016; 3 Saxton, Rawls, Romberger, Papendick (b0195) 1986; 50 Zhang, Zhang, Ma, Kong, Tian, Shao, Tang (b0310) 2021; 16 Leuning, Zhang, Rajaud, Cleugh, Tu (b0120) 2008; 44 Song, Lyu, Wen (b0215) 2020; 591 Morillas, Leuning, Villagarcía, García, Serrano-Ortiz, Domingo (b0160) 2013; 49 Zhang, Chiew, Peña‐Arancibia, Sun, Li, Leuning (b0305) 2017; 122 Bai, Zhang, Zhang, Koju, Yao, Igbawua (b0025) 2017; 9 Jiang, Xie, Wang, Liang, Zhu, Meng, Zhang, Chen, Liu (b0100) 2022; 614 Fisher, Tu, Baldocchi (b0060) 2008; 112 Soltani, Bjerre, Koch, Stisen (b0210) 2021; 603 Bai, Liu, Zhang, Liu (b0020) 2020; 56 Bai (b0010) 2023; 617 Tong, Zhang, Meng, Li, Zheng (b0225) 2017; 61 Xiao, Shunlin, Jindi (b0265) 2009; 47 Majumdar (b0150) 2003; 24 Lv, Ma, Peng (b0145) 2019; 12 Mu, Zhao, Running (b0165) 2011; 115 Wigneron, Calvet, Pellarin, Van de Griend, Berger, Ferrazzoli (b0260) 2003; 85 Chen, Yuan (b0045) 2020; 588 García, Sandholt, Ceccato, Ridler, Mougin, Kergoat, Morillas, Timouk, Fensholt, Domingo (b0065) 2013; 131 Verstraeten, Veroustraete, van der Sande, Grootaers, Feyen (b0235) 2006; 101 Niu, He, Zhu, Ren, Zhang, Zhang (b0170) 2020; 7 Wang, Li, Cribb (b0245) 2006; 102 Han, Yang, Roderick, McVicar, Yang, Zhang, Beck (b0085) 2020; 56 10.1016/j.jhydrol.2023.129870_b0205 10.1016/j.jhydrol.2023.129870_b0005 Song (10.1016/j.jhydrol.2023.129870_b0215) 2020; 591 Bai (10.1016/j.jhydrol.2023.129870_b0015) 2018; 643 Senay (10.1016/j.jhydrol.2023.129870_b0200) 2011; 25 Jung (10.1016/j.jhydrol.2023.129870_b0110) 2011; 116 Tramutoli (10.1016/j.jhydrol.2023.129870_b0230) 2000 Peerbhai (10.1016/j.jhydrol.2023.129870_b0180) 2022; 613 Yuan (10.1016/j.jhydrol.2023.129870_b0280) 2010; 114 Feng (10.1016/j.jhydrol.2023.129870_b0055) 2023; 27 Brutsaert (10.1016/j.jhydrol.2023.129870_b0030) 2014 Zhang (10.1016/j.jhydrol.2023.129870_b0285) 2010; 46 Chen (10.1016/j.jhydrol.2023.129870_b0045) 2020; 588 Saxton (10.1016/j.jhydrol.2023.129870_b0195) 1986; 50 Dzikiti (10.1016/j.jhydrol.2023.129870_b0050) 2019; 11 Liu (10.1016/j.jhydrol.2023.129870_b0135) 2020; 11 Li (10.1016/j.jhydrol.2023.129870_b0125) 2009; 9 Wang (10.1016/j.jhydrol.2023.129870_b0240) 2012; 50 Zhang (10.1016/j.jhydrol.2023.129870_b0295) 2010; 46 Bai (10.1016/j.jhydrol.2023.129870_b0025) 2017; 9 10.1016/j.jhydrol.2023.129870_b0035 Castle (10.1016/j.jhydrol.2023.129870_b0040) 2016; 43 Soltani (10.1016/j.jhydrol.2023.129870_b0210) 2021; 603 Kalma (10.1016/j.jhydrol.2023.129870_b0115) 2008; 29 Wigneron (10.1016/j.jhydrol.2023.129870_b0260) 2003; 85 Morillas (10.1016/j.jhydrol.2023.129870_b0160) 2013; 49 Verstraeten (10.1016/j.jhydrol.2023.129870_b0235) 2006; 101 Glenn (10.1016/j.jhydrol.2023.129870_b0075) 2008; 1 Mu (10.1016/j.jhydrol.2023.129870_b0165) 2011; 115 Hersbach (10.1016/j.jhydrol.2023.129870_b0090) 2020; 146 Zhang (10.1016/j.jhydrol.2023.129870_b0305) 2017; 122 Hutchinson (10.1016/j.jhydrol.2023.129870_b0095) 2004 Ge (10.1016/j.jhydrol.2023.129870_b0070) 2020; 24 Liu (10.1016/j.jhydrol.2023.129870_b0140) 2016; 52 Tong (10.1016/j.jhydrol.2023.129870_b0225) 2017; 61 Purdy (10.1016/j.jhydrol.2023.129870_b0185) 2018; 219 Novick (10.1016/j.jhydrol.2023.129870_b0175) 2016; 6 Wang (10.1016/j.jhydrol.2023.129870_b0255) 2019; 579 Yao (10.1016/j.jhydrol.2023.129870_b0275) 2013; 171-172 Liang (10.1016/j.jhydrol.2023.129870_b0130) 2013; 6 Zhang (10.1016/j.jhydrol.2023.129870_b0300) 2016; 6 Jung (10.1016/j.jhydrol.2023.129870_b0105) 2010; 467 Wang (10.1016/j.jhydrol.2023.129870_b0245) 2006; 102 Zhang (10.1016/j.jhydrol.2023.129870_b0290) 2016; 3 Yang (10.1016/j.jhydrol.2023.129870_b0270) 2022; 613 García (10.1016/j.jhydrol.2023.129870_b0065) 2013; 131 Xiao (10.1016/j.jhydrol.2023.129870_b0265) 2009; 47 Jiang (10.1016/j.jhydrol.2023.129870_b0100) 2022; 614 Rodell (10.1016/j.jhydrol.2023.129870_b0190) 2004; 31 Bai (10.1016/j.jhydrol.2023.129870_b0020) 2020; 56 Niu (10.1016/j.jhydrol.2023.129870_b0170) 2020; 7 Zhang (10.1016/j.jhydrol.2023.129870_b0310) 2021; 16 Han (10.1016/j.jhydrol.2023.129870_b0085) 2020; 56 Bai (10.1016/j.jhydrol.2023.129870_b0010) 2023; 617 Leuning (10.1016/j.jhydrol.2023.129870_b0120) 2008; 44 Martens (10.1016/j.jhydrol.2023.129870_b0155) 2017; 10 Fisher (10.1016/j.jhydrol.2023.129870_b0060) 2008; 112 Tang (10.1016/j.jhydrol.2023.129870_b0220) 2015; 202 Gupta (10.1016/j.jhydrol.2023.129870_b0080) 2009; 377 Wang (10.1016/j.jhydrol.2023.129870_b0250) 2020; 11 Lv (10.1016/j.jhydrol.2023.129870_b0145) 2019; 12 Majumdar (10.1016/j.jhydrol.2023.129870_b0150) 2003; 24 |
| References_xml | – volume: 10 start-page: 1903 year: 2017 end-page: 1925 ident: b0155 article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture publication-title: Geosci. Model Dev. – volume: 6 start-page: 1023 year: 2016 end-page: 1027 ident: b0175 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nature Climate Change – volume: 3 start-page: 834 year: 2016 end-page: 853 ident: b0290 article-title: A review of remote sensing based actual evapotranspiration estimation publication-title: WIREs Water – volume: 56 year: 2020 ident: b0085 article-title: Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments publication-title: Water Resources Research – volume: 614 start-page: 128514 year: 2022 ident: b0100 article-title: Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau publication-title: Journal of Hydrology – volume: 27 start-page: 363 year: 2023 end-page: 383 ident: b0055 article-title: Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau publication-title: Hydrology and Earth System Sciences – volume: 613 start-page: 128446 year: 2022 ident: b0270 article-title: Quantifying the effect of vegetation greening on evapotranspiration and its components on the Loess Plateau publication-title: Journal of Hydrology – volume: 131 start-page: 103 year: 2013 end-page: 118 ident: b0065 article-title: Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints publication-title: Remote Sensing of Environment – volume: 11 year: 2020 ident: b0135 article-title: Soil moisture dominates dryness stress on ecosystem production globally publication-title: Nature Communications – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: b0090 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – reference: Shi, C., Jiang, L., Zhang, T. et al., 2014. Status and Plans of CMA Land Data Assimilation System (CLDAS) Project. EGU General Assembly 2014, 16(National Meteorological Information Center). – volume: 49 start-page: 6572 year: 2013 end-page: 6586 ident: b0160 article-title: Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation publication-title: Water Resources Research – volume: 171-172 start-page: 187 year: 2013 end-page: 202 ident: b0275 article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm publication-title: Agricultural and Forest Meteorology – volume: 25 start-page: 4037 year: 2011 end-page: 4049 ident: b0200 article-title: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods publication-title: Hydrological Processes – volume: 61 start-page: 227 year: 2017 end-page: 238 ident: b0225 article-title: Environmental controls of evapotranspiration in a mixed plantation in North China publication-title: Int J Biometeorol – volume: 588 start-page: 125054 year: 2020 ident: b0045 article-title: Evaluation of nine sub-daily soil moisture model products over China using high-resolution in situ observations publication-title: Journal of Hydrology – volume: 7 year: 2020 ident: b0170 article-title: A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015 publication-title: Sci Data – volume: 591 start-page: 125301 year: 2020 ident: b0215 article-title: Limitation of soil moisture on the response of transpiration to vapor pressure deficit in a subtropical coniferous plantation subjected to seasonal drought publication-title: Journal of Hydrology – volume: 9 start-page: 3801 year: 2009 end-page: 3853 ident: b0125 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors (Basel) – volume: 46 year: 2010 ident: b0295 article-title: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution: ESTIMATION OF SURFACE CONDUCTANCES AND EVAPORATION publication-title: Water Resour. Res. – volume: 50 year: 2012 ident: b0240 article-title: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability publication-title: Reviews of Geophysics – volume: 85 start-page: 489 year: 2003 end-page: 506 ident: b0260 article-title: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans publication-title: Remote Sensing of Environment – volume: 6 start-page: 5 year: 2013 end-page: 33 ident: b0130 article-title: A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies publication-title: International Journal of Digital Earth – volume: 24 start-page: 515 year: 2020 end-page: 533 ident: b0070 article-title: Impact of revegetation of the Loess Plateau of China on the regional growing season water balance publication-title: Hydrology and Earth System Sciences – volume: 116 year: 2011 ident: b0110 article-title: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations publication-title: Journal of Geophysical Research – volume: 50 start-page: 1031 year: 1986 end-page: 1036 ident: b0195 article-title: Estimating Generalized Soil-water Characteristics from Texture publication-title: Soil Science Society of America Journal – volume: 1 start-page: 316 year: 2008 end-page: 329 ident: b0075 article-title: Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing publication-title: Ecohydrology – volume: 101 start-page: 299 year: 2006 end-page: 314 ident: b0235 article-title: Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests publication-title: Remote Sensing of Environment – volume: 11 start-page: 495 year: 2019 end-page: 512 ident: b0050 article-title: Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa publication-title: Journal of Arid Land – volume: 56 year: 2020 ident: b0020 article-title: Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China publication-title: Water Resources Research – volume: 44 year: 2008 ident: b0120 article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation publication-title: Water Resources Research – volume: 617 year: 2023 ident: b0010 article-title: Comparison of remote sensing evapotranspiration models: Consistency, merits, and pitfalls publication-title: Journal of Hydrology – volume: 29 start-page: 421 year: 2008 end-page: 469 ident: b0115 article-title: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data publication-title: Surveys in Geophysics – start-page: 16 year: 2000 end-page: 18 ident: b0230 article-title: 2nd Plinius Conference on Mediterranean Storms – volume: 11 start-page: 1060 year: 2020 end-page: 1069 ident: b0250 article-title: Evaluation of simulated soil moisture from China Land Data Assimilation System (CLDAS) land surface models publication-title: Remote Sensing Letters – volume: 613 start-page: 128347 year: 2022 ident: b0180 article-title: Estimating evapotranspiration using earth observation data: A comparison between hydrological and energy balance modelling approaches publication-title: Journal of Hydrology – volume: 643 start-page: 610 year: 2018 end-page: 622 ident: b0015 article-title: Incorporating vegetation dynamics noticeably improved performance of hydrological model under vegetation greening publication-title: Sci Total Environ – volume: 6 year: 2016 ident: b0300 article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components publication-title: Sci Rep – volume: 16 start-page: 124008 year: 2021 ident: b0310 article-title: Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure publication-title: Environmental Research Letters – volume: 43 start-page: 5089 year: 2016 end-page: 5097 ident: b0040 article-title: Remote detection of water management impacts on evapotranspiration in the Colorado River Basin publication-title: Geophysical Research Letters – start-page: 54 year: 2004 ident: b0095 article-title: Anusplin version 4.2 user guide publication-title: Centre for Resource and Environmental Studies – volume: 12 start-page: 116 year: 2019 end-page: 123 ident: b0145 article-title: Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin publication-title: Atmospheric and Oceanic Science Letters – volume: 202 start-page: 69 year: 2015 end-page: 82 ident: b0220 article-title: Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data publication-title: Agricultural and Forest Meteorology – volume: 46 year: 2010 ident: b0285 article-title: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006: GLOBAL RECORD OF LAND SURFACE EVAPOTRANSPIRATION publication-title: Water Resour. Res. – volume: 603 start-page: 127026 year: 2021 ident: b0210 article-title: Integrating remote sensing data in optimization of a national water resources model to improve the spatial pattern performance of evapotranspiration publication-title: Journal of Hydrology – volume: 24 start-page: 2207 year: 2003 end-page: 2220 ident: b0150 article-title: Regional thermal inertia mapping over the Indian subcontinent using INSAT-1D VHRR data and its possible geological applications publication-title: International Journal of Remote Sensing – volume: 31 year: 2004 ident: b0190 article-title: Basin scale estimates of evapotranspiration using GRACE and other observations publication-title: Geophysical Research Letters – volume: 579 start-page: 124162 year: 2019 ident: b0255 article-title: Deriving a long-term pan evaporation reanalysis dataset for two Chinese pan types publication-title: Journal of Hydrology – start-page: 1 year: 2014 end-page: 126 ident: b0030 article-title: Introduction to Hydrology, Modern Water Resources Engineering publication-title: Modern Water Resources Engineering – volume: 9 start-page: 168 year: 2017 end-page: 192 ident: b0025 article-title: Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate publication-title: Journal of Advances in Modeling Earth Systems – volume: 467 start-page: 951 year: 2010 end-page: 954 ident: b0105 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature – volume: 102 start-page: 293 year: 2006 end-page: 305 ident: b0245 article-title: Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter publication-title: Remote Sensing of Environment – volume: 47 start-page: 2536 year: 2009 end-page: 2545 ident: b0265 article-title: A Temporally Integrated Inversion Method for Estimating Leaf Area Index From MODIS Data publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 122 start-page: 6868 year: 2017 end-page: 6881 ident: b0305 article-title: Global variation of transpiration and soil evaporation and the role of their major climate drivers publication-title: Journal of Geophysical Research: Atmospheres – volume: 219 start-page: 1 year: 2018 end-page: 14 ident: b0185 article-title: SMAP soil moisture improves global evapotranspiration publication-title: Remote Sensing of Environment – volume: 377 start-page: 80 year: 2009 end-page: 91 ident: b0080 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology – volume: 112 start-page: 901 year: 2008 end-page: 919 ident: b0060 article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sensing of Environment – volume: 115 start-page: 1781 year: 2011 end-page: 1800 ident: b0165 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sensing of Environment – volume: 114 start-page: 1416 year: 2010 end-page: 1431 ident: b0280 article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data publication-title: Remote Sensing of Environment – reference: Brutsaert, W., 2005. Review of Hydrology: An Introduction by Wilfried Brutsaert. Cambridge University Press, Cambridge, U.K., Texas A&M University, Scoates Hall, 2117 TAMU College Station, TX. 77843-2117. – volume: 52 start-page: 9511 year: 2016 end-page: 9521 ident: b0140 article-title: Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle publication-title: Water Resources Research – reference: Allen, R.G., Pereira, L.S. et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. – volume: 27 start-page: 363 issue: 2 year: 2023 ident: 10.1016/j.jhydrol.2023.129870_b0055 article-title: Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-27-363-2023 – volume: 24 start-page: 2207 issue: 11 year: 2003 ident: 10.1016/j.jhydrol.2023.129870_b0150 article-title: Regional thermal inertia mapping over the Indian subcontinent using INSAT-1D VHRR data and its possible geological applications publication-title: International Journal of Remote Sensing doi: 10.1080/01431160210161724 – volume: 9 start-page: 168 issue: 1 year: 2017 ident: 10.1016/j.jhydrol.2023.129870_b0025 article-title: Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1002/2016MS000702 – volume: 11 start-page: 1060 issue: 12 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0250 article-title: Evaluation of simulated soil moisture from China Land Data Assimilation System (CLDAS) land surface models publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2020.1820614 – volume: 31 issue: 20 year: 2004 ident: 10.1016/j.jhydrol.2023.129870_b0190 article-title: Basin scale estimates of evapotranspiration using GRACE and other observations publication-title: Geophysical Research Letters doi: 10.1029/2004GL020873 – volume: 202 start-page: 69 year: 2015 ident: 10.1016/j.jhydrol.2023.129870_b0220 article-title: Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2014.12.005 – volume: 219 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2023.129870_b0185 article-title: SMAP soil moisture improves global evapotranspiration publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.09.023 – volume: 25 start-page: 4037 issue: 26 year: 2011 ident: 10.1016/j.jhydrol.2023.129870_b0200 article-title: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods publication-title: Hydrological Processes doi: 10.1002/hyp.8379 – volume: 171-172 start-page: 187 year: 2013 ident: 10.1016/j.jhydrol.2023.129870_b0275 article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2012.11.016 – start-page: 54 year: 2004 ident: 10.1016/j.jhydrol.2023.129870_b0095 article-title: Anusplin version 4.2 user guide – volume: 56 issue: 10 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0020 article-title: Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China publication-title: Water Resources Research doi: 10.1029/2019WR027019 – volume: 467 start-page: 951 issue: 7318 year: 2010 ident: 10.1016/j.jhydrol.2023.129870_b0105 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature doi: 10.1038/nature09396 – volume: 131 start-page: 103 year: 2013 ident: 10.1016/j.jhydrol.2023.129870_b0065 article-title: Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.12.016 – volume: 12 start-page: 116 issue: 2 year: 2019 ident: 10.1016/j.jhydrol.2023.129870_b0145 article-title: Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin publication-title: Atmospheric and Oceanic Science Letters doi: 10.1080/16742834.2019.1569456 – volume: 1 start-page: 316 issue: 4 year: 2008 ident: 10.1016/j.jhydrol.2023.129870_b0075 article-title: Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing publication-title: Ecohydrology doi: 10.1002/eco.19 – volume: 114 start-page: 1416 issue: 7 year: 2010 ident: 10.1016/j.jhydrol.2023.129870_b0280 article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.01.022 – volume: 85 start-page: 489 issue: 4 year: 2003 ident: 10.1016/j.jhydrol.2023.129870_b0260 article-title: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(03)00051-8 – volume: 43 start-page: 5089 issue: 10 year: 2016 ident: 10.1016/j.jhydrol.2023.129870_b0040 article-title: Remote detection of water management impacts on evapotranspiration in the Colorado River Basin publication-title: Geophysical Research Letters doi: 10.1002/2016GL068675 – volume: 16 start-page: 124008 issue: 12 year: 2021 ident: 10.1016/j.jhydrol.2023.129870_b0310 article-title: Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure publication-title: Environmental Research Letters doi: 10.1088/1748-9326/ac3532 – volume: 50 issue: 2 year: 2012 ident: 10.1016/j.jhydrol.2023.129870_b0240 article-title: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability publication-title: Reviews of Geophysics doi: 10.1029/2011RG000373 – ident: 10.1016/j.jhydrol.2023.129870_b0205 – volume: 579 start-page: 124162 year: 2019 ident: 10.1016/j.jhydrol.2023.129870_b0255 article-title: Deriving a long-term pan evaporation reanalysis dataset for two Chinese pan types publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.124162 – volume: 588 start-page: 125054 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0045 article-title: Evaluation of nine sub-daily soil moisture model products over China using high-resolution in situ observations publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2020.125054 – volume: 46 issue: 5 year: 2010 ident: 10.1016/j.jhydrol.2023.129870_b0295 article-title: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution: ESTIMATION OF SURFACE CONDUCTANCES AND EVAPORATION publication-title: Water Resour. Res. doi: 10.1029/2009WR008716 – ident: 10.1016/j.jhydrol.2023.129870_b0035 – start-page: 16 year: 2000 ident: 10.1016/j.jhydrol.2023.129870_b0230 – volume: 46 issue: 9 year: 2010 ident: 10.1016/j.jhydrol.2023.129870_b0285 article-title: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006: GLOBAL RECORD OF LAND SURFACE EVAPOTRANSPIRATION publication-title: Water Resour. Res. doi: 10.1029/2009WR008800 – volume: 122 start-page: 6868 issue: 13 year: 2017 ident: 10.1016/j.jhydrol.2023.129870_b0305 article-title: Global variation of transpiration and soil evaporation and the role of their major climate drivers publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1002/2017JD027025 – volume: 614 start-page: 128514 year: 2022 ident: 10.1016/j.jhydrol.2023.129870_b0100 article-title: Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128514 – volume: 613 start-page: 128347 year: 2022 ident: 10.1016/j.jhydrol.2023.129870_b0180 article-title: Estimating evapotranspiration using earth observation data: A comparison between hydrological and energy balance modelling approaches publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128347 – volume: 591 start-page: 125301 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0215 article-title: Limitation of soil moisture on the response of transpiration to vapor pressure deficit in a subtropical coniferous plantation subjected to seasonal drought publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2020.125301 – volume: 146 start-page: 1999 issue: 730 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0090 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society doi: 10.1002/qj.3803 – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0135 article-title: Soil moisture dominates dryness stress on ecosystem production globally publication-title: Nature Communications – volume: 52 start-page: 9511 issue: 12 year: 2016 ident: 10.1016/j.jhydrol.2023.129870_b0140 article-title: Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle publication-title: Water Resources Research doi: 10.1002/2016WR019340 – volume: 24 start-page: 515 issue: 2 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0070 article-title: Impact of revegetation of the Loess Plateau of China on the regional growing season water balance publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-24-515-2020 – volume: 643 start-page: 610 year: 2018 ident: 10.1016/j.jhydrol.2023.129870_b0015 article-title: Incorporating vegetation dynamics noticeably improved performance of hydrological model under vegetation greening publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.233 – volume: 115 start-page: 1781 issue: 8 year: 2011 ident: 10.1016/j.jhydrol.2023.129870_b0165 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.02.019 – volume: 6 start-page: 1023 issue: 11 year: 2016 ident: 10.1016/j.jhydrol.2023.129870_b0175 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nature Climate Change doi: 10.1038/nclimate3114 – volume: 116 year: 2011 ident: 10.1016/j.jhydrol.2023.129870_b0110 article-title: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations publication-title: Journal of Geophysical Research doi: 10.1029/2010JG001566 – volume: 613 start-page: 128446 year: 2022 ident: 10.1016/j.jhydrol.2023.129870_b0270 article-title: Quantifying the effect of vegetation greening on evapotranspiration and its components on the Loess Plateau publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128446 – volume: 603 start-page: 127026 year: 2021 ident: 10.1016/j.jhydrol.2023.129870_b0210 article-title: Integrating remote sensing data in optimization of a national water resources model to improve the spatial pattern performance of evapotranspiration publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.127026 – start-page: 1 year: 2014 ident: 10.1016/j.jhydrol.2023.129870_b0030 article-title: Introduction to Hydrology, Modern Water Resources Engineering – volume: 3 start-page: 834 issue: 6 year: 2016 ident: 10.1016/j.jhydrol.2023.129870_b0290 article-title: A review of remote sensing based actual evapotranspiration estimation publication-title: WIREs Water doi: 10.1002/wat2.1168 – volume: 11 start-page: 495 issue: 4 year: 2019 ident: 10.1016/j.jhydrol.2023.129870_b0050 article-title: Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa publication-title: Journal of Arid Land doi: 10.1007/s40333-019-0098-2 – volume: 56 issue: 7 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0085 article-title: Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments publication-title: Water Resources Research doi: 10.1029/2020WR027392 – volume: 9 start-page: 3801 issue: 5 year: 2009 ident: 10.1016/j.jhydrol.2023.129870_b0125 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors (Basel) doi: 10.3390/s90503801 – volume: 617 year: 2023 ident: 10.1016/j.jhydrol.2023.129870_b0010 article-title: Comparison of remote sensing evapotranspiration models: Consistency, merits, and pitfalls publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128856 – volume: 7 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.129870_b0170 article-title: A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015 publication-title: Sci Data doi: 10.1038/s41597-020-00693-x – volume: 49 start-page: 6572 issue: 10 year: 2013 ident: 10.1016/j.jhydrol.2023.129870_b0160 article-title: Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation publication-title: Water Resources Research doi: 10.1002/wrcr.20468 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2023.129870_b0300 article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components publication-title: Sci Rep – volume: 10 start-page: 1903 issue: 5 year: 2017 ident: 10.1016/j.jhydrol.2023.129870_b0155 article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-1903-2017 – volume: 377 start-page: 80 issue: 1-2 year: 2009 ident: 10.1016/j.jhydrol.2023.129870_b0080 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2009.08.003 – volume: 50 start-page: 1031 issue: 4 year: 1986 ident: 10.1016/j.jhydrol.2023.129870_b0195 article-title: Estimating Generalized Soil-water Characteristics from Texture publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1986.03615995005000040039x – ident: 10.1016/j.jhydrol.2023.129870_b0005 – volume: 102 start-page: 293 issue: 3–4 year: 2006 ident: 10.1016/j.jhydrol.2023.129870_b0245 article-title: Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.02.007 – volume: 6 start-page: 5 issue: sup1 year: 2013 ident: 10.1016/j.jhydrol.2023.129870_b0130 article-title: A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2013.805262 – volume: 112 start-page: 901 issue: 3 year: 2008 ident: 10.1016/j.jhydrol.2023.129870_b0060 article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.06.025 – volume: 61 start-page: 227 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2023.129870_b0225 article-title: Environmental controls of evapotranspiration in a mixed plantation in North China publication-title: Int J Biometeorol doi: 10.1007/s00484-016-1205-0 – volume: 44 issue: 10 year: 2008 ident: 10.1016/j.jhydrol.2023.129870_b0120 article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation publication-title: Water Resources Research doi: 10.1029/2007WR006562 – volume: 101 start-page: 299 issue: 3 year: 2006 ident: 10.1016/j.jhydrol.2023.129870_b0235 article-title: Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.12.016 – volume: 29 start-page: 421 issue: 4 year: 2008 ident: 10.1016/j.jhydrol.2023.129870_b0115 article-title: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data publication-title: Surveys in Geophysics doi: 10.1007/s10712-008-9037-z – volume: 47 start-page: 2536 issue: 8 year: 2009 ident: 10.1016/j.jhydrol.2023.129870_b0265 article-title: A Temporally Integrated Inversion Method for Estimating Leaf Area Index From MODIS Data publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2009.2015656 |
| SSID | ssj0000334 |
| Score | 2.4437785 |
| Snippet | •We evaluated the performance of five SM constraint algorithms for ET simulations.•The fdrying algorithm was recommended due to its better performance.•The... Remotely sensed (RS) evapotranspiration (ET) models have been widely used to estimate ET over large areas. However, a common challenge for these models is the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 129870 |
| SubjectTerms | algorithms basins China Evaporation Evapotranspiration Remote sensing Soil moisture constraint soil water |
| Title | Applicability evaluation of soil moisture constraint algorithms in remote sensing evapotranspiration models |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2023.129870 https://www.proquest.com/docview/2887604556 |
| Volume | 623 |
| WOSCitedRecordID | wos001030138500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgiwQXxFOUl4zErUpI7Dzs44KKgEPVQ5H2FiV-7GbbTVabFO3-e8axk5QuVQGJSxRFsp14voy_8XhmEHqvCglEIFReEmjtRaGWHudEgdUKqi_OYVFUois2kZ6csNmMn7pzuk1XTiCtKrbd8vV_FTU8A2Gb0Nm_EPfQKTyAexA6XEHscP0jwU-tS7o79Lq7ks3b0MKmLi-OVjWI1vgNhOGGpkSE2fad15uyXawaG-ACAlRHjTncXs1NH-u67bKglw4wXQGd5gZmu9jJjU3tBPR1ujKpGKTB3bDn8NHWwD5VbtnsfCCl8_5X863LBu42IwgdjsK5HbK9KJkhYiBMbDFjX1lFy1JuYuHSq5o4saHHe1rdbjAs_aV9f9-M7ANRYbbmyLWE2cb_TMxwYF0B4SHBXXRA0pizCTqYfj2efRtXakqjPpu8aTBGeH347WA3cZdrq3hHTc4eoYdu5vHUYuExuqOqJ-i-K2-_2D1F579gAo-YwLXGBhO4xwQeMYFHTOCywhYT2GEC72MCW0w8Q98_H599-uK5KhueoBFpPaYZZ6EQmoJxm-eKRorLhMeyYDJl8AuTUIc6FgpUdchkrnlEhU4kzYkUVGn6HE2qulIvEAbTP2cBL1igoig2bL4IRQiMNilIkQTyEEX9_GXCpaA3n3SR9WcNl5mb9sxMe2an_RD5Q7O1zcFyWwPWCydzRNISxAwQdVvTd70wM1C0xnuWV6q-bDICy3ECBlCcvPz37l-hB-Nv8xpN2s2leoPuiR9t2WzeOnz-BLwirEo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+evaluation+of+soil+moisture+constraint+algorithms+in+remote+sensing+evapotranspiration+models&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Bai%2C+Peng&rft.au=Cai%2C+Changxin&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=623&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129870&rft.externalDocID=S0022169423008120 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |