Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts

•Use Stacked Autoencoder (SAE) to reduce the dimension of regional inundation data.•Use PCA to adjust the network structure and initialize network weights of the SAE.•SAE-RNN nowcasts multistep-ahead regional inundation maps of typhoon events.•Offer 2D-visualization of spatio-temporal distribution o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 598; S. 126371
Hauptverfasser: Kao, I-Feng, Liou, Jia-Yi, Lee, Meng-Hsin, Chang, Fi-John
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2021
Schlagworte:
ISSN:0022-1694, 1879-2707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Use Stacked Autoencoder (SAE) to reduce the dimension of regional inundation data.•Use PCA to adjust the network structure and initialize network weights of the SAE.•SAE-RNN nowcasts multistep-ahead regional inundation maps of typhoon events.•Offer 2D-visualization of spatio-temporal distribution of regional inundation depths. Reliable and accurate regional multistep-ahead flood forecasts during extreme events are crucial and beneficial to flood disaster management and preparedness. Hydrologic uncertainty associated with the nonlinear dependence structure of flood inundation dynamics makes flood inundation forecasting fundamentally challenging. This study proposes a novel machine learning-based model (SAE-RNN) that hybrids the stacked autoencoder (SAE) with a recurrent neural network (RNN) for providing accurate and timely information to support emergency management in areas impacted by flood hazards. The proposed SAE-RNN model uses SAE to compress (encode) the high-dimensional flood inundation depths in a wide region into a low-dimensional latent space representation (flood features), uses RNN to forecast multistep-ahead flood features based on regional rainfall patterns, and finally uses SAE to reconstruct (decode) the multistep-ahead forecasts of flood features into regional flood inundation depths. A large number of hourly datasets of flood inundation depths collected in Yilan County of Taiwan formed the case study, where each dataset contains 169,797 grids of inundation depth. The datasets were divided into three independent datasets for use in training, validating and testing stages. The models’ results showed that RMSE values were very small (<0.09 m) and R2 values were high (>0.95) in all the cases (1- up to 3-hour-ahead forecasts in three stages). We conclude that the reason why the proposed SAE-RNN models are capable of attaining favorable regional multistep-ahead flood inundation forecasts could be owing to two core strategies: the effective continual extraction of the nonlinear dependence structure from flood inundation dynamics for lessening hydrologic uncertainty by virtue of SAE; and the nonlinear conversion of rainfall sequences into future flood features by virtue of RNN.
AbstractList Reliable and accurate regional multistep-ahead flood forecasts during extreme events are crucial and beneficial to flood disaster management and preparedness. Hydrologic uncertainty associated with the nonlinear dependence structure of flood inundation dynamics makes flood inundation forecasting fundamentally challenging. This study proposes a novel machine learning-based model (SAE-RNN) that hybrids the stacked autoencoder (SAE) with a recurrent neural network (RNN) for providing accurate and timely information to support emergency management in areas impacted by flood hazards. The proposed SAE-RNN model uses SAE to compress (encode) the high-dimensional flood inundation depths in a wide region into a low-dimensional latent space representation (flood features), uses RNN to forecast multistep-ahead flood features based on regional rainfall patterns, and finally uses SAE to reconstruct (decode) the multistep-ahead forecasts of flood features into regional flood inundation depths. A large number of hourly datasets of flood inundation depths collected in Yilan County of Taiwan formed the case study, where each dataset contains 169,797 grids of inundation depth. The datasets were divided into three independent datasets for use in training, validating and testing stages. The models’ results showed that RMSE values were very small (<0.09 m) and R² values were high (>0.95) in all the cases (1- up to 3-hour-ahead forecasts in three stages). We conclude that the reason why the proposed SAE-RNN models are capable of attaining favorable regional multistep-ahead flood inundation forecasts could be owing to two core strategies: the effective continual extraction of the nonlinear dependence structure from flood inundation dynamics for lessening hydrologic uncertainty by virtue of SAE; and the nonlinear conversion of rainfall sequences into future flood features by virtue of RNN.
•Use Stacked Autoencoder (SAE) to reduce the dimension of regional inundation data.•Use PCA to adjust the network structure and initialize network weights of the SAE.•SAE-RNN nowcasts multistep-ahead regional inundation maps of typhoon events.•Offer 2D-visualization of spatio-temporal distribution of regional inundation depths. Reliable and accurate regional multistep-ahead flood forecasts during extreme events are crucial and beneficial to flood disaster management and preparedness. Hydrologic uncertainty associated with the nonlinear dependence structure of flood inundation dynamics makes flood inundation forecasting fundamentally challenging. This study proposes a novel machine learning-based model (SAE-RNN) that hybrids the stacked autoencoder (SAE) with a recurrent neural network (RNN) for providing accurate and timely information to support emergency management in areas impacted by flood hazards. The proposed SAE-RNN model uses SAE to compress (encode) the high-dimensional flood inundation depths in a wide region into a low-dimensional latent space representation (flood features), uses RNN to forecast multistep-ahead flood features based on regional rainfall patterns, and finally uses SAE to reconstruct (decode) the multistep-ahead forecasts of flood features into regional flood inundation depths. A large number of hourly datasets of flood inundation depths collected in Yilan County of Taiwan formed the case study, where each dataset contains 169,797 grids of inundation depth. The datasets were divided into three independent datasets for use in training, validating and testing stages. The models’ results showed that RMSE values were very small (<0.09 m) and R2 values were high (>0.95) in all the cases (1- up to 3-hour-ahead forecasts in three stages). We conclude that the reason why the proposed SAE-RNN models are capable of attaining favorable regional multistep-ahead flood inundation forecasts could be owing to two core strategies: the effective continual extraction of the nonlinear dependence structure from flood inundation dynamics for lessening hydrologic uncertainty by virtue of SAE; and the nonlinear conversion of rainfall sequences into future flood features by virtue of RNN.
ArticleNumber 126371
Author Kao, I-Feng
Lee, Meng-Hsin
Chang, Fi-John
Liou, Jia-Yi
Author_xml – sequence: 1
  givenname: I-Feng
  surname: Kao
  fullname: Kao, I-Feng
– sequence: 2
  givenname: Jia-Yi
  surname: Liou
  fullname: Liou, Jia-Yi
– sequence: 3
  givenname: Meng-Hsin
  surname: Lee
  fullname: Lee, Meng-Hsin
– sequence: 4
  givenname: Fi-John
  surname: Chang
  fullname: Chang, Fi-John
  email: changfj@ntu.edu.tw
BookMark eNqFkE9rGzEQxUVwIHaajxDQsZd1JO0_LT2UYpqmEMglPYuxNBvL1UqupC3421eOc-rFcxmGee_B-63IwgePhNxztuaMdw_79X53NDG4tWCCr7no6p5fkSWX_VCJnvULsmRMiIp3Q3NDVintWZm6bpZkepyT9W80ZdC_0VCYc0Cvg8FIwRvqwum5CzFXGeNEJ5xCPNIxRBrxzQYPjk6zyzZlPFSwQzB0dCEYav3sDeQiOalRQ8rpE7kewSW8-9i35Nfj99fNU_X88uPn5ttzpetG5EpqKUsLLbFlnGGjZYu63RrZmI4NWxhNudpB8rEfa8m6LUJds05Dr7ttC1Dfks_n3EMMf2ZMWU02aXQOPIY5KdG2fBCNlF2RtmepjiGliKM6RDtBPCrO1Amv2qsPvOqEV53xFt-X_3za5ve6OYJ1F91fz24sFP5ajCppW7ijsQVVVibYCwn_AGOVnwg
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131737
crossref_primary_10_1061_JHYEFF_HEENG_6262
crossref_primary_10_1016_j_jhydrol_2022_128122
crossref_primary_10_1017_eds_2024_14
crossref_primary_10_1029_2025WR040433
crossref_primary_10_1111_mice_13484
crossref_primary_10_1007_s11069_025_07494_8
crossref_primary_10_1016_j_jhydrol_2024_131819
crossref_primary_10_1016_j_jhydrol_2025_133954
crossref_primary_10_1016_j_envsoft_2025_106599
crossref_primary_10_1016_j_jhydrol_2022_128086
crossref_primary_10_1017_eds_2024_19
crossref_primary_10_1029_2022RG000788
crossref_primary_10_1016_j_jhydrol_2024_131250
crossref_primary_10_1016_j_jhydrol_2024_131494
crossref_primary_10_3390_su162410958
crossref_primary_10_3390_app122412567
crossref_primary_10_1016_j_jhydrol_2022_127515
crossref_primary_10_3390_w16131771
crossref_primary_10_3390_w14162492
crossref_primary_10_3390_w16101407
crossref_primary_10_1016_j_jhydrol_2023_130117
crossref_primary_10_1016_j_jhydrol_2023_129688
crossref_primary_10_3390_w14244029
crossref_primary_10_1016_j_jhydrol_2024_130937
crossref_primary_10_1016_j_jhydrol_2023_129684
crossref_primary_10_1016_j_jhydrol_2023_129521
crossref_primary_10_3390_w16091286
crossref_primary_10_1007_s43832_024_00173_y
crossref_primary_10_1016_j_jhydrol_2023_129163
crossref_primary_10_3390_hydrology11090152
crossref_primary_10_1016_j_jhydrol_2025_132737
crossref_primary_10_1016_j_ijdrr_2022_103276
crossref_primary_10_1016_j_jhydrol_2023_129480
crossref_primary_10_1109_JSTARS_2023_3349162
crossref_primary_10_1016_j_jhydrol_2021_126975
crossref_primary_10_1016_j_jhydrol_2022_128025
crossref_primary_10_1016_j_jhydrol_2022_128388
crossref_primary_10_3390_w15223928
crossref_primary_10_1007_s11069_024_06846_0
crossref_primary_10_1016_j_jhydrol_2022_128265
crossref_primary_10_3390_rs17172943
crossref_primary_10_1007_s11227_022_04827_3
crossref_primary_10_1016_j_jhydrol_2021_127255
crossref_primary_10_3390_rs16203889
crossref_primary_10_1029_2022WR033214
crossref_primary_10_1016_j_eswa_2022_118481
crossref_primary_10_1016_j_jhydrol_2024_130862
crossref_primary_10_1016_j_jhydrol_2024_131996
crossref_primary_10_1038_s44304_025_00122_2
crossref_primary_10_1007_s11269_024_03833_9
crossref_primary_10_1016_j_jhydrol_2024_131275
crossref_primary_10_1016_j_jclepro_2023_139825
crossref_primary_10_3390_smartcities8030091
crossref_primary_10_3390_hydrology9110202
crossref_primary_10_1007_s11269_023_03725_4
crossref_primary_10_1016_j_jhydrol_2023_129956
crossref_primary_10_1016_j_watres_2024_122162
crossref_primary_10_1016_j_ijggc_2024_104124
crossref_primary_10_1016_j_scitotenv_2024_172246
crossref_primary_10_1016_j_jhydrol_2022_128431
crossref_primary_10_1016_j_jhydrol_2022_127781
crossref_primary_10_1016_j_jenvman_2023_119789
crossref_primary_10_1007_s11269_024_03937_2
crossref_primary_10_1016_j_jhydrol_2024_130993
crossref_primary_10_1016_j_jenvman_2025_124835
crossref_primary_10_2166_hydro_2024_036
crossref_primary_10_1109_TSG_2024_3481894
crossref_primary_10_1007_s12524_025_02277_x
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_1016_j_jhydrol_2024_131082
crossref_primary_10_3390_w15101846
crossref_primary_10_1007_s11069_022_05766_1
crossref_primary_10_1016_j_jhydrol_2021_126831
crossref_primary_10_2166_hydro_2023_001
crossref_primary_10_5194_hess_26_4345_2022
crossref_primary_10_3390_w14142211
crossref_primary_10_2166_hydro_2023_006
Cites_doi 10.1016/j.jhydrol.2016.06.026
10.1002/met.1533
10.1109/ACCESS.2019.2963819
10.1016/j.jcp.2018.04.018
10.1016/j.neucom.2015.08.104
10.1016/j.jhydrol.2019.06.036
10.1007/s11269-019-02399-1
10.1016/j.jhydrol.2015.07.057
10.1016/j.jhydrol.2015.08.008
10.1016/j.jhydrol.2018.04.065
10.3390/w11010009
10.1016/j.jhydrol.2014.06.013
10.1016/j.jhydrol.2015.11.050
10.1016/j.jhydrol.2019.02.051
10.1016/j.isprsjprs.2017.11.009
10.1016/j.neucom.2020.04.110
10.1002/hyp.9559
10.3390/w12020578
10.1109/ACCESS.2018.2818108
10.18653/v1/D16-1137
10.1016/j.jhydrol.2016.01.056
10.1029/2019WR025326
10.1515/jwld-2016-0003
10.2166/wst.2020.369
10.5194/hess-2019-368
10.1016/j.jhydrol.2019.124296
10.5194/hess-22-6005-2018
10.3390/w11071387
10.3390/w11091848
10.1016/j.jhydrol.2013.05.038
10.1016/j.jhydrol.2019.05.051
10.1007/s11269-017-1796-1
10.3390/w10091283
10.1007/s11269-016-1474-8
10.1016/j.jhydrol.2018.01.015
10.1016/j.ins.2018.12.027
10.1016/j.jpdc.2017.06.007
10.1007/s11263-017-1033-7
10.1016/j.jhydrol.2014.03.057
10.1190/geo2018-0668.1
10.1016/S1005-8885(17)60243-7
10.1016/j.jhydrol.2016.11.033
10.1162/neco.1997.9.8.1735
10.1038/s41598-018-30024-5
10.1038/s41467-020-15734-7
10.2463/mrms.mp.2019-0018
10.1016/j.neucom.2016.12.038
10.1016/j.jclepro.2018.10.243
10.3390/en12122445
10.1007/s11600-019-00330-1
10.1109/TASE.2019.2895801
10.1016/j.neucom.2015.11.044
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2021.126371
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126371
S0022169421004182
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-8c88126c8e5010e4c85ec5bd84d609bafdc5b5981f7f3806bea3306ca7c6b5aa3
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661813200131&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 09:29:45 EST 2025
Tue Nov 18 20:43:13 EST 2025
Sat Nov 29 06:57:39 EST 2025
Fri Feb 23 02:42:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacked autoencoder (SAE)
Regional flood inundation
Multistep-ahead forecast
Long short-term memory (LSTM)
Recurrent neural network (RNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-8c88126c8e5010e4c85ec5bd84d609bafdc5b5981f7f3806bea3306ca7c6b5aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551924886
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551924886
crossref_primary_10_1016_j_jhydrol_2021_126371
crossref_citationtrail_10_1016_j_jhydrol_2021_126371
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126371
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiang, Z., Yan, J., Demir, I., 2020. A rainfall‐runoff model with LSTM‐based sequen‐to‐sequence learning. Water resources research, 56(1), e2019WR025326.
Tong, Li, Lang, Kong, Niu, Rodrigues (b0250) 2018; 117
Liu, Xu, Yang (b0140) 2017
Kidoh, Shinoda, Kitajima, Isogawa, Nambu, Uetani, Yamashita (b0105) 2020; 19
Taormina, Chau, Sivakumar (b0245) 2015; 529
Sit, Demiray, Xiang, Ewing, Sermet, Demir (b0230) 2020; 82
Zabalza, Ren, Zheng, Zhao, Qing, Yang, Qing, Yang, Du, Marshall (b0295) 2016; 185
Nanda, Sahoo, Chatterjee (b0170) 2019; 575
Jiao, Huang, Ma, Han, Tian (b0095) 2018; 6
Liu, Wang, Liu, Zeng, Liu, Alsaadi (b0145) 2017; 234
Zaytar, El Amrani (b0300) 2016; 143
Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (b0165) 2018; 135
Tsai, Abrahart, Mount, Chang (b0255) 2014; 28
Le, Ho, Lee, Jung (b0125) 2019; 11
Li, Bai, Zeng (b0135) 2016; 30
Li, Du, Volkow, Pan (b0130) 2020; 13
Ni, Wang, Singh, Wu, Wang, Tao, Zhang (b0175) 2020; 583
Xie, Zhang, Hou, Xie, Lv, Liu (b0285) 2019; 123915
Noori, Kalin (b0180) 2016; 533
Chang, Tsai (b0035) 2016; 535
Zhang, Zhu, Zhang, Ye, Yang (b0310) 2018; 561
Xiang, Z., Yan, J., Demir, I., 2020. A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water Resources Research 56(1), e2019WR025326.
Chiu, Sainath, Wu, Prabhavalkar, Nguyen, Chen, Kannan, Weiss, Rao, Gonina, Jaitly, Li, Chorowski, Bacchiani (b0055) 2018
Shoaib, Shamseldin, Khan, Khan, Khan, Sultan, Melville (b0225) 2018; 32
Sahoo, Jha, Singh, Kumar (b0210) 2019; 67
Badrzadeh, Sarukkalige, Jayawardena (b0010) 2015; 529
Bai, Bezak, Sapač, Klun, Zhang (b0015) 2019; 33
Luo, Mu, Xue, Ngo-Duc, Dang-Dinh, Takara, Nover, Schladow (b0160) 2018; 8
Chang, L. C., Chang, F. J., Yang, S. N., Kao, I., Ku, Y. Y., Kuo, C. L., Amin, I., 2019. Building an Intelligent Hydroinformatics Integration Platform for Regional Flood Inundation Warning Systems. Water 2019, 11(1), 9.
Puttinaovarat, Horkaew (b0200) 2020; 8
Chang, Amin, Yang, Chang (b0040) 2018; 10
Hochreiter, Schmidhuber (b0080) 1997; 9
Chen, Chang, Chang (b0050) 2013; 497
Jeong, Park (b0090) 2019; 572
Nourani, Baghanam, Adamowski, Kisi (b0190) 2014; 514
Valipour (b0260) 2016; 23
Wiseman, S., Rush, A. M., 2016. Sequence-to-sequence learning as beam-search optimization. arXiv 1606.02960v2.
Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0110) 2018; 22
Abbasi, Farokhnia, Bahreinimotlagh, Roozbahani (b0005) 2020; 125717
Tan, Lei, Wang, Wang, Wen, Ji, Kang (b0240) 2018; 567
Chang (bib336) 2020; 11
Ding, Zhu, Feng, Zhang, Cheng (b0060) 2020; 403
Liu, Zheng, Chen (b0150) 2019; 12
Zhou, Chang, Chang, Kao, Wang (b0320) 2019; 209
Zhang, Zhu, Zhang, Ye, Yang (b0305) 2018; 561
Du, Li, Horng (b0065) 2018
Sezen, Bezak, Bai, Šraj (b0215) 2019; 576
Bi, Yuan, Zhou (b0025) 2019; 16
Orland, Roering, Thomas, Mirus (b0195) 2019; e2020GL088731
Chang, Chen, Lu, Huang, Chang (b0030) 2014; 517
Shafaei, Adamowski, Fakheri-Fard, Dinpashoh, Adamowski (b0220) 2016; 28
Zhu, Xu, Yang, Hauptmann (b0330) 2017; 124
Zhou, Guo, Xu, Chang, Yin (b0325) 2020; 12
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., Nearing, G., 2019. Benchmarking a catchment-aware Long Short-Term Memory Network (LSTM for large-scale hydrological modeling. arXiv preprint arXiv 1907.08456.
Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0115) 2018; 22
Zhu, Zabaras (b0335) 2018; 366
Wang, Yao, Zhao (b0265) 2016; 184
Kao, Zhou, Chang, Chang (b0100) 2020; 124631
Nourani (b0185) 2017; 544
Yu, Ma, Wang (b0290) 2019; 84
Bi, Yuan, Zhang, Zhang (b0020) 2019; 481
Humphrey, Gibbs, Dandy, Maier (b0085) 2016; 540
Fengming, Shufang, Zhimin, Bo, Shiming, Mingming (b0070) 2017; 24
Ren, Ren, Zhang, Zheng (b0205) 2019; 11
Chen (10.1016/j.jhydrol.2021.126371_b0050) 2013; 497
Du (10.1016/j.jhydrol.2021.126371_b0065) 2018
Ren (10.1016/j.jhydrol.2021.126371_b0205) 2019; 11
10.1016/j.jhydrol.2021.126371_b0275
Li (10.1016/j.jhydrol.2021.126371_b0130) 2020; 13
Zhou (10.1016/j.jhydrol.2021.126371_b0325) 2020; 12
Chiu (10.1016/j.jhydrol.2021.126371_b0055) 2018
Zaytar (10.1016/j.jhydrol.2021.126371_b0300) 2016; 143
Bi (10.1016/j.jhydrol.2021.126371_b0025) 2019; 16
Yu (10.1016/j.jhydrol.2021.126371_b0290) 2019; 84
Orland (10.1016/j.jhydrol.2021.126371_b0195) 2019; e2020GL088731
Liu (10.1016/j.jhydrol.2021.126371_b0140) 2017
10.1016/j.jhydrol.2021.126371_b0280
Jeong (10.1016/j.jhydrol.2021.126371_b0090) 2019; 572
Nanda (10.1016/j.jhydrol.2021.126371_b0170) 2019; 575
Bai (10.1016/j.jhydrol.2021.126371_b0015) 2019; 33
Zhu (10.1016/j.jhydrol.2021.126371_b0335) 2018; 366
Zabalza (10.1016/j.jhydrol.2021.126371_b0295) 2016; 185
Sahoo (10.1016/j.jhydrol.2021.126371_b0210) 2019; 67
Bi (10.1016/j.jhydrol.2021.126371_b0020) 2019; 481
Xie (10.1016/j.jhydrol.2021.126371_b0285) 2019; 123915
10.1016/j.jhydrol.2021.126371_b0270
Chang (10.1016/j.jhydrol.2021.126371_b0035) 2016; 535
Kratzert (10.1016/j.jhydrol.2021.126371_b0110) 2018; 22
Liu (10.1016/j.jhydrol.2021.126371_b0150) 2019; 12
Luo (10.1016/j.jhydrol.2021.126371_b0160) 2018; 8
Kratzert (10.1016/j.jhydrol.2021.126371_b0115) 2018; 22
Sit (10.1016/j.jhydrol.2021.126371_b0230) 2020; 82
Zhang (10.1016/j.jhydrol.2021.126371_b0310) 2018; 561
Tan (10.1016/j.jhydrol.2021.126371_b0240) 2018; 567
Humphrey (10.1016/j.jhydrol.2021.126371_b0085) 2016; 540
Shoaib (10.1016/j.jhydrol.2021.126371_b0225) 2018; 32
Li (10.1016/j.jhydrol.2021.126371_b0135) 2016; 30
Marmanis (10.1016/j.jhydrol.2021.126371_b0165) 2018; 135
Puttinaovarat (10.1016/j.jhydrol.2021.126371_b0200) 2020; 8
Taormina (10.1016/j.jhydrol.2021.126371_b0245) 2015; 529
Zhu (10.1016/j.jhydrol.2021.126371_b0330) 2017; 124
Jiao (10.1016/j.jhydrol.2021.126371_b0095) 2018; 6
Valipour (10.1016/j.jhydrol.2021.126371_b0260) 2016; 23
Nourani (10.1016/j.jhydrol.2021.126371_b0190) 2014; 514
Tsai (10.1016/j.jhydrol.2021.126371_b0255) 2014; 28
Kao (10.1016/j.jhydrol.2021.126371_b0100) 2020; 124631
Chang (10.1016/j.jhydrol.2021.126371_bib336) 2020; 11
Fengming (10.1016/j.jhydrol.2021.126371_b0070) 2017; 24
Hochreiter (10.1016/j.jhydrol.2021.126371_b0080) 1997; 9
10.1016/j.jhydrol.2021.126371_b0120
Wang (10.1016/j.jhydrol.2021.126371_b0265) 2016; 184
10.1016/j.jhydrol.2021.126371_b0045
Tong (10.1016/j.jhydrol.2021.126371_b0250) 2018; 117
Zhang (10.1016/j.jhydrol.2021.126371_b0305) 2018; 561
Zhou (10.1016/j.jhydrol.2021.126371_b0320) 2019; 209
Badrzadeh (10.1016/j.jhydrol.2021.126371_b0010) 2015; 529
Le (10.1016/j.jhydrol.2021.126371_b0125) 2019; 11
Ni (10.1016/j.jhydrol.2021.126371_b0175) 2020; 583
Nourani (10.1016/j.jhydrol.2021.126371_b0185) 2017; 544
Sezen (10.1016/j.jhydrol.2021.126371_b0215) 2019; 576
Noori (10.1016/j.jhydrol.2021.126371_b0180) 2016; 533
Kidoh (10.1016/j.jhydrol.2021.126371_b0105) 2020; 19
Chang (10.1016/j.jhydrol.2021.126371_b0030) 2014; 517
Liu (10.1016/j.jhydrol.2021.126371_b0145) 2017; 234
Ding (10.1016/j.jhydrol.2021.126371_b0060) 2020; 403
Abbasi (10.1016/j.jhydrol.2021.126371_b0005) 2020; 125717
Chang (10.1016/j.jhydrol.2021.126371_b0040) 2018; 10
Shafaei (10.1016/j.jhydrol.2021.126371_b0220) 2016; 28
References_xml – volume: e2020GL088731
  year: 2019
  ident: b0195
  article-title: Deep Learning as a tool to forecast hydrologic response for landslide-prone hillslopes
  publication-title: Geophys. Res. Lett.
– start-page: 4774
  year: 2018
  end-page: 4778
  ident: b0055
  article-title: State-of-the-art speech recognition with sequence-to-sequence models
  publication-title: In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 567
  start-page: 767
  year: 2018
  end-page: 780
  ident: b0240
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: J. Hydrol.
– volume: 28
  start-page: 27
  year: 2016
  end-page: 36
  ident: b0220
  article-title: A wavelet-SARIMA-ANN hybrid model for precipitation forecasting
  publication-title: J. Water Land Develop.
– start-page: 58
  year: 2017
  end-page: 61
  ident: b0140
  publication-title: A flood forecasting model based on deep learning algorithm via integrating stacked autoencoders with BP neural network
– volume: 24
  start-page: 67
  year: 2017
  end-page: 73
  ident: b0070
  article-title: Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network
  publication-title: J. China Univ Posts Telecommun
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0080
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 533
  start-page: 141
  year: 2016
  end-page: 151
  ident: b0180
  article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction
  publication-title: J. Hydrol.
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: b0190
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: A review
  publication-title: J. Hydrol.
– volume: 576
  start-page: 98
  year: 2019
  end-page: 110
  ident: b0215
  article-title: Hydrological modelling of karst catchment using lumped conceptual and data mining models
  publication-title: J. Hydrol.
– volume: 33
  start-page: 4783
  year: 2019
  end-page: 4797
  ident: b0015
  article-title: Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model
  publication-title: Water Resour. Manage.
– volume: 403
  start-page: 348
  year: 2020
  end-page: 359
  ident: b0060
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib336
  article-title: Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance
  publication-title: Nat. Commun.
– volume: 535
  start-page: 256
  year: 2016
  end-page: 269
  ident: b0035
  article-title: A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques
  publication-title: J. Hydrol.
– volume: 23
  start-page: 91
  year: 2016
  end-page: 100
  ident: b0260
  article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms
  publication-title: Meteorol. Appl.
– volume: 544
  start-page: 267
  year: 2017
  end-page: 277
  ident: b0185
  article-title: An emotional ANN (EANN) approach to modeling rainfall-runoff process
  publication-title: J. Hydrol.
– volume: 481
  start-page: 57
  year: 2019
  end-page: 68
  ident: b0020
  article-title: SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers
  publication-title: Inf. Sci.
– volume: 28
  start-page: 1055
  year: 2014
  end-page: 1070
  ident: b0255
  article-title: Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan
  publication-title: Hydrol. Process.
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: b0110
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 32
  start-page: 83
  year: 2018
  end-page: 103
  ident: b0225
  article-title: A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting
  publication-title: Water Resour. Manage.
– reference: Xiang, Z., Yan, J., Demir, I., 2020. A rainfall‐runoff model with LSTM‐based sequen‐to‐sequence learning. Water resources research, 56(1), e2019WR025326.
– volume: 540
  start-page: 623
  year: 2016
  end-page: 640
  ident: b0085
  article-title: A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: J. Hydrol.
– volume: 67
  start-page: 1471
  year: 2019
  end-page: 1481
  ident: b0210
  article-title: Long short-term memory (LSTM recurrent neural network for low-flow hydrological time series forecasting
  publication-title: Acta Geophys.
– volume: 125717
  year: 2020
  ident: b0005
  article-title: A hybrid of Random Forest and Deep Auto-Encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction
  publication-title: J. Hydrol.
– reference: Wiseman, S., Rush, A. M., 2016. Sequence-to-sequence learning as beam-search optimization. arXiv 1606.02960v2.
– volume: 561
  start-page: 918
  year: 2018
  end-page: 929
  ident: b0310
  article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
– volume: 19
  start-page: 195
  year: 2020
  ident: b0105
  article-title: Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers
  publication-title: Magnetic Resonance Med. Sci.
– reference: Xiang, Z., Yan, J., Demir, I., 2020. A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water Resources Research 56(1), e2019WR025326.
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: b0265
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: b0115
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 529
  start-page: 1633
  year: 2015
  end-page: 1643
  ident: b0010
  article-title: Hourly runoff forecasting for flood risk management: Application of various computational intelligence models
  publication-title: J. Hydrol.
– volume: 561
  start-page: 918
  year: 2018
  end-page: 929
  ident: b0305
  article-title: Developing a Long Short-Term Memory (LSTM based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
– start-page: 171
  year: 2018
  end-page: 176
  ident: b0065
  publication-title: December. Time series forecasting using sequence-to-sequence deep learning framework
– volume: 6
  start-page: 17851
  year: 2018
  end-page: 17858
  ident: b0095
  article-title: A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting
  publication-title: IEEE Access
– volume: 12
  start-page: 2445
  year: 2019
  ident: b0150
  article-title: Deep learning with stacked denoising auto-encoder for short-term electric load forecasting
  publication-title: Energies
– volume: 135
  start-page: 158
  year: 2018
  end-page: 172
  ident: b0165
  article-title: Classification with an edge: improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 124
  start-page: 409
  year: 2017
  end-page: 421
  ident: b0330
  article-title: Uncovering the temporal context for video question answering
  publication-title: Int. J. Comput. Vision
– volume: 497
  start-page: 71
  year: 2013
  end-page: 79
  ident: b0050
  article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
– volume: 209
  start-page: 134
  year: 2019
  end-page: 145
  ident: b0320
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: J. Cleaner Prod.
– reference: Chang, L. C., Chang, F. J., Yang, S. N., Kao, I., Ku, Y. Y., Kuo, C. L., Amin, I., 2019. Building an Intelligent Hydroinformatics Integration Platform for Regional Flood Inundation Warning Systems. Water 2019, 11(1), 9.
– volume: 123915
  year: 2019
  ident: b0285
  article-title: Hybrid Forecasting Model for Non-stationary Daily Runoff Series: A Case Study in the Han River Basin, China
  publication-title: J. Hydrol.
– volume: 11
  start-page: 1848
  year: 2019
  ident: b0205
  article-title: A novel hybrid extreme learning machine approach improved by K nearest neighbor method and fireworks algorithm for flood forecasting in medium and small watershed of loess region
  publication-title: Water
– volume: 124631
  year: 2020
  ident: b0100
  article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b0335
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 575
  start-page: 890
  year: 2019
  end-page: 910
  ident: b0170
  article-title: Enhancing real-time streamflow forecasts with wavelet-neural network based error-updating schemes and ECMWF meteorological predictions in Variable Infiltration Capacity model
  publication-title: J. Hydrol.
– volume: 16
  start-page: 1763
  year: 2019
  end-page: 1773
  ident: b0025
  article-title: Temporal prediction of multiapplication consolidated workloads in distributed clouds
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 117
  start-page: 267
  year: 2018
  end-page: 273
  ident: b0250
  article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders
  publication-title: J. Parallel Distrib. Comput.
– volume: 84
  start-page: V333
  year: 2019
  end-page: V350
  ident: b0290
  article-title: Deep learning for denoising
  publication-title: Geophysics
– volume: 82
  start-page: 2635
  year: 2020
  end-page: 2670
  ident: b0230
  article-title: A comprehensive review of deep learning applications in hydrology and water resources
  publication-title: Water Sci. Technol.
– volume: 30
  start-page: 5145
  year: 2016
  end-page: 5161
  ident: b0135
  article-title: Deep feature learning architectures for daily reservoir inflow forecasting
  publication-title: Water Resour. Manage.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b0145
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 572
  start-page: 261
  year: 2019
  end-page: 273
  ident: b0090
  article-title: Comparative applications of data-driven models representing water table fluctuations
  publication-title: J. Hydrol.
– volume: 583
  year: 2020
  ident: b0175
  article-title: Streamflow and rainfall forecasting by two long short-term memory-based models
  publication-title: J. Hydrol.
– volume: 13
  year: 2020
  ident: b0130
  publication-title: A deep-learning-based approach for Biophotonics
– volume: 10
  start-page: 1283
  year: 2018
  ident: b0040
  article-title: Building ANN-based regional multi-step-ahead flood inundation forecast models
  publication-title: Water
– reference: Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., Nearing, G., 2019. Benchmarking a catchment-aware Long Short-Term Memory Network (LSTM for large-scale hydrological modeling. arXiv preprint arXiv 1907.08456.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0160
  article-title: Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions
  publication-title: Sci. Rep.
– volume: 529
  start-page: 1788
  year: 2015
  end-page: 1797
  ident: b0245
  article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization
  publication-title: J. Hydrol.
– volume: 185
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0295
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
– volume: 12
  start-page: 578
  year: 2020
  ident: b0325
  article-title: Improving the reliability of probabilistic multi-step-ahead flood forecasting by fusing unscented Kalman filter with recurrent neural network
  publication-title: Water
– volume: 517
  start-page: 836
  year: 2014
  end-page: 846
  ident: b0030
  article-title: Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
  publication-title: J. Hydrol.
– volume: 143
  start-page: 7
  year: 2016
  end-page: 11
  ident: b0300
  article-title: Sequence to sequence weather forecasting with long short-term memory recurrent neural networks
  publication-title: Int. J. Computer Appl.
– volume: 8
  start-page: 5885
  year: 2020
  end-page: 5905
  ident: b0200
  article-title: Flood forecasting system based on integrated big and crowdsource data by using machine learning techniques
  publication-title: IEEE Access
– volume: 11
  start-page: 1387
  year: 2019
  ident: b0125
  article-title: Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting
  publication-title: Water
– start-page: 58
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126371_b0140
– volume: 540
  start-page: 623
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0085
  article-title: A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.026
– volume: 23
  start-page: 91
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0260
  article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.1533
– start-page: 171
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0065
– volume: 8
  start-page: 5885
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0200
  article-title: Flood forecasting system based on integrated big and crowdsource data by using machine learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963819
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0335
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0265
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 576
  start-page: 98
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0215
  article-title: Hydrological modelling of karst catchment using lumped conceptual and data mining models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.036
– volume: 33
  start-page: 4783
  issue: 14
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0015
  article-title: Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-019-02399-1
– volume: 529
  start-page: 1633
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126371_b0010
  article-title: Hourly runoff forecasting for flood risk management: Application of various computational intelligence models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.057
– volume: 13
  issue: 10
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0130
  publication-title: A deep-learning-based approach for Biophotonics
– volume: 529
  start-page: 1788
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126371_b0245
  article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.008
– volume: 561
  start-page: 918
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0310
  article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.065
– ident: 10.1016/j.jhydrol.2021.126371_b0045
  doi: 10.3390/w11010009
– volume: 517
  start-page: 836
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126371_b0030
  article-title: Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.06.013
– volume: 533
  start-page: 141
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0180
  article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.11.050
– volume: 572
  start-page: 261
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0090
  article-title: Comparative applications of data-driven models representing water table fluctuations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.02.051
– volume: 135
  start-page: 158
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0165
  article-title: Classification with an edge: improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.009
– volume: 403
  start-page: 348
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0060
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.110
– volume: 28
  start-page: 1055
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126371_b0255
  article-title: Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9559
– volume: 12
  start-page: 578
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0325
  article-title: Improving the reliability of probabilistic multi-step-ahead flood forecasting by fusing unscented Kalman filter with recurrent neural network
  publication-title: Water
  doi: 10.3390/w12020578
– volume: 6
  start-page: 17851
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0095
  article-title: A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818108
– ident: 10.1016/j.jhydrol.2021.126371_b0270
  doi: 10.18653/v1/D16-1137
– volume: e2020GL088731
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0195
  article-title: Deep Learning as a tool to forecast hydrologic response for landslide-prone hillslopes
  publication-title: Geophys. Res. Lett.
– volume: 535
  start-page: 256
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0035
  article-title: A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.056
– ident: 10.1016/j.jhydrol.2021.126371_b0280
  doi: 10.1029/2019WR025326
– volume: 123915
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0285
  article-title: Hybrid Forecasting Model for Non-stationary Daily Runoff Series: A Case Study in the Han River Basin, China
  publication-title: J. Hydrol.
– volume: 124631
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0100
  article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
– volume: 28
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0220
  article-title: A wavelet-SARIMA-ANN hybrid model for precipitation forecasting
  publication-title: J. Water Land Develop.
  doi: 10.1515/jwld-2016-0003
– volume: 561
  start-page: 918
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0305
  article-title: Developing a Long Short-Term Memory (LSTM based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.065
– volume: 82
  start-page: 2635
  issue: 12
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0230
  article-title: A comprehensive review of deep learning applications in hydrology and water resources
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.369
– ident: 10.1016/j.jhydrol.2021.126371_b0120
  doi: 10.5194/hess-2019-368
– volume: 583
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0175
  article-title: Streamflow and rainfall forecasting by two long short-term memory-based models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124296
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0110
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 11
  start-page: 1387
  issue: 7
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0125
  article-title: Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting
  publication-title: Water
  doi: 10.3390/w11071387
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0115
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 11
  start-page: 1848
  issue: 9
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0205
  article-title: A novel hybrid extreme learning machine approach improved by K nearest neighbor method and fireworks algorithm for flood forecasting in medium and small watershed of loess region
  publication-title: Water
  doi: 10.3390/w11091848
– volume: 497
  start-page: 71
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126371_b0050
  article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.05.038
– volume: 575
  start-page: 890
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0170
  article-title: Enhancing real-time streamflow forecasts with wavelet-neural network based error-updating schemes and ECMWF meteorological predictions in Variable Infiltration Capacity model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.051
– volume: 32
  start-page: 83
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0225
  article-title: A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-017-1796-1
– volume: 10
  start-page: 1283
  issue: 9
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0040
  article-title: Building ANN-based regional multi-step-ahead flood inundation forecast models
  publication-title: Water
  doi: 10.3390/w10091283
– volume: 30
  start-page: 5145
  issue: 14
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0135
  article-title: Deep feature learning architectures for daily reservoir inflow forecasting
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1474-8
– volume: 143
  start-page: 7
  issue: 11
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0300
  article-title: Sequence to sequence weather forecasting with long short-term memory recurrent neural networks
  publication-title: Int. J. Computer Appl.
– volume: 567
  start-page: 767
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0240
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.015
– volume: 125717
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0005
  article-title: A hybrid of Random Forest and Deep Auto-Encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction
  publication-title: J. Hydrol.
– volume: 481
  start-page: 57
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0020
  article-title: SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.027
– volume: 117
  start-page: 267
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0250
  article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.06.007
– volume: 124
  start-page: 409
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126371_b0330
  article-title: Uncovering the temporal context for video question answering
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-017-1033-7
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126371_b0190
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 84
  start-page: V333
  issue: 6
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0290
  article-title: Deep learning for denoising
  publication-title: Geophysics
  doi: 10.1190/geo2018-0668.1
– volume: 24
  start-page: 67
  issue: 6
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126371_b0070
  article-title: Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network
  publication-title: J. China Univ Posts Telecommun
  doi: 10.1016/S1005-8885(17)60243-7
– volume: 544
  start-page: 267
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126371_b0185
  article-title: An emotional ANN (EANN) approach to modeling rainfall-runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.033
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jhydrol.2021.126371_b0080
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0160
  article-title: Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30024-5
– ident: 10.1016/j.jhydrol.2021.126371_b0275
  doi: 10.1029/2019WR025326
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_bib336
  article-title: Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15734-7
– volume: 19
  start-page: 195
  issue: 3
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126371_b0105
  article-title: Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers
  publication-title: Magnetic Resonance Med. Sci.
  doi: 10.2463/mrms.mp.2019-0018
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126371_b0145
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– start-page: 4774
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126371_b0055
  article-title: State-of-the-art speech recognition with sequence-to-sequence models
– volume: 209
  start-page: 134
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0320
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.10.243
– volume: 12
  start-page: 2445
  issue: 12
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0150
  article-title: Deep learning with stacked denoising auto-encoder for short-term electric load forecasting
  publication-title: Energies
  doi: 10.3390/en12122445
– volume: 67
  start-page: 1471
  issue: 5
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0210
  article-title: Long short-term memory (LSTM recurrent neural network for low-flow hydrological time series forecasting
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-019-00330-1
– volume: 16
  start-page: 1763
  issue: 4
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126371_b0025
  article-title: Temporal prediction of multiapplication consolidated workloads in distributed clouds
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2895801
– volume: 185
  start-page: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126371_b0295
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.044
SSID ssj0000334
Score 2.6028411
Snippet •Use Stacked Autoencoder (SAE) to reduce the dimension of regional inundation data.•Use PCA to adjust the network structure and initialize network weights of...
Reliable and accurate regional multistep-ahead flood forecasts during extreme events are crucial and beneficial to flood disaster management and preparedness....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126371
SubjectTerms case studies
data collection
disaster preparedness
hydrology
Long short-term memory (LSTM)
Multistep-ahead forecast
neural networks
rain
Recurrent neural network (RNN)
Regional flood inundation
Stacked autoencoder (SAE)
Taiwan
uncertainty
Title Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126371
https://www.proquest.com/docview/2551924886
Volume 598
WOSCitedRecordID wos000661813200131&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZO9hexq6su6HB3oKy-CbLj6E0a_dQ9tBB9mRkWVodEifEcel-Rf9yz7Fku6Qd3QZ7MYmJLKLvk3R0fM53CPmkgTaZCAzLEhTV5h5MKa04k0k8FkYLX2WqKTYRn56K2Sz5NhhctbkwF4u4LMXlZbL-r1DDPQAbU2f_Au7uoXADPgPocAXY4fpHwE_ryvkIYILmQ1lvVyhWiZoR6CRfYHGh6hysboar8nCJobY2ahOLNDSOwSbKEOBfMwlrdT40GN0-LMq2AhP-WitZWRWoO2zb81_5xoo7gQE7WaIYQ47M6yO7ZeOiPWEwdD-7oKBiVTesKiT7UeyECmH4LTuuio7Mh62re1qwLqDY-S98r4t1dU61W4k1XZKBx23945G2a7OIE0yfi28u3pGtYX1rI7A-iflobv_wCHseeT4PbMGXHY1tfGXtY3c-CujBkesB2ffjKIFlcn9ycjT72m_uQRC2AvTYoE8K-3xnZ78zd3Y2_saaOXtKnjio6MTS5xkZ6PI5efRFOwHzF2RpaUQdjegNGlGgEUUa0Z5G1NKIAjFoSyO6QyPa0Ij2NKIdjV6S79Ojs8Nj5kpzMBWE_pYJJcAy5EroCA70OlQi0irKchHmfJxk0uTwDbDxTGwCMeaZlgEcTpWMFc8iKYNXZK9clfo1oSI3gZIemK6-CeM8knqccQNmvzDCzyLvgITtCKbK6dZj-ZRF2gYozlM38CkOfGoH_oCMumZrK9xyXwPRwpM669NalSlw6r6mH1s4U1id8ZWbLPWqrlI4sKOHQwj-5t8f_5Y87ifOO7K33dT6PXmoLgDDzQfH0Gtol7vi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+stacked+autoencoder+and+long+short-term+memory+for+regional+multistep-ahead+flood+inundation+forecasts&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Kao%2C+I-Feng&rft.au=Liou%2C+Jia-Yi&rft.au=Lee%2C+Meng-Hsin&rft.au=Chang%2C+Fi-John&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=598&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126371&rft.externalDocID=S0022169421004182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon