Enhancing robustness of monthly streamflow forecasting model using embedded-feature selection algorithm based on improved gray wolf optimizer

•Model hyperparameters and input variables (features) affect the forecasting results.•An embedded feature selection technique and their SVM-IGWO realization (EFS-SVMIGWO) is developed for streamflow prediction.•The proposed improved Grey Wolf Optimizer (IGWO) displays superior performance on feature...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 617; p. 128995
Main Authors: Wang, Qingjie, Yue, Chunfang, Li, Xiaoqing, Liao, Pan, Li, Xiaoyao
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2023
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Model hyperparameters and input variables (features) affect the forecasting results.•An embedded feature selection technique and their SVM-IGWO realization (EFS-SVMIGWO) is developed for streamflow prediction.•The proposed improved Grey Wolf Optimizer (IGWO) displays superior performance on feature recognition and model parameter parallel optimization than GWO algorithms.•The test results showed that the EFS-SVMIGWO model is very competitive and superior to the benchmarked models. Accurate streamflow prediction plays an essential role in guaranteeing the sustainable utilization and management of water resources. In recent years, Artificial Intelligence (AI) models have been widely used for flow prediction. The performance of these models depends on the appropriate calibration of the input features and model parameters. Theoretically, the embedded feature selection method directly takes the final prediction model as a prediction indicator, which has the unique advantage of parallel optimization of feature and prediction model parameters compared with other methods. Despite being widely used in many other fields, its streamflow forecasting abilities are thus far unknown. In this paper, an embedded prediction model (EFS-SVMIGWO) with improved gray wolf optimizer (IGWO) and support vector machine (SVM) is proposed based on the principle of embedded feature selection method and validated with monthly runoff prediction at Kizil reservoir station in Xinjiang, China. The validation results demonstrate that the EFS-SVMIGWO model has consistently better accuracy and stable values than the benchmark methods (Including autoregressive integrated moving average, random forest, neural network and SVM models based on filtered selection methods). Moreover, IGWO is compared to differential evolution (DE), particle swarm optimization (PSO), whale optimization algorithm (WOA), sparrow search algorithm (SSA), and gray wolf optimizer (GWO), and the results show that IGWO has better convergence speed and solution quality in feature and model parameter parallel optimization tasks. Overall research and analysis indicate that the EFS-SVMIGWO model can exhibit convincing performance in monthly streamflow forecasting. Thus, it is of great importance to carefully choose the input variables and parameters to develop more effective models for forecasting monthly streamflow time series.
AbstractList Accurate streamflow prediction plays an essential role in guaranteeing the sustainable utilization and management of water resources. In recent years, Artificial Intelligence (AI) models have been widely used for flow prediction. The performance of these models depends on the appropriate calibration of the input features and model parameters. Theoretically, the embedded feature selection method directly takes the final prediction model as a prediction indicator, which has the unique advantage of parallel optimization of feature and prediction model parameters compared with other methods. Despite being widely used in many other fields, its streamflow forecasting abilities are thus far unknown. In this paper, an embedded prediction model (EFS-SVMIGWO) with improved gray wolf optimizer (IGWO) and support vector machine (SVM) is proposed based on the principle of embedded feature selection method and validated with monthly runoff prediction at Kizil reservoir station in Xinjiang, China. The validation results demonstrate that the EFS-SVMIGWO model has consistently better accuracy and stable values than the benchmark methods (Including autoregressive integrated moving average, random forest, neural network and SVM models based on filtered selection methods). Moreover, IGWO is compared to differential evolution (DE), particle swarm optimization (PSO), whale optimization algorithm (WOA), sparrow search algorithm (SSA), and gray wolf optimizer (GWO), and the results show that IGWO has better convergence speed and solution quality in feature and model parameter parallel optimization tasks. Overall research and analysis indicate that the EFS-SVMIGWO model can exhibit convincing performance in monthly streamflow forecasting. Thus, it is of great importance to carefully choose the input variables and parameters to develop more effective models for forecasting monthly streamflow time series.
•Model hyperparameters and input variables (features) affect the forecasting results.•An embedded feature selection technique and their SVM-IGWO realization (EFS-SVMIGWO) is developed for streamflow prediction.•The proposed improved Grey Wolf Optimizer (IGWO) displays superior performance on feature recognition and model parameter parallel optimization than GWO algorithms.•The test results showed that the EFS-SVMIGWO model is very competitive and superior to the benchmarked models. Accurate streamflow prediction plays an essential role in guaranteeing the sustainable utilization and management of water resources. In recent years, Artificial Intelligence (AI) models have been widely used for flow prediction. The performance of these models depends on the appropriate calibration of the input features and model parameters. Theoretically, the embedded feature selection method directly takes the final prediction model as a prediction indicator, which has the unique advantage of parallel optimization of feature and prediction model parameters compared with other methods. Despite being widely used in many other fields, its streamflow forecasting abilities are thus far unknown. In this paper, an embedded prediction model (EFS-SVMIGWO) with improved gray wolf optimizer (IGWO) and support vector machine (SVM) is proposed based on the principle of embedded feature selection method and validated with monthly runoff prediction at Kizil reservoir station in Xinjiang, China. The validation results demonstrate that the EFS-SVMIGWO model has consistently better accuracy and stable values than the benchmark methods (Including autoregressive integrated moving average, random forest, neural network and SVM models based on filtered selection methods). Moreover, IGWO is compared to differential evolution (DE), particle swarm optimization (PSO), whale optimization algorithm (WOA), sparrow search algorithm (SSA), and gray wolf optimizer (GWO), and the results show that IGWO has better convergence speed and solution quality in feature and model parameter parallel optimization tasks. Overall research and analysis indicate that the EFS-SVMIGWO model can exhibit convincing performance in monthly streamflow forecasting. Thus, it is of great importance to carefully choose the input variables and parameters to develop more effective models for forecasting monthly streamflow time series.
ArticleNumber 128995
Author Liao, Pan
Wang, Qingjie
Li, Xiaoqing
Yue, Chunfang
Li, Xiaoyao
Author_xml – sequence: 1
  givenname: Qingjie
  surname: Wang
  fullname: Wang, Qingjie
  organization: College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
– sequence: 2
  givenname: Chunfang
  surname: Yue
  fullname: Yue, Chunfang
  email: estheryue2017@163.com
  organization: College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
– sequence: 3
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
  organization: College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
– sequence: 4
  givenname: Pan
  surname: Liao
  fullname: Liao, Pan
  organization: College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
– sequence: 5
  givenname: Xiaoyao
  surname: Li
  fullname: Li, Xiaoyao
  organization: College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
BookMark eNqFkc9O4zAQxq0VSFsKj7CSj1xSYidxEu0BIQQsEhKX5Wy59rh15T_FdkDlHXjndVROe8EXj8bzfTOe3xk68cEDQr9IvSI1YVe71W57UDHYFa0pXRE6jGP3Ay3I0I8V7ev-BC3q8lIRNrY_0VlKu7qcpmkX6PPOb4WXxm9wDOspZQ8p4aCxCz5v7QGnHEE4bcM71iGCFCnPxS4osHhKcwxuDUqBqjSIPEXACSzIbILHwm5CNHnr8FokULikjNvH8FbiTRQH_B6sxmGfjTMfEM_RqRY2wcXXvUQv93d_b_9UT88Pj7c3T5VsWpqroe1GBkwPUrQ96IGU5qzrWAsdG0ARJUaxVowIgLbvWUeJoopBwwbVKtWJZokuj75llNcJUubOJAnWCg9hSpwOpQ9htOxoiX4fS2UMKUXQXJos5s_lKIzlpOYzBL7jXxD4DIEfIRR19596H40T8fCt7vqog7KFNwORJ2nAS1CmMMhcBfONwz9vrav5
CitedBy_id crossref_primary_10_1007_s12293_024_00434_2
crossref_primary_10_1016_j_energy_2025_134512
crossref_primary_10_1016_j_jenvman_2023_119613
crossref_primary_10_1016_j_physa_2024_130265
crossref_primary_10_1007_s00477_024_02739_7
crossref_primary_10_1016_j_ejrh_2025_102464
crossref_primary_10_1007_s00477_024_02692_5
crossref_primary_10_1016_j_ecoinf_2024_102755
crossref_primary_10_1007_s00477_025_03075_0
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1016_j_rineng_2024_103319
crossref_primary_10_1016_j_jhydrol_2024_131230
crossref_primary_10_1016_j_agwat_2024_108924
crossref_primary_10_1016_j_jhydrol_2024_131275
crossref_primary_10_1016_j_watcyc_2024_09_001
crossref_primary_10_1145_3712199
crossref_primary_10_1016_j_compgeo_2025_107595
crossref_primary_10_3390_su16166897
crossref_primary_10_1002_hyp_15134
crossref_primary_10_1016_j_agwat_2023_108620
crossref_primary_10_3390_rs16071308
crossref_primary_10_3390_w15061080
crossref_primary_10_1007_s13762_024_05496_w
crossref_primary_10_1016_j_eswa_2025_128658
crossref_primary_10_1016_j_jclepro_2023_138193
crossref_primary_10_1007_s00477_025_02977_3
crossref_primary_10_1016_j_jhydrol_2023_129460
crossref_primary_10_1016_j_dwt_2024_100092
crossref_primary_10_1016_j_jhydrol_2024_132137
crossref_primary_10_1007_s00477_023_02632_9
crossref_primary_10_1038_s41598_024_81502_y
crossref_primary_10_1080_02626667_2025_2539843
crossref_primary_10_1016_j_compag_2024_109881
crossref_primary_10_1016_j_ecoinf_2023_102452
crossref_primary_10_1016_j_jhydrol_2024_132034
crossref_primary_10_2166_wcc_2025_055
crossref_primary_10_3390_w16233515
crossref_primary_10_1007_s00477_024_02771_7
crossref_primary_10_1016_j_cma_2024_117709
crossref_primary_10_3390_rs16020341
crossref_primary_10_3390_app15084530
crossref_primary_10_1016_j_engappai_2025_110514
crossref_primary_10_1007_s10651_024_00642_6
Cites_doi 10.1016/j.scitotenv.2020.136991
10.1016/j.jhydrol.2019.124435
10.1016/j.jhydrol.2019.124371
10.1016/j.asoc.2018.07.040
10.1016/j.jhydrol.2019.124299
10.1007/s11269-021-02786-7
10.1007/s11269-015-0962-6
10.1016/j.enconman.2017.04.007
10.1016/j.jhydrol.2014.01.062
10.1016/j.swevo.2012.09.002
10.1007/s00366-020-01028-5
10.1016/j.knosys.2016.07.026
10.1109/ACCESS.2020.2998437
10.1002/2017WR020482
10.1016/j.jhydrol.2018.12.040
10.1007/s11269-021-02861-z
10.1007/s12652-019-01569-8
10.1016/j.ins.2019.05.038
10.1016/j.atmosres.2017.06.014
10.1016/j.jhydrol.2019.02.025
10.1007/s12665-018-7376-8
10.1080/02626667.2020.1755436
10.1016/j.knosys.2018.05.009
10.1016/j.jhydrol.2015.08.022
10.1007/s10586-019-02913-5
10.1016/j.renene.2017.03.064
10.3390/w11010088
10.1016/j.neucom.2019.05.099
10.1016/j.apenergy.2012.04.001
10.1016/j.jhydrol.2020.125769
10.1155/2020/8506365
10.1016/j.energy.2015.08.045
10.1016/j.jhydrol.2020.124897
10.1016/j.advengsoft.2013.12.007
10.1016/j.jhydrol.2013.11.054
10.1007/s11269-018-1970-0
10.1016/j.jhydrol.2016.11.025
10.1016/j.jhydrol.2016.09.035
10.1016/j.jhydrol.2014.06.050
10.1016/j.jhydrol.2020.125717
10.1007/s11269-014-0610-6
10.1016/j.jhydrol.2019.03.046
10.1109/ACCESS.2019.2906757
10.1016/j.asoc.2014.02.002
10.1109/ACCESS.2020.3000040
10.1016/j.envsoft.2006.06.008
10.1016/j.jhydrol.2018.11.020
10.1016/j.patcog.2017.01.016
10.1016/j.knosys.2021.107379
10.1016/j.jhydrol.2020.124901
10.1016/j.jhydrol.2020.124627
10.1016/j.scs.2020.102562
10.1016/j.jhydrol.2018.01.015
10.1016/j.jhydrol.2018.10.064
10.1016/j.enconman.2014.06.041
10.1016/j.advengsoft.2016.01.008
10.1093/biomet/63.1.117
10.1016/j.neucom.2015.06.083
10.1016/j.apenergy.2019.04.188
10.1109/ACCESS.2021.3073261
10.1007/s13042-018-00913-2
10.2166/nh.2017.111
10.1007/s11269-020-02483-x
10.1002/2015WR016959
10.1016/j.eswa.2020.113917
10.1109/ACCESS.2021.3049547
10.1016/j.asoc.2017.03.002
10.1007/s10489-016-0767-1
10.13031/2013.23153
10.1016/j.jhydrol.2020.125168
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128995
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_128995
S0022169422015657
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-84596e6f8ca47ef81ded65564e568ed1da9abd61aee4776521d2d6e368d4dd5a3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913904100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 14:38:34 EST 2025
Tue Nov 18 22:35:36 EST 2025
Sat Nov 29 03:08:05 EST 2025
Tue Jun 18 08:50:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Streamflow prediction
Feature selection
Support vector machine
Hydrologic time series
Improved gray wolf algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-84596e6f8ca47ef81ded65564e568ed1da9abd61aee4776521d2d6e368d4dd5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834216203
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834216203
crossref_citationtrail_10_1016_j_jhydrol_2022_128995
crossref_primary_10_1016_j_jhydrol_2022_128995
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128995
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Xu, Sun, Xie (b0105) 2021; 597
Snieder, Shakir, Khan (b0295) 2020; 583
Dawson, Abrahart, See (b0060) 2007; 22
Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian, Ragab, Alqushaibi (b0050) 2020; 8
Shibata (b0290) 1976; 63
Ji, Zhou, Huang (b0130) 2014; 28
Mehdizadeh, Sales (b0175) 2018; 32
Mirjalili, Mirjalili, Lewis (b0200) 2014; 69
Niu, Feng (b0235) 2021; 64
Ministry of Water Resources P.R.C. (b0185) 2008
Pashaei, Aydin (b0240) 2017; 56
Yang, Asanjan, Welles, Gao, Sorooshian, Liu (b0340) 2017; 53
Büyükşahin, Ertekin (b0055) 2019; 361
Hadi, Tombul, Salih, Al-Ansari, Yaseen (b0110) 2020; 8
Aljarah, Mafarja, Heidari, Faris, Zhang, Mirjalili (b0035) 2018; 71
Zhao, Lv, Lv, Sang, Wei, Zhu (b0365) 2021; 601
He, Wen, Liu, Du (b0120) 2014; 509
Masmoudi, S., Elghazel, H., Taieb, D., Yazar, O., Kallel, A., 2020. A machine-learning framework for predicting multiple air pollutants' concentrations via multi-target regression and feature selection. SCIENCE OF THE TOTAL ENVIRONMENT 715.
Niu, Feng, Feng, Min, Cheng, Zhou (b0230) 2019; 11
Faris, Mafarja, Heidari, Aljarah, Al-Zoubi, Mirjalili, Fujita (b0090) 2018; 154
Li, Zhang, Wallace, Campbell (b0145) 2020; 589
Sudheer, Anand, Panigrahi, Mathur (b0305) 2013; 101
Mirjalili, Lewis (b0190) 2013; 9
Prasad, Deo, Li, Maraseni (b0245) 2017; 197
Tan, Lei, Wang, Wang, Wen, Ji, Kang (b0310) 2018; 567
Zhou, Guo, Chang (b0370) 2019; 570
Nadimi-Shahraki, Taghian, Mirjalili (b0215) 2021; 166
Shekhawat, Sharma, Kumar, Nayyar, Qureshi (b0285) 2021; 9
Fang, Huang, Ren, Huang, Huang, Cheng, Li (b0080) 2019; 568
Zhang, Zhou, Li, Fu, Peng (b0360) 2017; 143
Molajou, Nourani, Afshar, Khosravi, Brysiewicz (b0205) 2021; 35
Ren, Fang, Qu, Zhang, Shi (b0260) 2020; 586
Nelson, Illingworth (b0220) 1991
Stojković, Kostić, Plavšić, Prohaska (b0300) 2017; 544
Meng, Huang, Huang, Fang, Wang, Leng, Wang, Liang (b0180) 2021; 35
Luo, Yuan, Zhu, Xu, Meng, Peng (b0165) 2019; 568
Alamiedy, Anbar, Alqattan, Alzubi (b0025) 2020; 11
He, Luo, Li, Zuo, Xie (b0115) 2020; 34
Rezaie-Balf, Kim, Fallah, Alaghmand (b0270) 2019; 572
Abbasi, Farokhnia, Bahreinimotlagh, Roozbahani (b0005) 2021; 597
Diop, Bodian, Djaman, Yaseen, Deo, El-Shafie, Brown (b0070) 2018; 77
Faris, Mirjalili, Aljarah (b0095) 2019; 10
Adnan, R.M., Mostafa, R.R., Kisi, O., Yaseen, Z.M., Shahid, S., Zounemat-Kermani, M., 2021. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowledge-based Systems 230.
Karimi, Shiri, Kisi, Xu (b0135) 2018; 49
Aljarah, Faris, Mirjalili, Al-Madi, Sheta, Mafarja (b0040) 2019; 22
Deb, Kiem, Willgoose (b0065) 2019; 571
Feng, Niu, Tang, Jiang, Xu, Liu, Zhang (b0100) 2020; 583
Wang, Chau, Xu, Chen (b0330) 2015; 29
Adnan, Liang, Heddam, Zounemat-Kermani, Kisi, Li (b0020) 2020; 586
Wang, Hu (b0335) 2015; 93
Segera, D., Mbuthia, M., Nyete, A. 2020. An Innovative Excited-ACS-IDGWO Algorithm for Optimal Biomedical Data Feature Selection. Biomed Research International. 2020.
Taradeh, Mafarja, Heidari, Faris, Aljarah, Mirjalili, Fujita (b0320) 2019; 497
Liu, Tian, Li (b0155) 2012; 98
Zarshenas, Suzuki (b0350) 2016; 110
Rezaie-Balf, Zahmatkesh, Kim (b0265) 2017; 31
Lahouar, Slama (b0140) 2017; 109
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (b0345) 2016; 542
Zhu, Zhu, Hu, Zhang, Zuo (b0375) 2017; 66
Salcedo-Sanz, Pastor-Sanchez, Prieto, Blanco-Aguilera, Garcia-Herrera (b0275) 2014; 87
Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (b0045) 2019; 7
Huang, Chang, Huang, Chen (b0125) 2014; 511
Tikhamarine, Souag-Gamane, Ahmed, Kisi, El-Shafie (b0325) 2020; 582
Faris, Aljarah, Mirjalili (b0085) 2016; 45
Liu, Zhou, Chen, Guo (b0160) 2014; 519
Quilty, Adamowski, Khalil, Rathinasamy (b0250) 2016; 52
Taormina, Chau (b0315) 2015; 529
Alizadeh, Shourian, Yaseen (b0030) 2020; 65
Emary, Zawba, Hassanien (b0075) 2016; 172
Mirjalili, Lewis (b0195) 2016; 95
Ni, Wang, Wu, Wang, Tao, Zhang, Liu (b0225) 2020; 586
Raghavendra, Deka (b0255) 2014; 19
Abd Elminaam, Nabil, Ibraheem, Houssein (b0010) 2021; 9
Liu, Chen (b0150) 2019; 249
Zhang, Liu, Wang, Chen, Li (b0355) 2021; 37
Moriasi, Arnold, Liew, Bingner, Harmel, Veith (b0210) 2007; 50
Zhang (10.1016/j.jhydrol.2022.128995_b0360) 2017; 143
Nadimi-Shahraki (10.1016/j.jhydrol.2022.128995_b0215) 2021; 166
Rezaie-Balf (10.1016/j.jhydrol.2022.128995_b0265) 2017; 31
Li (10.1016/j.jhydrol.2022.128995_b0145) 2020; 589
10.1016/j.jhydrol.2022.128995_b0015
Raghavendra (10.1016/j.jhydrol.2022.128995_b0255) 2014; 19
Zhang (10.1016/j.jhydrol.2022.128995_b0355) 2021; 37
10.1016/j.jhydrol.2022.128995_b0170
Snieder (10.1016/j.jhydrol.2022.128995_b0295) 2020; 583
Tan (10.1016/j.jhydrol.2022.128995_b0310) 2018; 567
Faris (10.1016/j.jhydrol.2022.128995_b0095) 2019; 10
Stojković (10.1016/j.jhydrol.2022.128995_b0300) 2017; 544
Zarshenas (10.1016/j.jhydrol.2022.128995_b0350) 2016; 110
Büyükşahin (10.1016/j.jhydrol.2022.128995_b0055) 2019; 361
Deb (10.1016/j.jhydrol.2022.128995_b0065) 2019; 571
Guo (10.1016/j.jhydrol.2022.128995_b0105) 2021; 597
Ji (10.1016/j.jhydrol.2022.128995_b0130) 2014; 28
Niu (10.1016/j.jhydrol.2022.128995_b0235) 2021; 64
Taormina (10.1016/j.jhydrol.2022.128995_b0315) 2015; 529
Yang (10.1016/j.jhydrol.2022.128995_b0340) 2017; 53
Al-Tashi (10.1016/j.jhydrol.2022.128995_b0050) 2020; 8
Moriasi (10.1016/j.jhydrol.2022.128995_b0210) 2007; 50
Wang (10.1016/j.jhydrol.2022.128995_b0335) 2015; 93
Quilty (10.1016/j.jhydrol.2022.128995_b0250) 2016; 52
Ren (10.1016/j.jhydrol.2022.128995_b0260) 2020; 586
Shibata (10.1016/j.jhydrol.2022.128995_b0290) 1976; 63
Emary (10.1016/j.jhydrol.2022.128995_b0075) 2016; 172
Taradeh (10.1016/j.jhydrol.2022.128995_b0320) 2019; 497
Faris (10.1016/j.jhydrol.2022.128995_b0085) 2016; 45
Aljarah (10.1016/j.jhydrol.2022.128995_b0035) 2018; 71
He (10.1016/j.jhydrol.2022.128995_b0115) 2020; 34
Zhou (10.1016/j.jhydrol.2022.128995_b0370) 2019; 570
Liu (10.1016/j.jhydrol.2022.128995_b0160) 2014; 519
Pashaei (10.1016/j.jhydrol.2022.128995_b0240) 2017; 56
Rezaie-Balf (10.1016/j.jhydrol.2022.128995_b0270) 2019; 572
Zhao (10.1016/j.jhydrol.2022.128995_b0365) 2021; 601
Molajou (10.1016/j.jhydrol.2022.128995_b0205) 2021; 35
Lahouar (10.1016/j.jhydrol.2022.128995_b0140) 2017; 109
Faris (10.1016/j.jhydrol.2022.128995_b0090) 2018; 154
Abbasi (10.1016/j.jhydrol.2022.128995_b0005) 2021; 597
Sudheer (10.1016/j.jhydrol.2022.128995_b0305) 2013; 101
Mirjalili (10.1016/j.jhydrol.2022.128995_b0200) 2014; 69
Ministry of Water Resources P.R.C. (10.1016/j.jhydrol.2022.128995_b0185) 2008
Wang (10.1016/j.jhydrol.2022.128995_b0330) 2015; 29
Alamiedy (10.1016/j.jhydrol.2022.128995_b0025) 2020; 11
Liu (10.1016/j.jhydrol.2022.128995_b0155) 2012; 98
Feng (10.1016/j.jhydrol.2022.128995_b0100) 2020; 583
Karimi (10.1016/j.jhydrol.2022.128995_b0135) 2018; 49
Alizadeh (10.1016/j.jhydrol.2022.128995_b0030) 2020; 65
Prasad (10.1016/j.jhydrol.2022.128995_b0245) 2017; 197
Huang (10.1016/j.jhydrol.2022.128995_b0125) 2014; 511
Mehdizadeh (10.1016/j.jhydrol.2022.128995_b0175) 2018; 32
Adnan (10.1016/j.jhydrol.2022.128995_b0020) 2020; 586
Tikhamarine (10.1016/j.jhydrol.2022.128995_b0325) 2020; 582
Niu (10.1016/j.jhydrol.2022.128995_b0230) 2019; 11
Diop (10.1016/j.jhydrol.2022.128995_b0070) 2018; 77
Nelson (10.1016/j.jhydrol.2022.128995_b0220) 1991
Fang (10.1016/j.jhydrol.2022.128995_b0080) 2019; 568
Dawson (10.1016/j.jhydrol.2022.128995_b0060) 2007; 22
Mirjalili (10.1016/j.jhydrol.2022.128995_b0195) 2016; 95
Shekhawat (10.1016/j.jhydrol.2022.128995_b0285) 2021; 9
Liu (10.1016/j.jhydrol.2022.128995_b0150) 2019; 249
Hadi (10.1016/j.jhydrol.2022.128995_b0110) 2020; 8
10.1016/j.jhydrol.2022.128995_b0280
Al-Tashi (10.1016/j.jhydrol.2022.128995_b0045) 2019; 7
Meng (10.1016/j.jhydrol.2022.128995_b0180) 2021; 35
Abd Elminaam (10.1016/j.jhydrol.2022.128995_b0010) 2021; 9
Luo (10.1016/j.jhydrol.2022.128995_b0165) 2019; 568
Mirjalili (10.1016/j.jhydrol.2022.128995_b0190) 2013; 9
Salcedo-Sanz (10.1016/j.jhydrol.2022.128995_b0275) 2014; 87
Zhu (10.1016/j.jhydrol.2022.128995_b0375) 2017; 66
Ni (10.1016/j.jhydrol.2022.128995_b0225) 2020; 586
Aljarah (10.1016/j.jhydrol.2022.128995_b0040) 2019; 22
Yaseen (10.1016/j.jhydrol.2022.128995_b0345) 2016; 542
He (10.1016/j.jhydrol.2022.128995_b0120) 2014; 509
References_xml – volume: 497
  start-page: 219
  year: 2019
  end-page: 239
  ident: b0320
  article-title: An evolutionary gravitational search-based feature selection
  publication-title: Information Sciences
– volume: 582
  year: 2020
  ident: b0325
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 2655
  year: 2015
  end-page: 2675
  ident: b0330
  article-title: Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition
  publication-title: Water Resour Manage
– volume: 66
  start-page: 364
  year: 2017
  end-page: 374
  ident: b0375
  article-title: Subspace clustering guided unsupervised feature selection
  publication-title: PATTERN RECOGNITION
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b0090
  article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-based Systems
– volume: 361
  start-page: 151
  year: 2019
  end-page: 163
  ident: b0055
  article-title: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
  publication-title: Neurocomputing
– year: 2008
  ident: b0185
  article-title: Standard for hydrological information and hydrological forecasting Ministry of Water Resources (GB/T 22482–2008 2008)
– volume: 529
  start-page: 1617
  year: 2015
  end-page: 1632
  ident: b0315
  article-title: Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines
  publication-title: Journal of Hydrology
– volume: 571
  start-page: 749
  year: 2019
  end-page: 764
  ident: b0065
  article-title: Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia
  publication-title: Journal of Hydrology
– volume: 8
  start-page: 101993
  year: 2020
  end-page: 102006
  ident: b0110
  article-title: The Capacity of the Hybridizing Wavelet Transformation Approach With Data-Driven Models for Modeling Monthly-Scale Streamflow
  publication-title: IEEE Access
– volume: 101
  start-page: 18
  year: 2013
  end-page: 23
  ident: b0305
  article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization
  publication-title: Neurocomputing
– reference: Adnan, R.M., Mostafa, R.R., Kisi, O., Yaseen, Z.M., Shahid, S., Zounemat-Kermani, M., 2021. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowledge-based Systems 230.
– volume: 583
  year: 2020
  ident: b0295
  article-title: A comprehensive comparison of four input variable selection methods for artificial neural network flow forecasting models
  publication-title: Journal of Hydrology
– volume: 77
  year: 2018
  ident: b0070
  article-title: The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River
  publication-title: Environmental Earth Sciences
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b0075
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: b0210
  article-title: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
  publication-title: Transactions of the ASABE
– volume: 31
  start-page: 3843
  year: 2017
  end-page: 3865
  ident: b0265
  article-title: Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non-Parametric Paradigm vs
  publication-title: Model Classification Methods. Water Resour Manage
– volume: 572
  start-page: 470
  year: 2019
  end-page: 485
  ident: b0270
  article-title: Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea
  publication-title: Journal of Hydrology
– volume: 52
  start-page: 2299
  year: 2016
  end-page: 2326
  ident: b0250
  article-title: Bootstrap rank-ordered conditional mutual information (broCMI): A nonlinear input variable selection method for water resources modeling
  publication-title: Water Resour. Res.
– volume: 64
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0235
  article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management
  publication-title: Sustainable Cities and Society
– year: 1991
  ident: b0220
  article-title: A Practical Guide to Neural Nets
– volume: 542
  start-page: 603
  year: 2016
  end-page: 614
  ident: b0345
  article-title: Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0190
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 93
  start-page: 41
  year: 2015
  end-page: 56
  ident: b0335
  article-title: A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
  publication-title: Energy
– volume: 65
  start-page: 1374
  year: 2020
  end-page: 1384
  ident: b0030
  article-title: Simulating monthly streamflow using a hybrid feature selection approach integrated with an intelligence model
  publication-title: Hydrological Sciences Journal-Journal Des Sciences Hydrologiques
– volume: 586
  year: 2020
  ident: b0020
  article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 2385
  year: 2021
  ident: b0205
  article-title: Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling
  publication-title: Water Resour Manage
– volume: 586
  year: 2020
  ident: b0225
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: Journal of Hydrology
– volume: 11
  start-page: 3735
  year: 2020
  end-page: 3756
  ident: b0025
  article-title: Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: b0045
  article-title: Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection
  publication-title: IEEE Access
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: b0360
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Conversion and Management
– volume: 32
  start-page: 3001
  year: 2018
  end-page: 3022
  ident: b0175
  article-title: A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow
  publication-title: Water Resour Manage
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0195
  article-title: The Whale Optimization Algorithm
  publication-title: Advances in Engineering Software
– reference: Masmoudi, S., Elghazel, H., Taieb, D., Yazar, O., Kallel, A., 2020. A machine-learning framework for predicting multiple air pollutants' concentrations via multi-target regression and feature selection. SCIENCE OF THE TOTAL ENVIRONMENT 715.
– volume: 34
  start-page: 865
  year: 2020
  end-page: 884
  ident: b0115
  article-title: A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting
  publication-title: Water Resour Manage
– volume: 597
  year: 2021
  ident: b0105
  article-title: Multi-step-ahead forecast of reservoir water availability with improved quantum-based GWO coupled with the AI-based LSSVM model
  publication-title: Journal of Hydrology
– volume: 98
  start-page: 415
  year: 2012
  end-page: 424
  ident: b0155
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Applied Energy
– volume: 10
  start-page: 2901
  year: 2019
  end-page: 2920
  ident: b0095
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 249
  start-page: 392
  year: 2019
  end-page: 408
  ident: b0150
  article-title: Data processing strategies in wind energy forecasting models and applications: A comprehensive review
  publication-title: Applied Energy
– volume: 56
  start-page: 94
  year: 2017
  end-page: 106
  ident: b0240
  article-title: Binary black hole algorithm for feature selection and classification on biological data
  publication-title: Applied Soft Computing
– volume: 589
  year: 2020
  ident: b0145
  article-title: Estimating annual runoff in response to forest change: A statistical method based on random forest
  publication-title: Journal of Hydrology
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0200
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
– volume: 9
  start-page: 60136
  year: 2021
  end-page: 60153
  ident: b0010
  article-title: An Efficient Marine Predators Algorithm for Feature Selection
  publication-title: IEEE Access
– reference: Segera, D., Mbuthia, M., Nyete, A. 2020. An Innovative Excited-ACS-IDGWO Algorithm for Optimal Biomedical Data Feature Selection. Biomed Research International. 2020.
– volume: 53
  start-page: 2786
  year: 2017
  end-page: 2812
  ident: b0340
  article-title: Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information
  publication-title: Water Resour. Res.
– volume: 109
  start-page: 529
  year: 2017
  end-page: 541
  ident: b0140
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renewable Energy
– volume: 110
  start-page: 191
  year: 2016
  end-page: 201
  ident: b0350
  article-title: Binary coordinate ascent: An efficient optimization technique for feature subset selection for machine learning
  publication-title: Knowledge-based Systems
– volume: 71
  start-page: 964
  year: 2018
  end-page: 979
  ident: b0035
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Applied Soft Computing
– volume: 22
  start-page: 1317
  year: 2019
  end-page: 1345
  ident: b0040
  article-title: Evolving neural networks using bird swarm algorithm for data classification and regression applications
  publication-title: Cluster Computing
– volume: 87
  start-page: 10
  year: 2014
  end-page: 18
  ident: b0275
  article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - Extreme learning machine approach
  publication-title: Energy Conversion and Management
– volume: 583
  year: 2020
  ident: b0100
  article-title: Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization
  publication-title: Journal of Hydrology
– volume: 567
  start-page: 767
  year: 2018
  end-page: 780
  ident: b0310
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: Journal of Hydrology
– volume: 544
  start-page: 555
  year: 2017
  end-page: 566
  ident: b0300
  article-title: A joint stochastic-deterministic approach for long-term and short-term modelling of monthly flow rates
  publication-title: Journal of Hydrology
– volume: 570
  start-page: 343
  year: 2019
  end-page: 355
  ident: b0370
  article-title: Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts
  publication-title: Journal of Hydrology
– volume: 63
  start-page: 117
  year: 1976
  end-page: 126
  ident: b0290
  article-title: Selection of the order of an autoregressive model by Akaike's information criterion
  publication-title: Biometrika
– volume: 568
  start-page: 184
  year: 2019
  end-page: 193
  ident: b0165
  article-title: A hybrid support vector regression framework for streamflow forecast
  publication-title: Journal of Hydrology
– volume: 601
  year: 2021
  ident: b0365
  article-title: Enhancing robustness of monthly streamflow forecasting model using gated recurrent unit based on improved grey wolf optimizer
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 1321
  year: 2021
  end-page: 1337
  ident: b0180
  article-title: A Hybrid VMD-SVM Model for Practical Streamflow Prediction Using an Innovative Input Selection Framework
  publication-title: Water Resour Manage
– volume: 166
  year: 2021
  ident: b0215
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 1034
  year: 2007
  end-page: 1052
  ident: b0060
  article-title: HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environmental Modelling & Software
– volume: 519
  start-page: 2822
  year: 2014
  end-page: 2831
  ident: b0160
  article-title: Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting
  publication-title: Journal of Hydrology
– volume: 586
  year: 2020
  ident: b0260
  article-title: Comparison of eight filter-based feature selection methods for monthly streamflow forecasting – Three case studies on CAMELS data sets
  publication-title: Journal of Hydrology
– volume: 509
  start-page: 379
  year: 2014
  end-page: 386
  ident: b0120
  article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
  publication-title: Journal of Hydrology
– volume: 49
  start-page: 658
  year: 2018
  end-page: 669
  ident: b0135
  article-title: Forecasting daily streamflow values: assessing heuristic models
  publication-title: Hydrology Research
– volume: 9
  start-page: 14867
  year: 2021
  end-page: 14882
  ident: b0285
  article-title: bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection
  publication-title: IEEE Access
– volume: 597
  year: 2021
  ident: b0005
  article-title: A hybrid of Random Forest and Deep Auto-Encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction
  publication-title: Journal of Hydrology
– volume: 8
  start-page: 106247
  year: 2020
  end-page: 106263
  ident: b0050
  article-title: Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
  publication-title: IEEE Access
– volume: 19
  start-page: 372
  year: 2014
  end-page: 386
  ident: b0255
  article-title: Support vector machine applications in the field of hydrology: A review
  publication-title: Applied Soft Computing
– volume: 45
  start-page: 322
  year: 2016
  end-page: 332
  ident: b0085
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Applied Intelligence
– volume: 197
  start-page: 42
  year: 2017
  end-page: 63
  ident: b0245
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm
  publication-title: Atmospheric Research
– volume: 37
  start-page: 3741
  year: 2021
  end-page: 3770
  ident: b0355
  article-title: Boosted binary Harris hawks optimizer and feature selection
  publication-title: Engineering with Computers
– volume: 511
  start-page: 764
  year: 2014
  end-page: 775
  ident: b0125
  article-title: Monthly streamflow prediction using modified EMD-based support vector machine
  publication-title: Journal of Hydrology
– volume: 28
  start-page: 2435
  year: 2014
  end-page: 2451
  ident: b0130
  article-title: Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression
  publication-title: Water Resour Manage
– volume: 568
  start-page: 534
  year: 2019
  end-page: 550
  ident: b0080
  article-title: Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models
  publication-title: Journal of Hydrology
– volume: 11
  year: 2019
  ident: b0230
  article-title: Comparison of Multiple Linear Regression, Artificial Neural Network, Extreme Learning Machine, and Support Vector Machine in Deriving Operation Rule of Hydropower Reservoir
  publication-title: Water
– year: 2008
  ident: 10.1016/j.jhydrol.2022.128995_b0185
– ident: 10.1016/j.jhydrol.2022.128995_b0170
  doi: 10.1016/j.scitotenv.2020.136991
– volume: 582
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0325
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.124435
– volume: 586
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0020
  article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.124371
– volume: 71
  start-page: 964
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128995_b0035
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.040
– volume: 583
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0295
  article-title: A comprehensive comparison of four input variable selection methods for artificial neural network flow forecasting models
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.124299
– volume: 35
  start-page: 1321
  issue: 04
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0180
  article-title: A Hybrid VMD-SVM Model for Practical Streamflow Prediction Using an Innovative Input Selection Framework
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-021-02786-7
– volume: 29
  start-page: 2655
  issue: 08
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128995_b0330
  article-title: Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-015-0962-6
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0360
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.04.007
– volume: 511
  start-page: 764
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0125
  article-title: Monthly streamflow prediction using modified EMD-based support vector machine
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2014.01.062
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128995_b0190
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– volume: 37
  start-page: 3741
  issue: 04
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0355
  article-title: Boosted binary Harris hawks optimizer and feature selection
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01028-5
– volume: 110
  start-page: 191
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128995_b0350
  article-title: Binary coordinate ascent: An efficient optimization technique for feature subset selection for machine learning
  publication-title: Knowledge-based Systems
  doi: 10.1016/j.knosys.2016.07.026
– volume: 8
  start-page: 101993
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0110
  article-title: The Capacity of the Hybridizing Wavelet Transformation Approach With Data-Driven Models for Modeling Monthly-Scale Streamflow
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998437
– volume: 53
  start-page: 2786
  issue: 04
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0340
  article-title: Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020482
– volume: 570
  start-page: 343
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0370
  article-title: Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.12.040
– volume: 35
  start-page: 2385
  issue: 08
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0205
  article-title: Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-021-02861-z
– volume: 11
  start-page: 3735
  issue: 09
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0025
  article-title: Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-019-01569-8
– volume: 497
  start-page: 219
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0320
  article-title: An evolutionary gravitational search-based feature selection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.05.038
– volume: 197
  start-page: 42
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0245
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2017.06.014
– volume: 571
  start-page: 749
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0065
  article-title: Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.02.025
– volume: 77
  issue: 5
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128995_b0070
  article-title: The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-018-7376-8
– volume: 65
  start-page: 1374
  issue: 08
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0030
  article-title: Simulating monthly streamflow using a hybrid feature selection approach integrated with an intelligence model
  publication-title: Hydrological Sciences Journal-Journal Des Sciences Hydrologiques
  doi: 10.1080/02626667.2020.1755436
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128995_b0090
  article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-based Systems
  doi: 10.1016/j.knosys.2018.05.009
– volume: 529
  start-page: 1617
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128995_b0315
  article-title: Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.08.022
– volume: 22
  start-page: 1317
  issue: 04
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0040
  article-title: Evolving neural networks using bird swarm algorithm for data classification and regression applications
  publication-title: Cluster Computing
  doi: 10.1007/s10586-019-02913-5
– volume: 109
  start-page: 529
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0140
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.03.064
– volume: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0230
  article-title: Comparison of Multiple Linear Regression, Artificial Neural Network, Extreme Learning Machine, and Support Vector Machine in Deriving Operation Rule of Hydropower Reservoir
  publication-title: Water
  doi: 10.3390/w11010088
– volume: 361
  start-page: 151
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0055
  article-title: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.099
– volume: 98
  start-page: 415
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128995_b0155
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.04.001
– volume: 597
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0105
  article-title: Multi-step-ahead forecast of reservoir water availability with improved quantum-based GWO coupled with the AI-based LSSVM model
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.125769
– ident: 10.1016/j.jhydrol.2022.128995_b0280
  doi: 10.1155/2020/8506365
– volume: 93
  start-page: 41
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128995_b0335
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.045
– volume: 586
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0260
  article-title: Comparison of eight filter-based feature selection methods for monthly streamflow forecasting – Three case studies on CAMELS data sets
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.124897
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0200
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 509
  start-page: 379
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0120
  article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2013.11.054
– volume: 32
  start-page: 3001
  issue: 09
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128995_b0175
  article-title: A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-018-1970-0
– volume: 544
  start-page: 555
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0300
  article-title: A joint stochastic-deterministic approach for long-term and short-term modelling of monthly flow rates
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.11.025
– volume: 542
  start-page: 603
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128995_b0345
  article-title: Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 519
  start-page: 2822
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0160
  article-title: Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2014.06.050
– volume: 31
  start-page: 3843
  issue: 12
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0265
  article-title: Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non-Parametric Paradigm vs
  publication-title: Model Classification Methods. Water Resour Manage
– volume: 597
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0005
  article-title: A hybrid of Random Forest and Deep Auto-Encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.125717
– volume: 28
  start-page: 2435
  issue: 09
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0130
  article-title: Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-014-0610-6
– volume: 572
  start-page: 470
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0270
  article-title: Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.03.046
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0045
  article-title: Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 19
  start-page: 372
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0255
  article-title: Support vector machine applications in the field of hydrology: A review
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.02.002
– volume: 8
  start-page: 106247
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0050
  article-title: Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000040
– volume: 22
  start-page: 1034
  issue: 07
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128995_b0060
  article-title: HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2006.06.008
– volume: 568
  start-page: 534
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0080
  article-title: Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.11.020
– volume: 66
  start-page: 364
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0375
  article-title: Subspace clustering guided unsupervised feature selection
  publication-title: PATTERN RECOGNITION
  doi: 10.1016/j.patcog.2017.01.016
– ident: 10.1016/j.jhydrol.2022.128995_b0015
  doi: 10.1016/j.knosys.2021.107379
– volume: 586
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0225
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.124901
– volume: 583
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0100
  article-title: Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.124627
– volume: 64
  start-page: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0235
  article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2020.102562
– volume: 567
  start-page: 767
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128995_b0310
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.01.015
– volume: 568
  start-page: 184
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0165
  article-title: A hybrid support vector regression framework for streamflow forecast
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.10.064
– volume: 87
  start-page: 10
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128995_b0275
  article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - Extreme learning machine approach
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2014.06.041
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128995_b0195
  article-title: The Whale Optimization Algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 63
  start-page: 117
  issue: 1
  year: 1976
  ident: 10.1016/j.jhydrol.2022.128995_b0290
  article-title: Selection of the order of an autoregressive model by Akaike's information criterion
  publication-title: Biometrika
  doi: 10.1093/biomet/63.1.117
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128995_b0075
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 249
  start-page: 392
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0150
  article-title: Data processing strategies in wind energy forecasting models and applications: A comprehensive review
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.04.188
– volume: 9
  start-page: 60136
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0010
  article-title: An Efficient Marine Predators Algorithm for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073261
– volume: 10
  start-page: 2901
  issue: 10
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128995_b0095
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-018-00913-2
– volume: 49
  start-page: 658
  issue: 03
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128995_b0135
  article-title: Forecasting daily streamflow values: assessing heuristic models
  publication-title: Hydrology Research
  doi: 10.2166/nh.2017.111
– volume: 34
  start-page: 865
  issue: 02
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0115
  article-title: A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-020-02483-x
– volume: 52
  start-page: 2299
  issue: 03
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128995_b0250
  article-title: Bootstrap rank-ordered conditional mutual information (broCMI): A nonlinear input variable selection method for water resources modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016959
– volume: 166
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0215
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113917
– volume: 9
  start-page: 14867
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0285
  article-title: bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049547
– volume: 56
  start-page: 94
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128995_b0240
  article-title: Binary black hole algorithm for feature selection and classification on biological data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.03.002
– volume: 101
  start-page: 18
  issue: 04
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128995_b0305
  article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization
  publication-title: Neurocomputing
– volume: 601
  issue: 06
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128995_b0365
  article-title: Enhancing robustness of monthly streamflow forecasting model using gated recurrent unit based on improved grey wolf optimizer
  publication-title: Journal of Hydrology
– volume: 45
  start-page: 322
  issue: 02
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128995_b0085
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0767-1
– volume: 50
  start-page: 885
  issue: 03
  year: 2007
  ident: 10.1016/j.jhydrol.2022.128995_b0210
  article-title: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.23153
– volume: 589
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128995_b0145
  article-title: Estimating annual runoff in response to forest change: A statistical method based on random forest
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.125168
– year: 1991
  ident: 10.1016/j.jhydrol.2022.128995_b0220
SSID ssj0000334
Score 2.5881577
Snippet •Model hyperparameters and input variables (features) affect the forecasting results.•An embedded feature selection technique and their SVM-IGWO realization...
Accurate streamflow prediction plays an essential role in guaranteeing the sustainable utilization and management of water resources. In recent years,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128995
SubjectTerms China
Feature selection
Hydrologic time series
Improved gray wolf algorithm
Passeriformes
prediction
runoff
stream flow
Streamflow prediction
Support vector machine
support vector machines
time series analysis
Title Enhancing robustness of monthly streamflow forecasting model using embedded-feature selection algorithm based on improved gray wolf optimizer
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128995
https://www.proquest.com/docview/2834216203
Volume 617
WOSCitedRecordID wos000913904100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFwkuK55iWUBG4lal5OE4ybFC5XVYgbSIcoqc2N6mSuOlTXa3_Af-Dr8Pv5KUsrDsgUsUWbXjdL6Mx-NvZgB4weQiEITMdTKc-A7y3MxJEMoclOFQZcjyfZfoYhPR0VE8myUfBoMfbSzMWRlVVXxxkZz-V1HLNilsFTp7DXF3g8oGeS-FLq9S7PL6T4KfVnOVQ0OVEBJZs661LlOn6KKq5-VGR4eQJS_FuaIYspysNfNZl8QZNdp1wJYZkwqJOpzpvJ-jta6Wo5nL5YlYFfV8OVLrH1VnDYX2S8j7kxXZjM5FyUdCKqJl8c0yf3-3fecbujLJn6SBO1mqZA1UIbPzSny2buyPcjqLogPfl8YQF-dNxYldcxWbSFMSZgURX4vtViKMkVxt-zb8oKVD8-1YAw-bMsitvsYm2NNqXE_tGMNLFwPjl1iMF-alxvIJ_rj__a_Jt3cWxY6q2LLgFqkdJlXDpGaYG2DPj8IkHoK9ybvp7H1vAwQBavPUq_n3sWMvL53Pn6yiHftAGz3Hd8C-lRicGJTdBQNW3QO33jCb5_w--N6hDfZog4JDizbYow1uoQ1qtEGNNriLNtihDXZogxptUDa1aIMKbVChDXZoewA-vZ4ev3rr2AofTh4gv3ZiFCaYYR7nBEWMy70TozgMMWIhjhn1KElIRrFHGENRJLWHR32KWYBjiigNSfAQDCtRsUcAel5OXTf3CUUBCuM8CxGXG0ee5dxzicsPAGr_4TS36e9VFZYy_auED8C463Zq8r9c1SFuxZdaI9YYp6mE5VVdn7fiTqWSVyd3pGKiWadyD4B8D_tu8Pi68zkEt_sv6wkY1quGPQU387O6WK-eWdz-BFdN1bc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+robustness+of+monthly+streamflow+forecasting+model+using+embedded-feature+selection+algorithm+based+on+improved+gray+wolf+optimizer&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wang%2C+Qingjie&rft.au=Yue%2C+Chunfang&rft.au=Li%2C+Xiaoqing&rft.au=Liao%2C+Pan&rft.date=2023-02-01&rft.issn=0022-1694&rft.volume=617&rft.spage=128995&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2022_128995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon