Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms
•A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS shows poor cooling capacity due to SEI formation inside the aged battery.•Two optimization strategies are proposed for multi-objective optimiz...
Gespeichert in:
| Veröffentlicht in: | International journal of heat and mass transfer Jg. 207; S. 124024 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.06.2023
|
| Schlagworte: | |
| ISSN: | 0017-9310, 1879-2189 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS shows poor cooling capacity due to SEI formation inside the aged battery.•Two optimization strategies are proposed for multi-objective optimization.•The trade-off between battery temperature and performance is achieved.
Battery thermal management and electrochemical performance are critical for efficient and safe operation of battery pack. In this research, a multi-physics model considering the battery aging effect is developed for micro heat pipe battery thermal management system (MHP-BTMS). A novel multi-variables global optimization framework combining multi-physics modeling, deep learning and multi-objective optimization algorithms is established for optimizing the structural parameters of MHP-BTMS to improve battery thermal management and electrochemical performance simultaneously. It is found that MHP-BTMS fails to control the temperature of aged battery pack due to the higher heat generation caused by solid electrolyte interphase formation. After 1000 cycles, the maximum temperature and maximum temperature difference were increased by 3.32 K, 2.49 K, 2.04 K and 1.78 K, 1.46 K, 1.26 K, respectively. It is also found that the battery electrochemical performance during the cycling is highly related to battery thermal behaviors. MHP-BTMS with 0.004/s inlet velocity achieved the best performance in preventing SEI formation and battery aging effect, which was lower by 7.01 nm (SEI) and 1.65% (aging), 2.31 nm and 0.58% as compared to 0.002 and 0.003 m/s cases. Besides, MHP-BTMS with optimized inlet velocity, MHP arrangement and cold plate can improve cooling performance and electrochemical performance. Multi-variables global optimization can provide the optimal structure parameters of MHP-BTMS under the different combinations of weighted coefficients and optimization strategies to achieve the trade-off between battery thermal issues and electrochemical performance. In addition, it is demonstrated that the weighted coefficients and optimization strategies in this novel framework can be changed according to the actual needs in engineering applications. |
|---|---|
| AbstractList | •A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS shows poor cooling capacity due to SEI formation inside the aged battery.•Two optimization strategies are proposed for multi-objective optimization.•The trade-off between battery temperature and performance is achieved.
Battery thermal management and electrochemical performance are critical for efficient and safe operation of battery pack. In this research, a multi-physics model considering the battery aging effect is developed for micro heat pipe battery thermal management system (MHP-BTMS). A novel multi-variables global optimization framework combining multi-physics modeling, deep learning and multi-objective optimization algorithms is established for optimizing the structural parameters of MHP-BTMS to improve battery thermal management and electrochemical performance simultaneously. It is found that MHP-BTMS fails to control the temperature of aged battery pack due to the higher heat generation caused by solid electrolyte interphase formation. After 1000 cycles, the maximum temperature and maximum temperature difference were increased by 3.32 K, 2.49 K, 2.04 K and 1.78 K, 1.46 K, 1.26 K, respectively. It is also found that the battery electrochemical performance during the cycling is highly related to battery thermal behaviors. MHP-BTMS with 0.004/s inlet velocity achieved the best performance in preventing SEI formation and battery aging effect, which was lower by 7.01 nm (SEI) and 1.65% (aging), 2.31 nm and 0.58% as compared to 0.002 and 0.003 m/s cases. Besides, MHP-BTMS with optimized inlet velocity, MHP arrangement and cold plate can improve cooling performance and electrochemical performance. Multi-variables global optimization can provide the optimal structure parameters of MHP-BTMS under the different combinations of weighted coefficients and optimization strategies to achieve the trade-off between battery thermal issues and electrochemical performance. In addition, it is demonstrated that the weighted coefficients and optimization strategies in this novel framework can be changed according to the actual needs in engineering applications. |
| ArticleNumber | 124024 |
| Author | Wang, Yang Zhao, Tianshou Zhao, Siyuan Guo, Zengjia Ni, Meng |
| Author_xml | – sequence: 1 givenname: Zengjia surname: Guo fullname: Guo, Zengjia organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 2 givenname: Yang orcidid: 0000-0002-1180-7403 surname: Wang fullname: Wang, Yang organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 3 givenname: Siyuan surname: Zhao fullname: Zhao, Siyuan organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 4 givenname: Tianshou surname: Zhao fullname: Zhao, Tianshou email: zhaots@sustech.edu.cn organization: Department of Mechanical and Energy Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Meng orcidid: 0000-0001-5310-4039 surname: Ni fullname: Ni, Meng email: meng.ni@polyu.edu.hk organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
| BookMark | eNqVkM-K2zAQh0VJoUnad9CxF6eSbBzp1iU0-4csvbRnI0vjZIwlGUkNZF9iX3mdZHvpXrbMYRhm-IbftyAzHzwQ8pWzFWe8_tavsD-Azk6nlKP2qYO4EkyUKy4qJqoPZM7lWhWCSzUjc8b4ulAlZ5_IIqX-PLKqnpPnx2BhQL-n2lsaxowOn3TG4GnoqEMTAz2_oSOOQE0Il9tW5wzxRPMBotMDddrrPTjwmaZTyuDoETW1ACMdQEf_l-_-DBmL0PZgMh6B7sFDRkP1sA8R88Glz-Rjp4cEX177kvze_vi1uSt2P2_vNze7wpSVyIU0XMIaDFTSsA5awZWUmpXCyrLmvK5q1ZVVp7ipldW1VWDbdg1MiWoqI8sl-X7lTgFTitA1Y0Sn46nhrDkLbvrmreDmLLi5Cp4Q238QBvNF3XSOw_-AHq4gmAIfcdomg-ANWIyTqMYGfD_sBRTSr6M |
| CitedBy_id | crossref_primary_10_1016_j_fuel_2023_130490 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124756 crossref_primary_10_1016_j_fub_2025_100096 crossref_primary_10_1002_fld_5358 crossref_primary_10_1016_j_est_2025_116685 crossref_primary_10_1016_j_jobe_2024_110315 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127164 crossref_primary_10_1016_j_tsep_2024_102588 crossref_primary_10_1108_HFF_10_2023_0616 crossref_primary_10_1016_j_tsep_2023_102325 crossref_primary_10_3390_pr13092769 crossref_primary_10_1016_j_applthermaleng_2023_121464 crossref_primary_10_1016_j_est_2023_109964 crossref_primary_10_1016_j_jechem_2024_07_004 crossref_primary_10_1016_j_est_2023_108910 crossref_primary_10_3390_batteries11060224 crossref_primary_10_1016_j_applthermaleng_2023_122295 crossref_primary_10_1177_09544089241304245 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125899 crossref_primary_10_1016_j_energy_2024_132688 crossref_primary_10_1016_j_rser_2023_114052 crossref_primary_10_1016_j_nxener_2024_100223 crossref_primary_10_1016_j_rser_2024_115089 crossref_primary_10_1016_j_est_2024_110447 crossref_primary_10_1109_TVT_2025_3552968 crossref_primary_10_1016_j_enbuild_2024_114638 crossref_primary_10_1016_j_est_2023_109081 crossref_primary_10_1007_s10973_025_14260_2 crossref_primary_10_1016_j_enconman_2024_118506 crossref_primary_10_1108_ILT_12_2023_0417 crossref_primary_10_1016_j_est_2024_113212 crossref_primary_10_1016_j_icheatmasstransfer_2024_108531 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127479 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125638 |
| Cites_doi | 10.1016/j.expthermflusci.2014.03.017 10.1016/j.applthermaleng.2015.04.066 10.1016/j.enconman.2019.112176 10.1016/j.applthermaleng.2022.119564 10.1016/j.ijheatmasstransfer.2022.123685 10.1016/j.jpowsour.2014.01.070 10.1016/j.ijheatmasstransfer.2022.123486 10.1016/j.ijheatmasstransfer.2021.121380 10.1016/j.jpowsour.2021.229894 10.1016/j.jpowsour.2014.01.007 10.1016/j.enconman.2012.08.014 10.1016/j.enconman.2020.113145 10.1016/j.applthermaleng.2014.09.083 10.1016/j.jpowsour.2021.229727 10.1002/cjce.22566 10.1016/j.enconman.2017.10.063 10.1016/j.ijthermalsci.2015.04.003 10.1002/er.7539 10.1016/j.energy.2016.07.076 10.1016/j.applthermaleng.2019.03.146 10.1016/j.energy.2022.126116 10.1016/j.applthermaleng.2021.117235 10.1016/j.applthermaleng.2019.114289 10.1016/j.applthermaleng.2013.11.048 10.1016/j.energy.2019.116233 10.1016/j.jpowsour.2016.04.108 10.1016/j.applthermaleng.2019.114183 10.1016/j.ijheatmasstransfer.2018.10.074 10.1016/j.enconman.2016.03.066 10.1149/1.3567007 10.1016/j.applthermaleng.2017.10.141 10.1016/j.ijheatmasstransfer.2020.120894 10.1016/j.applthermaleng.2019.02.036 10.1016/j.jpowsour.2009.10.090 10.1149/2.0641506jes 10.1016/S0378-7753(02)00048-4 10.1016/j.ijheatmasstransfer.2020.120834 10.1016/j.enconman.2015.05.050 10.1038/nature14539 10.1016/j.ijheatmasstransfer.2020.120827 10.1149/2.0191706jes 10.1016/j.applthermaleng.2021.116934 10.1016/j.energy.2021.121433 10.1115/1.4047526 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijheatmasstransfer.2023.124024 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2023_124024 S0017931023001771 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDMP ABDPE ABJNI ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET T9H VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c342t-8c18e7ece48c0feb21988a032d836116469f34f91c69da6d9edbb7e0924242c83 |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090804800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Sat Nov 29 07:28:33 EST 2025 Tue Nov 18 21:47:48 EST 2025 Fri Feb 23 02:37:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Battery aging Deep learning Lithium-ion battery Battery thermal management Multiphysics modeling Multi-objective optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-8c18e7ece48c0feb21988a032d836116469f34f91c69da6d9edbb7e0924242c83 |
| ORCID | 0000-0002-1180-7403 0000-0001-5310-4039 |
| ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2023_124024 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2023_124024 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2023_124024 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-15 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Garg, Xiao (bib0014) 2021; 13 Darcovich, MacNeil, Recoskie (bib0038) 2019; 155 Tran, Harmand, Desmet (bib0019) 2014; 63 Hong, Zhang, Wang (bib0027) 2015; 95 Su, Li, Li (bib0043) 2021; 196 Dan, Yao, Zhang (bib0032) 2019; 162 Kellner (bib0036) 2019 Liang, Wang, Malt (bib0037) 2021; 192 Qian, Xuan, Zhao (bib0040) 2019; 162 Liang, Zhao, Diao (bib0031) 2021; 235 Guo, Xu, Zhao (bib0007) 2022; 51 Yuan, Yan, Tan (bib0025) 2016; 94 Connors, Zunner (bib0020) 2009 Mo, Hu, Tang (bib0035) 2019; 43 Li, Cheng, Jia (bib0046) 2014; 255 Shen, Gao (bib0002) 2020; 203 Xu, Zhang, Xu (bib0004) 2021; 176 Tang, Guo, Li (bib0042) 2021; 494 Liu, Lan, Chen (bib0034) 2016; 321 Guo, Xu, Wang (bib0045) 2023; 263 Guo, Zhao, Wang (bib0006) 2022; 46 Guo, Wang, Zhao (bib0009) 2023; 202 Wang, Yu, Jing (bib0005) 2021; 167 Guo, Xu, Ni (bib0008) 2023; 219 El Idi, Karkri, Tankari (bib0010) 2021; 169 Wu, Zhang, Ke (bib0015) 2015; 101 Ekström, Lindbergh (bib0047) 2015; 162 Rao, Wang, Wu (bib0012) 2013; 65 LeCun, Bengio, Hinton (bib0050) 2015; 521 Anthony, Wong, Wetz (bib0029) 2017; 164 Shang, Qi, Liu (bib0039) 2019; 130 Wu, Liu, Liu (bib0011) 2020; 221 Zou, Wang, Zhang (bib0013) 2016; 118 Safari, Delacourt (bib0048) 2011; 158 Jouhara, Serey, Khordehgah (bib0016) 2020; 1 Wang, Gan, Liang (bib0022) 2019; 151 Wu, Liu, Wang (bib0017) 2002; 109 Shi, Ahmad, Liu (bib0044) 2021; 497 Xu, Zhang, Wang (bib0049) 2014; 256 Liang, Gan, Li (bib0018) 2019; 189 Rao, Huo, Liu (bib0026) 2014; 57 Zhao Y., Zhang K. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system. Google Patents; 2021. Wang, Jiang, Xue (bib0024) 2015; 88 Shah, McKee, Chalise (bib0028) 2016; 113 Yalçın, Panchal, Herdem (bib0041) 2022; 199 Lin, Liu, Li (bib0003) 2021; 167 Ye, Saw, Shi (bib0023) 2015; 86 Liang, Gan, Li (bib0021) 2018; 155 Guo, Long, Cheng (bib0001) 2010; 195 Ye, Zhao, Quan (bib0033) 2018; 130 Qian (10.1016/j.ijheatmasstransfer.2023.124024_bib0040) 2019; 162 10.1016/j.ijheatmasstransfer.2023.124024_bib0030 Su (10.1016/j.ijheatmasstransfer.2023.124024_bib0043) 2021; 196 Zou (10.1016/j.ijheatmasstransfer.2023.124024_bib0013) 2016; 118 Xu (10.1016/j.ijheatmasstransfer.2023.124024_bib0004) 2021; 176 Dan (10.1016/j.ijheatmasstransfer.2023.124024_bib0032) 2019; 162 Safari (10.1016/j.ijheatmasstransfer.2023.124024_bib0048) 2011; 158 Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0018) 2019; 189 Wang (10.1016/j.ijheatmasstransfer.2023.124024_bib0024) 2015; 88 Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0001) 2010; 195 El Idi (10.1016/j.ijheatmasstransfer.2023.124024_bib0010) 2021; 169 Connors (10.1016/j.ijheatmasstransfer.2023.124024_bib0020) 2009 Li (10.1016/j.ijheatmasstransfer.2023.124024_bib0014) 2021; 13 Wu (10.1016/j.ijheatmasstransfer.2023.124024_bib0017) 2002; 109 Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0021) 2018; 155 Ye (10.1016/j.ijheatmasstransfer.2023.124024_bib0033) 2018; 130 Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0007) 2022; 51 Ye (10.1016/j.ijheatmasstransfer.2023.124024_bib0023) 2015; 86 Lin (10.1016/j.ijheatmasstransfer.2023.124024_bib0003) 2021; 167 Tang (10.1016/j.ijheatmasstransfer.2023.124024_bib0042) 2021; 494 Darcovich (10.1016/j.ijheatmasstransfer.2023.124024_bib0038) 2019; 155 Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0008) 2023; 219 Tran (10.1016/j.ijheatmasstransfer.2023.124024_bib0019) 2014; 63 Rao (10.1016/j.ijheatmasstransfer.2023.124024_bib0026) 2014; 57 Anthony (10.1016/j.ijheatmasstransfer.2023.124024_bib0029) 2017; 164 Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0045) 2023; 263 Ekström (10.1016/j.ijheatmasstransfer.2023.124024_bib0047) 2015; 162 Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0006) 2022; 46 Guo (10.1016/j.ijheatmasstransfer.2023.124024_bib0009) 2023; 202 Wang (10.1016/j.ijheatmasstransfer.2023.124024_bib0022) 2019; 151 LeCun (10.1016/j.ijheatmasstransfer.2023.124024_bib0050) 2015; 521 Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0031) 2021; 235 Rao (10.1016/j.ijheatmasstransfer.2023.124024_bib0012) 2013; 65 Liang (10.1016/j.ijheatmasstransfer.2023.124024_bib0037) 2021; 192 Shang (10.1016/j.ijheatmasstransfer.2023.124024_bib0039) 2019; 130 Wu (10.1016/j.ijheatmasstransfer.2023.124024_bib0015) 2015; 101 Yuan (10.1016/j.ijheatmasstransfer.2023.124024_bib0025) 2016; 94 Mo (10.1016/j.ijheatmasstransfer.2023.124024_bib0035) 2019; 43 Shi (10.1016/j.ijheatmasstransfer.2023.124024_bib0044) 2021; 497 Yalçın (10.1016/j.ijheatmasstransfer.2023.124024_bib0041) 2022; 199 Xu (10.1016/j.ijheatmasstransfer.2023.124024_bib0049) 2014; 256 Shah (10.1016/j.ijheatmasstransfer.2023.124024_bib0028) 2016; 113 Liu (10.1016/j.ijheatmasstransfer.2023.124024_bib0034) 2016; 321 Wu (10.1016/j.ijheatmasstransfer.2023.124024_bib0011) 2020; 221 Kellner (10.1016/j.ijheatmasstransfer.2023.124024_bib0036) 2019 Wang (10.1016/j.ijheatmasstransfer.2023.124024_bib0005) 2021; 167 Jouhara (10.1016/j.ijheatmasstransfer.2023.124024_bib0016) 2020; 1 Li (10.1016/j.ijheatmasstransfer.2023.124024_bib0046) 2014; 255 Shen (10.1016/j.ijheatmasstransfer.2023.124024_bib0002) 2020; 203 Hong (10.1016/j.ijheatmasstransfer.2023.124024_bib0027) 2015; 95 |
| References_xml | – volume: 195 start-page: 2393 year: 2010 end-page: 2398 ident: bib0001 article-title: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application publication-title: J. Power Sources – volume: 176 year: 2021 ident: bib0004 article-title: Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates publication-title: Int. J. Heat Mass Transf. – volume: 256 start-page: 233 year: 2014 end-page: 243 ident: bib0049 article-title: Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO publication-title: J. Power Sources – volume: 46 start-page: 5997 year: 2022 end-page: 6011 ident: bib0006 article-title: Novel battery thermal management system with different shapes of pin fins publication-title: Int. J. Energy Res. – volume: 321 start-page: 57 year: 2016 end-page: 70 ident: bib0034 article-title: Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling publication-title: J. Power Sources – volume: 130 start-page: 74 year: 2018 end-page: 82 ident: bib0033 article-title: Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA) publication-title: Appl. Therm. Eng. – volume: 202 year: 2023 ident: bib0009 article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 95 start-page: 106 year: 2015 end-page: 114 ident: bib0027 article-title: Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe publication-title: Int. J. Therm. Sci. – volume: 43 start-page: 7444 year: 2019 end-page: 7458 ident: bib0035 article-title: A comprehensive investigation on thermal management of large-capacity pouch cell using micro heat pipe array publication-title: Int. J. Energy Res. – volume: 118 start-page: 88 year: 2016 end-page: 95 ident: bib0013 article-title: Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle publication-title: Energy Convers. Manag. – volume: 88 start-page: 54 year: 2015 end-page: 60 ident: bib0024 article-title: Experimental investigation on EV battery cooling and heating by heat pipes publication-title: Appl. Therm. Eng. – volume: 189 year: 2019 ident: bib0018 article-title: Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures publication-title: Energy – volume: 158 start-page: A562 year: 2011 ident: bib0048 article-title: Modeling of a commercial graphite/LiFePO publication-title: J. Electrochem. Soc. – volume: 151 start-page: 475 year: 2019 end-page: 485 ident: bib0022 article-title: Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells publication-title: Appl. Therm. Eng. – volume: 162 year: 2019 ident: bib0032 article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model publication-title: Appl. Therm. Eng. – volume: 255 start-page: 130 year: 2014 end-page: 143 ident: bib0046 article-title: An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery publication-title: J. Power Sources – volume: 155 start-page: 1 year: 2018 end-page: 9 ident: bib0021 article-title: Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures publication-title: Energy Convers. Manag. – volume: 155 start-page: 185 year: 2019 end-page: 195 ident: bib0038 article-title: Comparison of cooling plate configurations for automotive battery pack thermal management publication-title: Appl. Therm. Eng. – volume: 167 year: 2021 ident: bib0005 article-title: Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design publication-title: Int. J. Heat Mass Transf. – volume: 196 year: 2021 ident: bib0043 article-title: Multi-objective design optimization of battery thermal management system for electric vehicles publication-title: Appl. Therm. Eng. – volume: 203 year: 2020 ident: bib0002 article-title: System simulation on refrigerant-based battery thermal management technology for electric vehicles publication-title: Energy Convers. Manag. – volume: 109 start-page: 160 year: 2002 end-page: 166 ident: bib0017 article-title: Heat dissipation design for lithium-ion batteries publication-title: J. Power Sources – volume: 130 start-page: 33 year: 2019 end-page: 41 ident: bib0039 article-title: Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system publication-title: Int. J. Heat Mass Transf. – volume: 199 year: 2022 ident: bib0041 article-title: A CNN-ABC model for estimation and optimization of heat generation rate and voltage distributions of lithium-ion batteries for electric vehicles publication-title: Int. J. Heat Mass Transf. – volume: 51 year: 2022 ident: bib0007 article-title: A new battery thermal management system employing the mini-channel cold plate with pin fins publication-title: Sustain. Energy Technol. Assess. – volume: 65 start-page: 92 year: 2013 end-page: 97 ident: bib0012 article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe publication-title: Energy Convers. Manag. – volume: 497 year: 2021 ident: bib0044 article-title: Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning publication-title: J. Power Sources – volume: 167 year: 2021 ident: bib0003 article-title: A review on recent progress, challenges and perspective of battery thermal management system publication-title: Int. J. Heat Mass Transf. – volume: 219 year: 2023 ident: bib0008 article-title: A numerical study on the battery thermal management system with mini-channel cold plate considering battery aging effect publication-title: Appl. Therm. Eng. – volume: 101 start-page: 278 year: 2015 end-page: 284 ident: bib0015 article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management publication-title: Energy Convers. Manag. – volume: 63 start-page: 551 year: 2014 end-page: 558 ident: bib0019 article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery publication-title: Appl. Therm. Eng. – start-page: 1 year: 2009 end-page: 7 ident: bib0020 article-title: The use of vapor chambers and heat pipes for cooling military embedded electronic devices publication-title: Proceedings of the MILCOM IEEE Military Communications Conference: IEEE – volume: 94 start-page: 1901 year: 2016 end-page: 1908 ident: bib0025 article-title: Heat-pipe-based thermal management and temperature characteristics of Li-ion batteries publication-title: Can. J. Chem. Eng. – volume: 263 year: 2023 ident: bib0045 article-title: Battery thermal management system with heat pipe considering battery aging effect publication-title: Energy – year: 2019 ident: bib0036 article-title: High-Performance Electric Vehicle Duty Cycles and Their Impact on Lithium Ion Battery Performance and Degradation – volume: 169 year: 2021 ident: bib0010 article-title: A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations publication-title: Int. J. Heat Mass Transf. – volume: 162 year: 2019 ident: bib0040 article-title: Heat dissipation optimization of lithium-ion battery pack based on neural networks publication-title: Appl. Therm. Eng. – reference: Zhao Y., Zhang K. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system. Google Patents; 2021. – volume: 164 start-page: A961 year: 2017 ident: bib0029 article-title: Improved thermal performance of a Li-ion cell through heat pipe insertion publication-title: J. Electrochem. Soc. – volume: 13 year: 2021 ident: bib0014 article-title: Optimization for liquid cooling cylindrical battery thermal management system based on Gaussian process model publication-title: J. Therm. Sci. Eng. Appl. – volume: 86 start-page: 281 year: 2015 end-page: 291 ident: bib0023 article-title: Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging publication-title: Appl. Therm. Eng. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0050 article-title: Deep learning publication-title: Nature – volume: 113 start-page: 852 year: 2016 end-page: 860 ident: bib0028 article-title: Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes publication-title: Energy – volume: 494 year: 2021 ident: bib0042 article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning publication-title: J. Power Sources – volume: 57 start-page: 20 year: 2014 end-page: 26 ident: bib0026 article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery publication-title: Exp. Therm. Fluid Sci. – volume: 235 year: 2021 ident: bib0031 article-title: Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles publication-title: Energy – volume: 1 year: 2020 ident: bib0016 article-title: Investigation, development and experimental analyses of a heat pipe based battery thermal management system publication-title: Int. J. Thermofluids – volume: 162 start-page: A1003 year: 2015 ident: bib0047 article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. – volume: 221 year: 2020 ident: bib0011 article-title: An innovative battery thermal management with thermally induced flexible phase change material publication-title: Energy Convers. Manag. – volume: 192 year: 2021 ident: bib0037 article-title: Systematic evaluation of a flat-heat-pipe-based thermal management: cell-to-cell variations and battery ageing publication-title: Appl. Therm. Eng. – volume: 57 start-page: 20 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0026 article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2014.03.017 – volume: 86 start-page: 281 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0023 article-title: Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.066 – volume: 203 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0002 article-title: System simulation on refrigerant-based battery thermal management technology for electric vehicles publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112176 – volume: 219 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0008 article-title: A numerical study on the battery thermal management system with mini-channel cold plate considering battery aging effect publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119564 – volume: 202 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0009 article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123685 – volume: 256 start-page: 233 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0049 article-title: Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.070 – volume: 199 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0041 article-title: A CNN-ABC model for estimation and optimization of heat generation rate and voltage distributions of lithium-ion batteries for electric vehicles publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123486 – volume: 176 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0004 article-title: Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121380 – volume: 497 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0044 article-title: Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229894 – volume: 255 start-page: 130 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0046 article-title: An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.007 – volume: 65 start-page: 92 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0012 article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.08.014 – volume: 221 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0011 article-title: An innovative battery thermal management with thermally induced flexible phase change material publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113145 – volume: 88 start-page: 54 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0024 article-title: Experimental investigation on EV battery cooling and heating by heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.083 – volume: 494 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0042 article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229727 – volume: 94 start-page: 1901 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0025 article-title: Heat-pipe-based thermal management and temperature characteristics of Li-ion batteries publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.22566 – volume: 155 start-page: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0021 article-title: Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.10.063 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0036 – volume: 95 start-page: 106 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0027 article-title: Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.04.003 – ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0030 – volume: 46 start-page: 5997 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0006 article-title: Novel battery thermal management system with different shapes of pin fins publication-title: Int. J. Energy Res. doi: 10.1002/er.7539 – volume: 113 start-page: 852 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0028 article-title: Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes publication-title: Energy doi: 10.1016/j.energy.2016.07.076 – volume: 155 start-page: 185 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0038 article-title: Comparison of cooling plate configurations for automotive battery pack thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.03.146 – volume: 263 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0045 article-title: Battery thermal management system with heat pipe considering battery aging effect publication-title: Energy doi: 10.1016/j.energy.2022.126116 – volume: 196 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0043 article-title: Multi-objective design optimization of battery thermal management system for electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117235 – volume: 162 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0040 article-title: Heat dissipation optimization of lithium-ion battery pack based on neural networks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114289 – volume: 63 start-page: 551 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0019 article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.048 – volume: 189 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0018 article-title: Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures publication-title: Energy doi: 10.1016/j.energy.2019.116233 – volume: 321 start-page: 57 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0034 article-title: Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.108 – volume: 51 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0007 article-title: A new battery thermal management system employing the mini-channel cold plate with pin fins publication-title: Sustain. Energy Technol. Assess. – volume: 162 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0032 article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114183 – volume: 130 start-page: 33 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0039 article-title: Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.10.074 – volume: 118 start-page: 88 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0013 article-title: Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.03.066 – volume: 158 start-page: A562 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0048 article-title: Modeling of a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.3567007 – volume: 130 start-page: 74 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0033 article-title: Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.141 – volume: 169 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0010 article-title: A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120894 – volume: 151 start-page: 475 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0022 article-title: Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.036 – volume: 195 start-page: 2393 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0001 article-title: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.090 – volume: 162 start-page: A1003 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0047 article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. doi: 10.1149/2.0641506jes – volume: 109 start-page: 160 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0017 article-title: Heat dissipation design for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00048-4 – volume: 167 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0003 article-title: A review on recent progress, challenges and perspective of battery thermal management system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120834 – volume: 1 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0016 article-title: Investigation, development and experimental analyses of a heat pipe based battery thermal management system publication-title: Int. J. Thermofluids – volume: 101 start-page: 278 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0015 article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.050 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0050 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0020 article-title: The use of vapor chambers and heat pipes for cooling military embedded electronic devices – volume: 167 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0005 article-title: Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120827 – volume: 164 start-page: A961 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0029 article-title: Improved thermal performance of a Li-ion cell through heat pipe insertion publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191706jes – volume: 192 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0037 article-title: Systematic evaluation of a flat-heat-pipe-based thermal management: cell-to-cell variations and battery ageing publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116934 – volume: 235 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0031 article-title: Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2021.121433 – volume: 43 start-page: 7444 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0035 article-title: A comprehensive investigation on thermal management of large-capacity pouch cell using micro heat pipe array publication-title: Int. J. Energy Res. – volume: 13 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2023.124024_bib0014 article-title: Optimization for liquid cooling cylindrical battery thermal management system based on Gaussian process model publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4047526 |
| SSID | ssj0017046 |
| Score | 2.5760074 |
| Snippet | •A comprehensive model based on battery aging effect is developed for MHP-BTMS.•A framework combing deep learning and multi-objective genetic algorithm.•BTMS... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124024 |
| SubjectTerms | Battery aging Battery thermal management Deep learning Lithium-ion battery Multi-objective optimization Multiphysics modeling |
| Title | Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124024 |
| Volume | 207 |
| WOSCitedRecordID | wos001090804800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZpti29lD7p9oUOPRSCg225lnQqy7J9UZZCU0h7MbIs79qkdkicsPsr-v_6a6rRI063S8lSejFB2BPJ83lmNJoHQi-UpCXJhd7khFQECS1lIEhaBmkuUpZw0FomUfgjPT5m0yn_NBj89Lkw6xltGnZ2xuf_ldV6TDMbUmevwO4NUT2gf2um66tmu77uxHjobjbzqYetlgjfXaqlOUqH-DuwDrvRvJpDpHpr7s1Nmc1zMEO1pJ65oFYTKGBrPY_WlRgVSs19nwlL38QjBm1eW7kJDZmVKQE7O2kXVXfqaqHXfbx8737cKlphJmToaVse2lZoY7oPG367Mv7cb6o5qatejThP91fhlK91f5tbP1fnqx72fnSiP4Xlabva9nTE0HUisLmeXnprjcqJC4N10ju2TXOd_I3gsCi5VDVYL0U9rmpYEyzHr2YMfzbuH_29KvcFbbmJYfThcXX2J8UMKGaW4jW0F9NXnA3R3sH7o-mHzRkXDW0amV_VTfSyjz78-ywvN6K2DKPJHXTb7WjwgUXiXTRQzT10w0QWy-V99MPjEWv-4m084rbEBo8YJoEBj9jhETs8YodH3OMRWzxijUcMeMQej4b-BTxih0fc4_EB-vLmaHL4LnBdQAJJkrgLmIyYokqqhMmwVLlWsYyJkMQFI2kE5fF4SZKSRzLlhUgLroo8pyrkkPgUS0YeomHTNuoRwnqvQiWPBCGEQVFOLoo4LouEqbQoaS720Wv_WjPpSuRDp5ZZtiuz9xHfUJjbcjFXePbQczJz5q81azMN4Z2pPP6HGTxBt_rv7ikadouVeoauy3VXLRfPHX5_AaBH6yg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+optimization+of+micro+heat+pipe+cooling+battery+thermal+management+system+via+deep+learning+and+multi-objective+genetic+algorithms&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Guo%2C+Zengjia&rft.au=Wang%2C+Yang&rft.au=Zhao%2C+Siyuan&rft.au=Zhao%2C+Tianshou&rft.date=2023-06-15&rft.issn=0017-9310&rft.volume=207&rft.spage=124024&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2023.124024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2023_124024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |