Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms

•A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS shows poor cooling capacity due to SEI formation inside the aged battery.•Two optimization strategies are proposed for multi-objective optimiz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 207; s. 124024
Hlavní autoři: Guo, Zengjia, Wang, Yang, Zhao, Siyuan, Zhao, Tianshou, Ni, Meng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.06.2023
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS shows poor cooling capacity due to SEI formation inside the aged battery.•Two optimization strategies are proposed for multi-objective optimization.•The trade-off between battery temperature and performance is achieved. Battery thermal management and electrochemical performance are critical for efficient and safe operation of battery pack. In this research, a multi-physics model considering the battery aging effect is developed for micro heat pipe battery thermal management system (MHP-BTMS). A novel multi-variables global optimization framework combining multi-physics modeling, deep learning and multi-objective optimization algorithms is established for optimizing the structural parameters of MHP-BTMS to improve battery thermal management and electrochemical performance simultaneously. It is found that MHP-BTMS fails to control the temperature of aged battery pack due to the higher heat generation caused by solid electrolyte interphase formation. After 1000 cycles, the maximum temperature and maximum temperature difference were increased by 3.32 K, 2.49 K, 2.04 K and 1.78 K, 1.46 K, 1.26 K, respectively. It is also found that the battery electrochemical performance during the cycling is highly related to battery thermal behaviors. MHP-BTMS with 0.004/s inlet velocity achieved the best performance in preventing SEI formation and battery aging effect, which was lower by 7.01 nm (SEI) and 1.65% (aging), 2.31 nm and 0.58% as compared to 0.002 and 0.003 m/s cases. Besides, MHP-BTMS with optimized inlet velocity, MHP arrangement and cold plate can improve cooling performance and electrochemical performance. Multi-variables global optimization can provide the optimal structure parameters of MHP-BTMS under the different combinations of weighted coefficients and optimization strategies to achieve the trade-off between battery thermal issues and electrochemical performance. In addition, it is demonstrated that the weighted coefficients and optimization strategies in this novel framework can be changed according to the actual needs in engineering applications.
AbstractList •A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS shows poor cooling capacity due to SEI formation inside the aged battery.•Two optimization strategies are proposed for multi-objective optimization.•The trade-off between battery temperature and performance is achieved. Battery thermal management and electrochemical performance are critical for efficient and safe operation of battery pack. In this research, a multi-physics model considering the battery aging effect is developed for micro heat pipe battery thermal management system (MHP-BTMS). A novel multi-variables global optimization framework combining multi-physics modeling, deep learning and multi-objective optimization algorithms is established for optimizing the structural parameters of MHP-BTMS to improve battery thermal management and electrochemical performance simultaneously. It is found that MHP-BTMS fails to control the temperature of aged battery pack due to the higher heat generation caused by solid electrolyte interphase formation. After 1000 cycles, the maximum temperature and maximum temperature difference were increased by 3.32 K, 2.49 K, 2.04 K and 1.78 K, 1.46 K, 1.26 K, respectively. It is also found that the battery electrochemical performance during the cycling is highly related to battery thermal behaviors. MHP-BTMS with 0.004/s inlet velocity achieved the best performance in preventing SEI formation and battery aging effect, which was lower by 7.01 nm (SEI) and 1.65% (aging), 2.31 nm and 0.58% as compared to 0.002 and 0.003 m/s cases. Besides, MHP-BTMS with optimized inlet velocity, MHP arrangement and cold plate can improve cooling performance and electrochemical performance. Multi-variables global optimization can provide the optimal structure parameters of MHP-BTMS under the different combinations of weighted coefficients and optimization strategies to achieve the trade-off between battery thermal issues and electrochemical performance. In addition, it is demonstrated that the weighted coefficients and optimization strategies in this novel framework can be changed according to the actual needs in engineering applications.
ArticleNumber 124024
Author Wang, Yang
Zhao, Tianshou
Zhao, Siyuan
Guo, Zengjia
Ni, Meng
Author_xml – sequence: 1
  givenname: Zengjia
  surname: Guo
  fullname: Guo, Zengjia
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-1180-7403
  surname: Wang
  fullname: Wang, Yang
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Siyuan
  surname: Zhao
  fullname: Zhao, Siyuan
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Tianshou
  surname: Zhao
  fullname: Zhao, Tianshou
  email: zhaots@sustech.edu.cn
  organization: Department of Mechanical and Energy Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Meng
  orcidid: 0000-0001-5310-4039
  surname: Ni
  fullname: Ni, Meng
  email: meng.ni@polyu.edu.hk
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
BookMark eNqVkM-K2zAQh0VJoUnad9CxF6eSbBzp1iU0-4csvbRnI0vjZIwlGUkNZF9iX3mdZHvpXrbMYRhm-IbftyAzHzwQ8pWzFWe8_tavsD-Azk6nlKP2qYO4EkyUKy4qJqoPZM7lWhWCSzUjc8b4ulAlZ5_IIqX-PLKqnpPnx2BhQL-n2lsaxowOn3TG4GnoqEMTAz2_oSOOQE0Il9tW5wzxRPMBotMDddrrPTjwmaZTyuDoETW1ACMdQEf_l-_-DBmL0PZgMh6B7sFDRkP1sA8R88Glz-Rjp4cEX177kvze_vi1uSt2P2_vNze7wpSVyIU0XMIaDFTSsA5awZWUmpXCyrLmvK5q1ZVVp7ipldW1VWDbdg1MiWoqI8sl-X7lTgFTitA1Y0Sn46nhrDkLbvrmreDmLLi5Cp4Q238QBvNF3XSOw_-AHq4gmAIfcdomg-ANWIyTqMYGfD_sBRTSr6M
CitedBy_id crossref_primary_10_1016_j_fuel_2023_130490
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124756
crossref_primary_10_1016_j_fub_2025_100096
crossref_primary_10_1002_fld_5358
crossref_primary_10_1016_j_est_2025_116685
crossref_primary_10_1016_j_jobe_2024_110315
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127164
crossref_primary_10_1016_j_tsep_2024_102588
crossref_primary_10_1108_HFF_10_2023_0616
crossref_primary_10_1016_j_tsep_2023_102325
crossref_primary_10_3390_pr13092769
crossref_primary_10_1016_j_applthermaleng_2023_121464
crossref_primary_10_1016_j_est_2023_109964
crossref_primary_10_1016_j_jechem_2024_07_004
crossref_primary_10_1016_j_est_2023_108910
crossref_primary_10_3390_batteries11060224
crossref_primary_10_1016_j_applthermaleng_2023_122295
crossref_primary_10_1177_09544089241304245
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125899
crossref_primary_10_1016_j_energy_2024_132688
crossref_primary_10_1016_j_rser_2023_114052
crossref_primary_10_1016_j_nxener_2024_100223
crossref_primary_10_1016_j_rser_2024_115089
crossref_primary_10_1016_j_est_2024_110447
crossref_primary_10_1109_TVT_2025_3552968
crossref_primary_10_1016_j_enbuild_2024_114638
crossref_primary_10_1016_j_est_2023_109081
crossref_primary_10_1007_s10973_025_14260_2
crossref_primary_10_1016_j_enconman_2024_118506
crossref_primary_10_1108_ILT_12_2023_0417
crossref_primary_10_1016_j_est_2024_113212
crossref_primary_10_1016_j_icheatmasstransfer_2024_108531
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127479
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125638
Cites_doi 10.1016/j.expthermflusci.2014.03.017
10.1016/j.applthermaleng.2015.04.066
10.1016/j.enconman.2019.112176
10.1016/j.applthermaleng.2022.119564
10.1016/j.ijheatmasstransfer.2022.123685
10.1016/j.jpowsour.2014.01.070
10.1016/j.ijheatmasstransfer.2022.123486
10.1016/j.ijheatmasstransfer.2021.121380
10.1016/j.jpowsour.2021.229894
10.1016/j.jpowsour.2014.01.007
10.1016/j.enconman.2012.08.014
10.1016/j.enconman.2020.113145
10.1016/j.applthermaleng.2014.09.083
10.1016/j.jpowsour.2021.229727
10.1002/cjce.22566
10.1016/j.enconman.2017.10.063
10.1016/j.ijthermalsci.2015.04.003
10.1002/er.7539
10.1016/j.energy.2016.07.076
10.1016/j.applthermaleng.2019.03.146
10.1016/j.energy.2022.126116
10.1016/j.applthermaleng.2021.117235
10.1016/j.applthermaleng.2019.114289
10.1016/j.applthermaleng.2013.11.048
10.1016/j.energy.2019.116233
10.1016/j.jpowsour.2016.04.108
10.1016/j.applthermaleng.2019.114183
10.1016/j.ijheatmasstransfer.2018.10.074
10.1016/j.enconman.2016.03.066
10.1149/1.3567007
10.1016/j.applthermaleng.2017.10.141
10.1016/j.ijheatmasstransfer.2020.120894
10.1016/j.applthermaleng.2019.02.036
10.1016/j.jpowsour.2009.10.090
10.1149/2.0641506jes
10.1016/S0378-7753(02)00048-4
10.1016/j.ijheatmasstransfer.2020.120834
10.1016/j.enconman.2015.05.050
10.1038/nature14539
10.1016/j.ijheatmasstransfer.2020.120827
10.1149/2.0191706jes
10.1016/j.applthermaleng.2021.116934
10.1016/j.energy.2021.121433
10.1115/1.4047526
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2023.124024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2023_124024
S0017931023001771
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDMP
ABDPE
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
T9H
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c342t-8c18e7ece48c0feb21988a032d836116469f34f91c69da6d9edbb7e0924242c83
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090804800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sat Nov 29 07:28:33 EST 2025
Tue Nov 18 21:47:48 EST 2025
Fri Feb 23 02:37:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Battery aging
Deep learning
Lithium-ion battery
Battery thermal management
Multiphysics modeling
Multi-objective optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-8c18e7ece48c0feb21988a032d836116469f34f91c69da6d9edbb7e0924242c83
ORCID 0000-0002-1180-7403
0000-0001-5310-4039
ParticipantIDs crossref_primary_10_1016_j_ijheatmasstransfer_2023_124024
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2023_124024
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2023_124024
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of heat and mass transfer
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Garg, Xiao (bib0014) 2021; 13
Darcovich, MacNeil, Recoskie (bib0038) 2019; 155
Tran, Harmand, Desmet (bib0019) 2014; 63
Hong, Zhang, Wang (bib0027) 2015; 95
Su, Li, Li (bib0043) 2021; 196
Dan, Yao, Zhang (bib0032) 2019; 162
Kellner (bib0036) 2019
Liang, Wang, Malt (bib0037) 2021; 192
Qian, Xuan, Zhao (bib0040) 2019; 162
Liang, Zhao, Diao (bib0031) 2021; 235
Guo, Xu, Zhao (bib0007) 2022; 51
Yuan, Yan, Tan (bib0025) 2016; 94
Connors, Zunner (bib0020) 2009
Mo, Hu, Tang (bib0035) 2019; 43
Li, Cheng, Jia (bib0046) 2014; 255
Shen, Gao (bib0002) 2020; 203
Xu, Zhang, Xu (bib0004) 2021; 176
Tang, Guo, Li (bib0042) 2021; 494
Liu, Lan, Chen (bib0034) 2016; 321
Guo, Xu, Wang (bib0045) 2023; 263
Guo, Zhao, Wang (bib0006) 2022; 46
Guo, Wang, Zhao (bib0009) 2023; 202
Wang, Yu, Jing (bib0005) 2021; 167
Guo, Xu, Ni (bib0008) 2023; 219
El  Idi, Karkri, Tankari (bib0010) 2021; 169
Wu, Zhang, Ke (bib0015) 2015; 101
Ekström, Lindbergh (bib0047) 2015; 162
Rao, Wang, Wu (bib0012) 2013; 65
LeCun, Bengio, Hinton (bib0050) 2015; 521
Anthony, Wong, Wetz (bib0029) 2017; 164
Shang, Qi, Liu (bib0039) 2019; 130
Wu, Liu, Liu (bib0011) 2020; 221
Zou, Wang, Zhang (bib0013) 2016; 118
Safari, Delacourt (bib0048) 2011; 158
Jouhara, Serey, Khordehgah (bib0016) 2020; 1
Wang, Gan, Liang (bib0022) 2019; 151
Wu, Liu, Wang (bib0017) 2002; 109
Shi, Ahmad, Liu (bib0044) 2021; 497
Xu, Zhang, Wang (bib0049) 2014; 256
Liang, Gan, Li (bib0018) 2019; 189
Rao, Huo, Liu (bib0026) 2014; 57
Zhao Y., Zhang K. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system. Google Patents; 2021.
Wang, Jiang, Xue (bib0024) 2015; 88
Shah, McKee, Chalise (bib0028) 2016; 113
Yalçın, Panchal, Herdem (bib0041) 2022; 199
Lin, Liu, Li (bib0003) 2021; 167
Ye, Saw, Shi (bib0023) 2015; 86
Liang, Gan, Li (bib0021) 2018; 155
Guo, Long, Cheng (bib0001) 2010; 195
Ye, Zhao, Quan (bib0033) 2018; 130
Qian (10.1016/j.ijheatmasstransfer.2023.124024_bib0040) 2019; 162
10.1016/j.ijheatmasstransfer.2023.124024_bib0030
Su (10.1016/j.ijheatmasstransfer.2023.124024_bib0043) 2021; 196
Zou (10.1016/j.ijheatmasstransfer.2023.124024_bib0013) 2016; 118
Xu (10.1016/j.ijheatmasstransfer.2023.124024_bib0004) 2021; 176
Dan (10.1016/j.ijheatmasstransfer.2023.124024_bib0032) 2019; 162
Safari (10.1016/j.ijheatmasstransfer.2023.124024_bib0048) 2011; 158
Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0018) 2019; 189
Wang (10.1016/j.ijheatmasstransfer.2023.124024_bib0024) 2015; 88
Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0001) 2010; 195
El Idi (10.1016/j.ijheatmasstransfer.2023.124024_bib0010) 2021; 169
Connors (10.1016/j.ijheatmasstransfer.2023.124024_bib0020) 2009
Li (10.1016/j.ijheatmasstransfer.2023.124024_bib0014) 2021; 13
Wu (10.1016/j.ijheatmasstransfer.2023.124024_bib0017) 2002; 109
Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0021) 2018; 155
Ye (10.1016/j.ijheatmasstransfer.2023.124024_bib0033) 2018; 130
Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0007) 2022; 51
Ye (10.1016/j.ijheatmasstransfer.2023.124024_bib0023) 2015; 86
Lin (10.1016/j.ijheatmasstransfer.2023.124024_bib0003) 2021; 167
Tang (10.1016/j.ijheatmasstransfer.2023.124024_bib0042) 2021; 494
Darcovich (10.1016/j.ijheatmasstransfer.2023.124024_bib0038) 2019; 155
Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0008) 2023; 219
Tran (10.1016/j.ijheatmasstransfer.2023.124024_bib0019) 2014; 63
Rao (10.1016/j.ijheatmasstransfer.2023.124024_bib0026) 2014; 57
Anthony (10.1016/j.ijheatmasstransfer.2023.124024_bib0029) 2017; 164
Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0045) 2023; 263
Ekström (10.1016/j.ijheatmasstransfer.2023.124024_bib0047) 2015; 162
Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0006) 2022; 46
Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0009) 2023; 202
Wang (10.1016/j.ijheatmasstransfer.2023.124024_bib0022) 2019; 151
LeCun (10.1016/j.ijheatmasstransfer.2023.124024_bib0050) 2015; 521
Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0031) 2021; 235
Rao (10.1016/j.ijheatmasstransfer.2023.124024_bib0012) 2013; 65
Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0037) 2021; 192
Shang (10.1016/j.ijheatmasstransfer.2023.124024_bib0039) 2019; 130
Wu (10.1016/j.ijheatmasstransfer.2023.124024_bib0015) 2015; 101
Yuan (10.1016/j.ijheatmasstransfer.2023.124024_bib0025) 2016; 94
Mo (10.1016/j.ijheatmasstransfer.2023.124024_bib0035) 2019; 43
Shi (10.1016/j.ijheatmasstransfer.2023.124024_bib0044) 2021; 497
Yalçın (10.1016/j.ijheatmasstransfer.2023.124024_bib0041) 2022; 199
Xu (10.1016/j.ijheatmasstransfer.2023.124024_bib0049) 2014; 256
Shah (10.1016/j.ijheatmasstransfer.2023.124024_bib0028) 2016; 113
Liu (10.1016/j.ijheatmasstransfer.2023.124024_bib0034) 2016; 321
Wu (10.1016/j.ijheatmasstransfer.2023.124024_bib0011) 2020; 221
Kellner (10.1016/j.ijheatmasstransfer.2023.124024_bib0036) 2019
Wang (10.1016/j.ijheatmasstransfer.2023.124024_bib0005) 2021; 167
Jouhara (10.1016/j.ijheatmasstransfer.2023.124024_bib0016) 2020; 1
Li (10.1016/j.ijheatmasstransfer.2023.124024_bib0046) 2014; 255
Shen (10.1016/j.ijheatmasstransfer.2023.124024_bib0002) 2020; 203
Hong (10.1016/j.ijheatmasstransfer.2023.124024_bib0027) 2015; 95
References_xml – volume: 195
  start-page: 2393
  year: 2010
  end-page: 2398
  ident: bib0001
  article-title: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application
  publication-title: J. Power Sources
– volume: 176
  year: 2021
  ident: bib0004
  article-title: Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates
  publication-title: Int. J. Heat Mass Transf.
– volume: 256
  start-page: 233
  year: 2014
  end-page: 243
  ident: bib0049
  article-title: Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO
  publication-title: J. Power Sources
– volume: 46
  start-page: 5997
  year: 2022
  end-page: 6011
  ident: bib0006
  article-title: Novel battery thermal management system with different shapes of pin fins
  publication-title: Int. J. Energy Res.
– volume: 321
  start-page: 57
  year: 2016
  end-page: 70
  ident: bib0034
  article-title: Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling
  publication-title: J. Power Sources
– volume: 130
  start-page: 74
  year: 2018
  end-page: 82
  ident: bib0033
  article-title: Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA)
  publication-title: Appl. Therm. Eng.
– volume: 202
  year: 2023
  ident: bib0009
  article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 95
  start-page: 106
  year: 2015
  end-page: 114
  ident: bib0027
  article-title: Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe
  publication-title: Int. J. Therm. Sci.
– volume: 43
  start-page: 7444
  year: 2019
  end-page: 7458
  ident: bib0035
  article-title: A comprehensive investigation on thermal management of large-capacity pouch cell using micro heat pipe array
  publication-title: Int. J. Energy Res.
– volume: 118
  start-page: 88
  year: 2016
  end-page: 95
  ident: bib0013
  article-title: Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle
  publication-title: Energy Convers. Manag.
– volume: 88
  start-page: 54
  year: 2015
  end-page: 60
  ident: bib0024
  article-title: Experimental investigation on EV battery cooling and heating by heat pipes
  publication-title: Appl. Therm. Eng.
– volume: 189
  year: 2019
  ident: bib0018
  article-title: Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures
  publication-title: Energy
– volume: 158
  start-page: A562
  year: 2011
  ident: bib0048
  article-title: Modeling of a commercial graphite/LiFePO
  publication-title: J. Electrochem. Soc.
– volume: 151
  start-page: 475
  year: 2019
  end-page: 485
  ident: bib0022
  article-title: Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells
  publication-title: Appl. Therm. Eng.
– volume: 162
  year: 2019
  ident: bib0032
  article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model
  publication-title: Appl. Therm. Eng.
– volume: 255
  start-page: 130
  year: 2014
  end-page: 143
  ident: bib0046
  article-title: An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery
  publication-title: J. Power Sources
– volume: 155
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0021
  article-title: Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures
  publication-title: Energy Convers. Manag.
– volume: 155
  start-page: 185
  year: 2019
  end-page: 195
  ident: bib0038
  article-title: Comparison of cooling plate configurations for automotive battery pack thermal management
  publication-title: Appl. Therm. Eng.
– volume: 167
  year: 2021
  ident: bib0005
  article-title: Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design
  publication-title: Int. J. Heat Mass Transf.
– volume: 196
  year: 2021
  ident: bib0043
  article-title: Multi-objective design optimization of battery thermal management system for electric vehicles
  publication-title: Appl. Therm. Eng.
– volume: 203
  year: 2020
  ident: bib0002
  article-title: System simulation on refrigerant-based battery thermal management technology for electric vehicles
  publication-title: Energy Convers. Manag.
– volume: 109
  start-page: 160
  year: 2002
  end-page: 166
  ident: bib0017
  article-title: Heat dissipation design for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 130
  start-page: 33
  year: 2019
  end-page: 41
  ident: bib0039
  article-title: Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system
  publication-title: Int. J. Heat Mass Transf.
– volume: 199
  year: 2022
  ident: bib0041
  article-title: A CNN-ABC model for estimation and optimization of heat generation rate and voltage distributions of lithium-ion batteries for electric vehicles
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  year: 2022
  ident: bib0007
  article-title: A new battery thermal management system employing the mini-channel cold plate with pin fins
  publication-title: Sustain. Energy Technol. Assess.
– volume: 65
  start-page: 92
  year: 2013
  end-page: 97
  ident: bib0012
  article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe
  publication-title: Energy Convers. Manag.
– volume: 497
  year: 2021
  ident: bib0044
  article-title: Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning
  publication-title: J. Power Sources
– volume: 167
  year: 2021
  ident: bib0003
  article-title: A review on recent progress, challenges and perspective of battery thermal management system
  publication-title: Int. J. Heat Mass Transf.
– volume: 219
  year: 2023
  ident: bib0008
  article-title: A numerical study on the battery thermal management system with mini-channel cold plate considering battery aging effect
  publication-title: Appl. Therm. Eng.
– volume: 101
  start-page: 278
  year: 2015
  end-page: 284
  ident: bib0015
  article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management
  publication-title: Energy Convers. Manag.
– volume: 63
  start-page: 551
  year: 2014
  end-page: 558
  ident: bib0019
  article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery
  publication-title: Appl. Therm. Eng.
– start-page: 1
  year: 2009
  end-page: 7
  ident: bib0020
  article-title: The use of vapor chambers and heat pipes for cooling military embedded electronic devices
  publication-title: Proceedings of the MILCOM IEEE Military Communications Conference: IEEE
– volume: 94
  start-page: 1901
  year: 2016
  end-page: 1908
  ident: bib0025
  article-title: Heat-pipe-based thermal management and temperature characteristics of Li-ion batteries
  publication-title: Can. J. Chem. Eng.
– volume: 263
  year: 2023
  ident: bib0045
  article-title: Battery thermal management system with heat pipe considering battery aging effect
  publication-title: Energy
– year: 2019
  ident: bib0036
  article-title: High-Performance Electric Vehicle Duty Cycles and Their Impact on Lithium Ion Battery Performance and Degradation
– volume: 169
  year: 2021
  ident: bib0010
  article-title: A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations
  publication-title: Int. J. Heat Mass Transf.
– volume: 162
  year: 2019
  ident: bib0040
  article-title: Heat dissipation optimization of lithium-ion battery pack based on neural networks
  publication-title: Appl. Therm. Eng.
– reference: Zhao Y., Zhang K. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system. Google Patents; 2021.
– volume: 164
  start-page: A961
  year: 2017
  ident: bib0029
  article-title: Improved thermal performance of a Li-ion cell through heat pipe insertion
  publication-title: J. Electrochem. Soc.
– volume: 13
  year: 2021
  ident: bib0014
  article-title: Optimization for liquid cooling cylindrical battery thermal management system based on Gaussian process model
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 86
  start-page: 281
  year: 2015
  end-page: 291
  ident: bib0023
  article-title: Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging
  publication-title: Appl. Therm. Eng.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0050
  article-title: Deep learning
  publication-title: Nature
– volume: 113
  start-page: 852
  year: 2016
  end-page: 860
  ident: bib0028
  article-title: Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes
  publication-title: Energy
– volume: 494
  year: 2021
  ident: bib0042
  article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning
  publication-title: J. Power Sources
– volume: 57
  start-page: 20
  year: 2014
  end-page: 26
  ident: bib0026
  article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery
  publication-title: Exp. Therm. Fluid Sci.
– volume: 235
  year: 2021
  ident: bib0031
  article-title: Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles
  publication-title: Energy
– volume: 1
  year: 2020
  ident: bib0016
  article-title: Investigation, development and experimental analyses of a heat pipe based battery thermal management system
  publication-title: Int. J. Thermofluids
– volume: 162
  start-page: A1003
  year: 2015
  ident: bib0047
  article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
– volume: 221
  year: 2020
  ident: bib0011
  article-title: An innovative battery thermal management with thermally induced flexible phase change material
  publication-title: Energy Convers. Manag.
– volume: 192
  year: 2021
  ident: bib0037
  article-title: Systematic evaluation of a flat-heat-pipe-based thermal management: cell-to-cell variations and battery ageing
  publication-title: Appl. Therm. Eng.
– volume: 57
  start-page: 20
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0026
  article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.03.017
– volume: 86
  start-page: 281
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0023
  article-title: Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.066
– volume: 203
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0002
  article-title: System simulation on refrigerant-based battery thermal management technology for electric vehicles
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112176
– volume: 219
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0008
  article-title: A numerical study on the battery thermal management system with mini-channel cold plate considering battery aging effect
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119564
– volume: 202
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0009
  article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123685
– volume: 256
  start-page: 233
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0049
  article-title: Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.070
– volume: 199
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0041
  article-title: A CNN-ABC model for estimation and optimization of heat generation rate and voltage distributions of lithium-ion batteries for electric vehicles
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123486
– volume: 176
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0004
  article-title: Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121380
– volume: 497
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0044
  article-title: Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229894
– volume: 255
  start-page: 130
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0046
  article-title: An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.007
– volume: 65
  start-page: 92
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0012
  article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.08.014
– volume: 221
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0011
  article-title: An innovative battery thermal management with thermally induced flexible phase change material
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113145
– volume: 88
  start-page: 54
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0024
  article-title: Experimental investigation on EV battery cooling and heating by heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.09.083
– volume: 494
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0042
  article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229727
– volume: 94
  start-page: 1901
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0025
  article-title: Heat-pipe-based thermal management and temperature characteristics of Li-ion batteries
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.22566
– volume: 155
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0021
  article-title: Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.063
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0036
– volume: 95
  start-page: 106
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0027
  article-title: Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.04.003
– ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0030
– volume: 46
  start-page: 5997
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0006
  article-title: Novel battery thermal management system with different shapes of pin fins
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7539
– volume: 113
  start-page: 852
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0028
  article-title: Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.076
– volume: 155
  start-page: 185
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0038
  article-title: Comparison of cooling plate configurations for automotive battery pack thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.03.146
– volume: 263
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0045
  article-title: Battery thermal management system with heat pipe considering battery aging effect
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126116
– volume: 196
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0043
  article-title: Multi-objective design optimization of battery thermal management system for electric vehicles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117235
– volume: 162
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0040
  article-title: Heat dissipation optimization of lithium-ion battery pack based on neural networks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114289
– volume: 63
  start-page: 551
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0019
  article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.048
– volume: 189
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0018
  article-title: Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116233
– volume: 321
  start-page: 57
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0034
  article-title: Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.108
– volume: 51
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0007
  article-title: A new battery thermal management system employing the mini-channel cold plate with pin fins
  publication-title: Sustain. Energy Technol. Assess.
– volume: 162
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0032
  article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114183
– volume: 130
  start-page: 33
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0039
  article-title: Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.074
– volume: 118
  start-page: 88
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0013
  article-title: Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.03.066
– volume: 158
  start-page: A562
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0048
  article-title: Modeling of a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3567007
– volume: 130
  start-page: 74
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0033
  article-title: Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.141
– volume: 169
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0010
  article-title: A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120894
– volume: 151
  start-page: 475
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0022
  article-title: Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.036
– volume: 195
  start-page: 2393
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0001
  article-title: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.090
– volume: 162
  start-page: A1003
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0047
  article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0641506jes
– volume: 109
  start-page: 160
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0017
  article-title: Heat dissipation design for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00048-4
– volume: 167
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0003
  article-title: A review on recent progress, challenges and perspective of battery thermal management system
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120834
– volume: 1
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0016
  article-title: Investigation, development and experimental analyses of a heat pipe based battery thermal management system
  publication-title: Int. J. Thermofluids
– volume: 101
  start-page: 278
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0015
  article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.05.050
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0050
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0020
  article-title: The use of vapor chambers and heat pipes for cooling military embedded electronic devices
– volume: 167
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0005
  article-title: Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120827
– volume: 164
  start-page: A961
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0029
  article-title: Improved thermal performance of a Li-ion cell through heat pipe insertion
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191706jes
– volume: 192
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0037
  article-title: Systematic evaluation of a flat-heat-pipe-based thermal management: cell-to-cell variations and battery ageing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116934
– volume: 235
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0031
  article-title: Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121433
– volume: 43
  start-page: 7444
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0035
  article-title: A comprehensive investigation on thermal management of large-capacity pouch cell using micro heat pipe array
  publication-title: Int. J. Energy Res.
– volume: 13
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0014
  article-title: Optimization for liquid cooling cylindrical battery thermal management system based on Gaussian process model
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4047526
SSID ssj0017046
Score 2.5760074
Snippet •A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124024
SubjectTerms Battery aging
Battery thermal management
Deep learning
Lithium-ion battery
Multi-objective optimization
Multiphysics modeling
Title Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124024
Volume 207
WOSCitedRecordID wos001090804800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6M05ZeSp8kfbGHHgpGRq9au6cSQvo6hEJccHsR0mqVSKiSsWWT_Ir-qf6wzuzDK5pSEmgvQhbyeOX5NDMafTNDyKsgKhMIK3KvLDn34oz7XhZFHD4moV9gzzERq2ETyckJWyz459Hop62F2TZJ27KLC778r6qGY6BsLJ29gbp3QuEA7IPSYQtqh-21FI_TzRpbetiBRfhuSi3Vq3Tk32F02E-W1RKZ6p06N1dtNi8xDAVL3RhSqyIK6F7Pk22VTQopl3bOhJav-Ihel9fabuJAZqlawDZn3arqz00v9Nrx5V36cdC0Qi1IyYNYHsdWQDDtaMPvNyqf-022Z3Xl3IjJdH_NjPPV6W916ml1uXGwt0fncCusz7vNMNMR4tQJT9d66vSbLcFxfCdl0sHN8shwY6W24izhHsQufGjmQz1d94rL0NmLelrVeK14mfYqp7iIaYDvn2LnLnckxlNfWTfsfYF72MhgL0zecDYme4cfjxefdm-zEl8XjNml3iGvHc_w77_753BpEALN75N75tmFHmrMPSAj2T4ktxWHWKwfkR8WeRQ0SYfIo11JFfIoLoIi8qhBHjXIowZ51CGPauRRQB5F5FGLPCX_N-RRgzzqkPeYfHl3PD_64Jl5H56I4rD3mAiYTKSQMRN-KXNwpoxlfhQWLJoF2AiPl1Fc8kDMeJHNCi6LPE-kz7HEKRQsekLGbdfKfUJlWYCzCmJ44J7FBQ9BdBKDKxewI2QQHZC39m9NhWmGjzNZmtSyHuv0qmJSVEyqFXNA-E7CUjeGucF3j6wmUxPo6gA2BVBeW8rTfyLlGbnr7rXnZNyvNvIFuSW2fbVevTRI_gWQ--Xc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+optimization+of+micro+heat+pipe+cooling+battery+thermal+management+system+via+deep+learning+and+multi-objective+genetic+algorithms&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Guo%2C+Zengjia&rft.au=Wang%2C+Yang&rft.au=Zhao%2C+Siyuan&rft.au=Zhao%2C+Tianshou&rft.date=2023-06-15&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=207&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2023.124024&rft.externalDocID=S0017931023001771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon