A multi-objective stochastic optimization model for electricity retailers with energy storage system considering uncertainty and demand response

The development of electricity retailers with energy storage systems expands the energy use ways of users, promotes the consumption of clean energy power generation, and facilitates the development of electricity market. However, due to the imperfect trading mechanism and uncertainties of power supp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of cleaner production Ročník 277; s. 124017
Hlavní autori: Yang, Shenbo, Tan, Zhongfu, Liu, ZhiXiong, Lin, Hongyu, Ju, Liwei, Zhou, Fengao, Li, Jiayu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 20.12.2020
Predmet:
ISSN:0959-6526, 1879-1786
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The development of electricity retailers with energy storage systems expands the energy use ways of users, promotes the consumption of clean energy power generation, and facilitates the development of electricity market. However, due to the imperfect trading mechanism and uncertainties of power supply and demand, the business risk continues to be large, which leads to limited sustainable development of electricity retailers. Therefore, based on the design of a trading mechanism of electricity retailers with energy storage systems in the electricity market, this paper constructs a multi-objective stochastic optimization model of the retailers’ flexible purchase of electricity, aiming at minimizing the cost of electricity retailers and maximizing the consumption of clean energy power generation. In the model, the uncertainty of supply and demand and the demand response are taken into consideration. The results show that: (1) Compared with the conventional optimization model, considering the uncertainty in the medium-and-long-term electricity trading, although the demand for clean energy is reduced, the retail cost of temporary electricity in the day-ahead trading is also reduced. (2) The retailers make full use of flexible power charging and discharging, so the extra cost of purchasing electricity in the day-ahead trading caused by the uncertainty of clean energy is reduced via the energy storage demand response. (3) A price-based demand response can change the electricity purchase demand of retailers, improve the transaction volume between retailers and clean power enterprises in the medium-and-long-term electricity trading, and reduce the energy purchase cost while improving the consumption of clean energy power generation. (4) Due to the impact of initial investment cost and other factors, there is no obvious linear relationship between the capacity of energy storage systems and the reduction of retail energy purchase cost; therefore, it is necessary to apply energy storage systems reasonably to achieve the optimal economic benefits. •The trading strategy for ER-ESS participating in electricity market is formulated.•The energy storage and price-based demand response models are constructed.•The respective solving algorithms for the regular and uncertainty model are built.
AbstractList The development of electricity retailers with energy storage systems expands the energy use ways of users, promotes the consumption of clean energy power generation, and facilitates the development of electricity market. However, due to the imperfect trading mechanism and uncertainties of power supply and demand, the business risk continues to be large, which leads to limited sustainable development of electricity retailers. Therefore, based on the design of a trading mechanism of electricity retailers with energy storage systems in the electricity market, this paper constructs a multi-objective stochastic optimization model of the retailers’ flexible purchase of electricity, aiming at minimizing the cost of electricity retailers and maximizing the consumption of clean energy power generation. In the model, the uncertainty of supply and demand and the demand response are taken into consideration. The results show that: (1) Compared with the conventional optimization model, considering the uncertainty in the medium-and-long-term electricity trading, although the demand for clean energy is reduced, the retail cost of temporary electricity in the day-ahead trading is also reduced. (2) The retailers make full use of flexible power charging and discharging, so the extra cost of purchasing electricity in the day-ahead trading caused by the uncertainty of clean energy is reduced via the energy storage demand response. (3) A price-based demand response can change the electricity purchase demand of retailers, improve the transaction volume between retailers and clean power enterprises in the medium-and-long-term electricity trading, and reduce the energy purchase cost while improving the consumption of clean energy power generation. (4) Due to the impact of initial investment cost and other factors, there is no obvious linear relationship between the capacity of energy storage systems and the reduction of retail energy purchase cost; therefore, it is necessary to apply energy storage systems reasonably to achieve the optimal economic benefits. •The trading strategy for ER-ESS participating in electricity market is formulated.•The energy storage and price-based demand response models are constructed.•The respective solving algorithms for the regular and uncertainty model are built.
The development of electricity retailers with energy storage systems expands the energy use ways of users, promotes the consumption of clean energy power generation, and facilitates the development of electricity market. However, due to the imperfect trading mechanism and uncertainties of power supply and demand, the business risk continues to be large, which leads to limited sustainable development of electricity retailers. Therefore, based on the design of a trading mechanism of electricity retailers with energy storage systems in the electricity market, this paper constructs a multi-objective stochastic optimization model of the retailers’ flexible purchase of electricity, aiming at minimizing the cost of electricity retailers and maximizing the consumption of clean energy power generation. In the model, the uncertainty of supply and demand and the demand response are taken into consideration. The results show that: (1) Compared with the conventional optimization model, considering the uncertainty in the medium-and-long-term electricity trading, although the demand for clean energy is reduced, the retail cost of temporary electricity in the day-ahead trading is also reduced. (2) The retailers make full use of flexible power charging and discharging, so the extra cost of purchasing electricity in the day-ahead trading caused by the uncertainty of clean energy is reduced via the energy storage demand response. (3) A price-based demand response can change the electricity purchase demand of retailers, improve the transaction volume between retailers and clean power enterprises in the medium-and-long-term electricity trading, and reduce the energy purchase cost while improving the consumption of clean energy power generation. (4) Due to the impact of initial investment cost and other factors, there is no obvious linear relationship between the capacity of energy storage systems and the reduction of retail energy purchase cost; therefore, it is necessary to apply energy storage systems reasonably to achieve the optimal economic benefits.
ArticleNumber 124017
Author Ju, Liwei
Li, Jiayu
Lin, Hongyu
Zhou, Fengao
Tan, Zhongfu
Liu, ZhiXiong
Yang, Shenbo
Author_xml – sequence: 1
  givenname: Shenbo
  surname: Yang
  fullname: Yang, Shenbo
  email: ysbo@ncepu.edu.cn
  organization: School of Economics and Management, North China Electric Power University, Beijing, 102206, China
– sequence: 2
  givenname: Zhongfu
  surname: Tan
  fullname: Tan, Zhongfu
  email: tzhf@ncepu.edu.cn
  organization: School of Economics and Management, North China Electric Power University, Beijing, 102206, China
– sequence: 3
  givenname: ZhiXiong
  surname: Liu
  fullname: Liu, ZhiXiong
  email: liuzhixiong_tju@126.com
  organization: State Grid Jibei Electronic Economic Research Institute, Beijing, 100038, China
– sequence: 4
  givenname: Hongyu
  surname: Lin
  fullname: Lin, Hongyu
  email: hone@ncepu.edu.cn
  organization: School of Economics and Management, North China Electric Power University, Beijing, 102206, China
– sequence: 5
  givenname: Liwei
  surname: Ju
  fullname: Ju, Liwei
  email: hdlw_ju@ncepu.edu.cn
  organization: School of Economics and Management, North China Electric Power University, Beijing, 102206, China
– sequence: 6
  givenname: Fengao
  surname: Zhou
  fullname: Zhou, Fengao
  email: zhoufengao@ncepu.cn
  organization: School of Economics and Management, North China Electric Power University, Beijing, 102206, China
– sequence: 7
  givenname: Jiayu
  surname: Li
  fullname: Li, Jiayu
  email: 18401689197@163.com
  organization: School of Economics and Management, North China Electric Power University, Beijing, 102206, China
BookMark eNqFkU9LJDEQxcOisKPuR1jIcS89Jt3pf-xhEfEfCF70HNLp6rGa7mS2klHGT-FHNuPMyYunKor3e1DvnbAj5x0w9luKpRSyOh-Xo51gTX6ZizzdciVk_YMtZFO3mayb6ogtRFu2WVXm1U92EsIokkLUasHeL_i8mSJmvhvBRnwBHqK3zyZEtNyvI874ZiJ6x2ffw8QHTxymJCW0GLecIBqcgAJ_xfjMwQGttjsPMqvktQ0RZm69C9gDoVvxjbNAiXEJNq7nPcy7QRDWSQVn7HgwU4Bfh3nKnq6vHi9vs_uHm7vLi_vMFiqPWQ2mMZ2CGlQnoSzT0ophMLYolakGIbrBKmWk7Kpa2N4Upe1kYdqi68qhaERxyv7sfVNu_zcQop4xWJgm48Bvgs5V0xatqJRM0r97qSUfAsGg0-efmURKv2sp9K4HPepDD3rXg973kOjyC70mnA1tv-X-7TlIKbwgkA4WIYXXI6X4de_xG4cPf_atbg
CitedBy_id crossref_primary_10_1016_j_ijggc_2025_104414
crossref_primary_10_1016_j_engappai_2023_105995
crossref_primary_10_1016_j_ijepes_2023_109747
crossref_primary_10_1016_j_cie_2022_108678
crossref_primary_10_1016_j_energy_2024_130311
crossref_primary_10_1016_j_egyr_2022_10_015
crossref_primary_10_1016_j_ijepes_2021_107642
crossref_primary_10_1109_TII_2021_3137823
crossref_primary_10_1016_j_energy_2022_125440
crossref_primary_10_3390_su15139970
crossref_primary_10_1016_j_apenergy_2022_120155
crossref_primary_10_1016_j_est_2024_115109
crossref_primary_10_3390_electricity5040047
crossref_primary_10_3390_su151310481
crossref_primary_10_1016_j_apenergy_2023_121176
crossref_primary_10_3390_math10234420
crossref_primary_10_1016_j_egyr_2022_05_223
crossref_primary_10_1016_j_energy_2025_137192
crossref_primary_10_1080_15567249_2023_2288952
crossref_primary_10_1016_j_apenergy_2022_119400
crossref_primary_10_1016_j_scs_2021_103605
crossref_primary_10_3389_fenrg_2025_1636892
crossref_primary_10_1016_j_ijepes_2022_108492
crossref_primary_10_3390_en14123599
crossref_primary_10_3390_en16227543
crossref_primary_10_1016_j_rser_2022_112095
crossref_primary_10_1016_j_jclepro_2024_140754
crossref_primary_10_1016_j_scs_2021_103059
crossref_primary_10_1155_2023_2425608
crossref_primary_10_1371_journal_pone_0324470
crossref_primary_10_1016_j_est_2022_106166
crossref_primary_10_1016_j_est_2024_111818
crossref_primary_10_1016_j_renene_2024_120090
crossref_primary_10_3390_en15249568
crossref_primary_10_1016_j_est_2022_104380
crossref_primary_10_3389_fenrg_2022_975319
crossref_primary_10_1016_j_seta_2023_103324
crossref_primary_10_1016_j_jclepro_2022_132403
crossref_primary_10_1016_j_est_2021_103877
crossref_primary_10_1016_j_ijepes_2021_107031
crossref_primary_10_1016_j_energy_2020_119473
crossref_primary_10_1016_j_epsr_2022_107953
crossref_primary_10_1016_j_energy_2025_135484
crossref_primary_10_1109_ACCESS_2025_3602972
Cites_doi 10.1109/TSG.2015.2399974
10.3390/en10091402
10.1016/j.energy.2019.04.048
10.1016/j.apenergy.2017.04.050
10.1016/j.enconman.2016.09.072
10.1016/j.ijepes.2020.106065
10.1016/j.enpol.2013.10.012
10.1016/j.apenergy.2017.09.002
10.1016/j.apenergy.2018.07.120
10.1016/j.jclepro.2019.118434
10.1007/s10107-002-0331-0
10.1109/TPWRS.2006.888956
10.1016/j.ijepes.2019.03.021
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2020.124017
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2020_124017
S0959652620340622
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-7ea8ab4e7e4b1e55e7e90ffac354a6f00bfc44a11b670cda35cb13a93bb5f3803
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000586917600162&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Mon Sep 29 06:40:33 EDT 2025
Sat Nov 29 07:09:24 EST 2025
Tue Nov 18 20:15:46 EST 2025
Fri Feb 23 02:47:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Three-stage solution algorithm
Multi-objective stochastic optimization model
Energy storage system
Uncertainty analysis
Flexible power purchase
Electricity retailers
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-7ea8ab4e7e4b1e55e7e90ffac354a6f00bfc44a11b670cda35cb13a93bb5f3803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2489390641
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2489390641
crossref_citationtrail_10_1016_j_jclepro_2020_124017
crossref_primary_10_1016_j_jclepro_2020_124017
elsevier_sciencedirect_doi_10_1016_j_jclepro_2020_124017
PublicationCentury 2000
PublicationDate 2020-12-20
PublicationDateYYYYMMDD 2020-12-20
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Feuerriegel, Neumann (bib9) 2014; 65
Athanasios, Dagoumas (bib2) 2017; 198
Guo, Gao, Lin (bib12) 2020 06 19
Liu (bib19) 2015
Zhang, Che, Liu (bib27) 2015; 39
Wang, Li, Zhang (bib24) 2008
Yao, Wang, Xiao (bib26) 2016; 37
Ju L, Li H, Zhao J, et al Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response[J]. Energy Convers. Manag., 128:160-177.
Chen, Hu, Xie (bib5) 2014; 38
Celebi, Fuller (bib4) 2007; 22
Adrian, Andrea, Georges (bib1) 2018; 229
Sharifi, Anvari-Moghaddam, Fathi (bib22) 2020; 121
Bessa, Möhrlen, Fundel (bib3) 2017; 10
Khaloie, Abdollahi, Shafie-Khah (bib15) 2019; 242
Gan, Jiang, Bai (bib10) 2018; 42
De, Tan, Li (bib7) 2019; 43
Dupacova, Growe-Kuska, Romisch (bib8) 2003; 95
Khaloie, Abdollahi, Shafie-Khah (bib17) 2020
Gao, Chan, Xia (bib11) 2019; 177
Lei, Yang, Han (bib18) 2012; 40
Yang, Jiang, Ai (bib25) 2018; 39
Khaloie, Abdollahi, Rashidinejad (bib16) 2019; 110
Tan, Guo, Tan (bib23) 2019; 45
Iria, Soares, Matos (bib13) 2018; 213
Manchester, Elect, Elect (bib20) 2015; 6
Nie, Lu, Qiao (bib21) 2009; 33
Khaloie (10.1016/j.jclepro.2020.124017_bib15) 2019; 242
Gan (10.1016/j.jclepro.2020.124017_bib10) 2018; 42
Guo (10.1016/j.jclepro.2020.124017_bib12) 2020
Athanasios (10.1016/j.jclepro.2020.124017_bib2) 2017; 198
Yang (10.1016/j.jclepro.2020.124017_bib25) 2018; 39
Feuerriegel (10.1016/j.jclepro.2020.124017_bib9) 2014; 65
10.1016/j.jclepro.2020.124017_bib14
Zhang (10.1016/j.jclepro.2020.124017_bib27) 2015; 39
Khaloie (10.1016/j.jclepro.2020.124017_bib16) 2019; 110
Khaloie (10.1016/j.jclepro.2020.124017_bib17) 2020
Liu (10.1016/j.jclepro.2020.124017_bib19) 2015
Lei (10.1016/j.jclepro.2020.124017_bib18) 2012; 40
De (10.1016/j.jclepro.2020.124017_bib7) 2019; 43
Chen (10.1016/j.jclepro.2020.124017_bib5) 2014; 38
Iria (10.1016/j.jclepro.2020.124017_bib13) 2018; 213
Dupacova (10.1016/j.jclepro.2020.124017_bib8) 2003; 95
Sharifi (10.1016/j.jclepro.2020.124017_bib22) 2020; 121
Adrian (10.1016/j.jclepro.2020.124017_bib1) 2018; 229
Gao (10.1016/j.jclepro.2020.124017_bib11) 2019; 177
Celebi (10.1016/j.jclepro.2020.124017_bib4) 2007; 22
Nie (10.1016/j.jclepro.2020.124017_bib21) 2009; 33
Wang (10.1016/j.jclepro.2020.124017_bib24) 2008
Bessa (10.1016/j.jclepro.2020.124017_bib3) 2017; 10
Tan (10.1016/j.jclepro.2020.124017_bib23) 2019; 45
Yao (10.1016/j.jclepro.2020.124017_bib26) 2016; 37
Manchester (10.1016/j.jclepro.2020.124017_bib20) 2015; 6
References_xml – volume: 42
  start-page: 707
  year: 2018
  end-page: 714
  ident: bib10
  article-title: Optimal bidding strategy and operation of industrial park electricity retailer in electricity market
  publication-title: Power Syst. Technol.
– volume: 242
  start-page: 118434
  year: 2019
  ident: bib15
  article-title: Co-optimized bidding strategy of an integrated wind-thermal-photovoltaic system in deregulated electricity market under uncertainties
  publication-title: J. Clean. Prod.
– volume: 95
  start-page: 493
  year: 2003
  end-page: 511
  ident: bib8
  article-title: Scenario reduction in stochastic programming: an approach using probability metrics
  publication-title: Math. Program.
– volume: 65
  start-page: 359
  year: 2014
  end-page: 368
  ident: bib9
  article-title: Measuring the financial impact of demand response for electricity retailers
  publication-title: Energy Pol.
– volume: 229
  start-page: 433
  year: 2018
  end-page: 445
  ident: bib1
  article-title: Robust optimization for day-ahead market participation of smart-home aggregators
  publication-title: Appl. Energy
– start-page: 19
  year: 2008
  end-page: 23
  ident: bib24
  article-title: CVaR-based electricity purchase model for power supply company
  publication-title: Electric power automation equipment
– year: 2020
  ident: bib17
  article-title: Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model
  publication-title: Appl. Energy
– volume: 10
  year: 2017
  ident: bib3
  article-title: Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry
  publication-title: Energies
– volume: 198
  start-page: 49
  year: 2017
  end-page: 64
  ident: bib2
  article-title: An integrated model for assessing electricity retailer’s profitability with demand response
  publication-title: Appl. Energy
– volume: 6
  start-page: 2333
  year: 2015
  end-page: 2342
  ident: bib20
  article-title: Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users’ discomfort
  publication-title: IEEE transactions on smart grid
– volume: 33
  start-page: 60
  year: 2009
  end-page: 64
  ident: bib21
  article-title: Fuzzy comprehensive evaluation of transmission network planning scheme based on entropy weight method
  publication-title: Grid technology
– volume: 43
  start-page: 2799
  year: 2019
  end-page: 2807
  ident: bib7
  article-title: Bidding strategy of wind storage power station participating in spot market considering uncertainty
  publication-title: Grid technology
– start-page: 1
  year: 2020 06 19
  end-page: 10
  ident: bib12
  article-title: Incentive demand response optimization strategies for E-commerce sales in the spot market environment [J/OL]
  publication-title: Power System Automation
– volume: 45
  start-page: 105
  year: 2019
  end-page: 110
  ident: bib23
  article-title: Design of distributed energy sales and e-commerce operation service in the park under the power market environment
  publication-title: Hydro
– start-page: 20
  year: 2015
  end-page: 22
  ident: bib19
  article-title: The core, focus and impact of the new electricity reform plan
  publication-title: Macroeconomic management
– reference: Ju L, Li H, Zhao J, et al Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response[J]. Energy Convers. Manag., 128:160-177.
– volume: 121
  start-page: 106065
  year: 2020
  ident: bib22
  article-title: A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 110
  start-page: 598
  year: 2019
  end-page: 612
  ident: bib16
  article-title: Risk-based probabilistic-possibilistic self-scheduling considering high-impact low-probability events uncertainty
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 39
  start-page: 123
  year: 2018
  end-page: 130
  ident: bib25
  article-title: International experience and Enlightenment of business model of power sales company
  publication-title: Power construction
– volume: 40
  start-page: 58
  year: 2012
  end-page: 67
  ident: bib18
  article-title: Two stage stochastic optimization of wind turbine unit combination based on scenario analysis
  publication-title: Power system protection and control
– volume: 37
  start-page: 74
  year: 2016
  end-page: 81
  ident: bib26
  article-title: Simulation method of power system production based on multi scenario stochastic planning
  publication-title: Power construction
– volume: 213
  start-page: 658
  year: 2018
  end-page: 669
  ident: bib13
  article-title: Optimal supply and demand bidding strategy for an aggregator of small prosumers
  publication-title: Appl. Energy
– volume: 39
  start-page: 52
  year: 2015
  end-page: 57
  ident: bib27
  article-title: Improved Latin hypercube sampling method in power system reliability evaluation
  publication-title: Power system automation
– volume: 22
  start-page: 60
  year: 2007
  end-page: 67
  ident: bib4
  article-title: A model for efficient consumer pricing schemes in electricity markets
  publication-title: IEEE Trans. Power Syst.
– volume: 38
  start-page: 2141
  year: 2014
  end-page: 2148
  ident: bib5
  article-title: Peak valley time share price model including power system reliability and power purchase risk
  publication-title: Grid technology
– volume: 177
  start-page: 183
  year: 2019
  end-page: 191
  ident: bib11
  article-title: Risk-constrained offering strategy for a hybrid power plant consisting of wind power producer and electric vehicle aggregator
  publication-title: Energy
– volume: 45
  start-page: 105
  issue: 1
  year: 2019
  ident: 10.1016/j.jclepro.2020.124017_bib23
  article-title: Design of distributed energy sales and e-commerce operation service in the park under the power market environment
  publication-title: Hydro
– volume: 6
  start-page: 2333
  issue: 5
  year: 2015
  ident: 10.1016/j.jclepro.2020.124017_bib20
  article-title: Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users’ discomfort
  publication-title: IEEE transactions on smart grid
  doi: 10.1109/TSG.2015.2399974
– start-page: 19
  issue: 2
  year: 2008
  ident: 10.1016/j.jclepro.2020.124017_bib24
  article-title: CVaR-based electricity purchase model for power supply company
  publication-title: Electric power automation equipment
– volume: 10
  issue: 9
  year: 2017
  ident: 10.1016/j.jclepro.2020.124017_bib3
  article-title: Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry
  publication-title: Energies
  doi: 10.3390/en10091402
– volume: 177
  start-page: 183
  year: 2019
  ident: 10.1016/j.jclepro.2020.124017_bib11
  article-title: Risk-constrained offering strategy for a hybrid power plant consisting of wind power producer and electric vehicle aggregator
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.048
– volume: 198
  start-page: 49
  year: 2017
  ident: 10.1016/j.jclepro.2020.124017_bib2
  article-title: An integrated model for assessing electricity retailer’s profitability with demand response
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.050
– ident: 10.1016/j.jclepro.2020.124017_bib14
  doi: 10.1016/j.enconman.2016.09.072
– issue: 259
  year: 2020
  ident: 10.1016/j.jclepro.2020.124017_bib17
  article-title: Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model
  publication-title: Appl. Energy
– volume: 38
  start-page: 2141
  issue: 8
  year: 2014
  ident: 10.1016/j.jclepro.2020.124017_bib5
  article-title: Peak valley time share price model including power system reliability and power purchase risk
  publication-title: Grid technology
– volume: 121
  start-page: 106065
  year: 2020
  ident: 10.1016/j.jclepro.2020.124017_bib22
  article-title: A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106065
– volume: 65
  start-page: 359
  issue: 3
  year: 2014
  ident: 10.1016/j.jclepro.2020.124017_bib9
  article-title: Measuring the financial impact of demand response for electricity retailers
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2013.10.012
– volume: 213
  start-page: 658
  year: 2018
  ident: 10.1016/j.jclepro.2020.124017_bib13
  article-title: Optimal supply and demand bidding strategy for an aggregator of small prosumers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.002
– volume: 229
  start-page: 433
  year: 2018
  ident: 10.1016/j.jclepro.2020.124017_bib1
  article-title: Robust optimization for day-ahead market participation of smart-home aggregators
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.120
– volume: 42
  start-page: 707
  issue: 3
  year: 2018
  ident: 10.1016/j.jclepro.2020.124017_bib10
  article-title: Optimal bidding strategy and operation of industrial park electricity retailer in electricity market
  publication-title: Power Syst. Technol.
– volume: 242
  start-page: 118434
  year: 2019
  ident: 10.1016/j.jclepro.2020.124017_bib15
  article-title: Co-optimized bidding strategy of an integrated wind-thermal-photovoltaic system in deregulated electricity market under uncertainties
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118434
– volume: 95
  start-page: 493
  issue: 3
  year: 2003
  ident: 10.1016/j.jclepro.2020.124017_bib8
  article-title: Scenario reduction in stochastic programming: an approach using probability metrics
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0331-0
– start-page: 1
  year: 2020
  ident: 10.1016/j.jclepro.2020.124017_bib12
  article-title: Incentive demand response optimization strategies for E-commerce sales in the spot market environment [J/OL]
  publication-title: Power System Automation
– volume: 43
  start-page: 2799
  issue: 8
  year: 2019
  ident: 10.1016/j.jclepro.2020.124017_bib7
  article-title: Bidding strategy of wind storage power station participating in spot market considering uncertainty
  publication-title: Grid technology
– volume: 39
  start-page: 52
  issue: 4
  year: 2015
  ident: 10.1016/j.jclepro.2020.124017_bib27
  article-title: Improved Latin hypercube sampling method in power system reliability evaluation
  publication-title: Power system automation
– volume: 37
  start-page: 74
  issue: 12
  year: 2016
  ident: 10.1016/j.jclepro.2020.124017_bib26
  article-title: Simulation method of power system production based on multi scenario stochastic planning
  publication-title: Power construction
– volume: 39
  start-page: 123
  issue: 3
  year: 2018
  ident: 10.1016/j.jclepro.2020.124017_bib25
  article-title: International experience and Enlightenment of business model of power sales company
  publication-title: Power construction
– volume: 40
  start-page: 58
  issue: 23
  year: 2012
  ident: 10.1016/j.jclepro.2020.124017_bib18
  article-title: Two stage stochastic optimization of wind turbine unit combination based on scenario analysis
  publication-title: Power system protection and control
– start-page: 20
  issue: 6
  year: 2015
  ident: 10.1016/j.jclepro.2020.124017_bib19
  article-title: The core, focus and impact of the new electricity reform plan
  publication-title: Macroeconomic management
– volume: 22
  start-page: 60
  issue: 1
  year: 2007
  ident: 10.1016/j.jclepro.2020.124017_bib4
  article-title: A model for efficient consumer pricing schemes in electricity markets
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.888956
– volume: 110
  start-page: 598
  year: 2019
  ident: 10.1016/j.jclepro.2020.124017_bib16
  article-title: Risk-based probabilistic-possibilistic self-scheduling considering high-impact low-probability events uncertainty
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.03.021
– volume: 33
  start-page: 60
  issue: 11
  year: 2009
  ident: 10.1016/j.jclepro.2020.124017_bib21
  article-title: Fuzzy comprehensive evaluation of transmission network planning scheme based on entropy weight method
  publication-title: Grid technology
SSID ssj0017074
Score 2.5206192
Snippet The development of electricity retailers with energy storage systems expands the energy use ways of users, promotes the consumption of clean energy power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124017
SubjectTerms business enterprises
clean energy
electricity
Electricity retailers
energy
Energy storage system
financial economics
Flexible power purchase
markets
Multi-objective stochastic optimization model
power generation
purchasing
risk
supply balance
sustainable development
Three-stage solution algorithm
uncertainty
Uncertainty analysis
Title A multi-objective stochastic optimization model for electricity retailers with energy storage system considering uncertainty and demand response
URI https://dx.doi.org/10.1016/j.jclepro.2020.124017
https://www.proquest.com/docview/2489390641
Volume 277
WOSCitedRecordID wos000586917600162&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4f2EHRFlrZggd4CudqXo1GkSHsIekgBoxeBpMjERiIFjhWkf5F_yQ9mhqMt7pLm0IsgE-KY8jwNx6M3M4x9iEKdmlgmTixj5YTGjxyZwUflwbAXYAcj1zabSA4P09ks-zYa3bS5MJenSVmmV1fZ-X9VNYyBsjF19gHq7oTCAJyD0uEIaofjPyl-SiRBp5ILMmZ74N-pE4EFmfcqsBBnTeoldcGhmt-2Gc5coUu-tKRSzOu1MVpNyYFIokR6D1V-RrK67fOJgQbYGYlXsKJaToU-s6R1Yt_epRr17i-sWoBoJIgVVMG2M0BtCBvZZ1UfWrD28cdJVR6buuMRzWsanc9AwnE_bC8-gKGf9TCw4VuSiO-uRSjjiBLqW2PtN01fyNyCc-JS6ucvOwEFJRaTBdwO3MkEv2HSX3-38vbajtjxFFsK3CJvxOQoJicxj9iGn0RZOmYb0y_7s6_dy6vEpeLf7fr7xLGPv13Pn1yiNefAejxHz9hmoys-JYg9ZyNdvmBPBwUsX7LrKV8DG-_Bxodg4xZsHMDGB2DjHdg4go0T2HgDNk5g4wOw8QHYOKCME9h4C7ZX7Pvn_aNPB07T48NRQeivnESLVMhQJzqUno4iOMlcY4QKolDExnWlUWEoPE_GiasKEURKeoHIAikjE6Ru8JqNy6rUW4ybtMh88P4zhVOwHa8qJIo3Jk6UENssbH_mXDUF8LEPy2n-VzVvs0k37ZwqwNw3IW11mDduLLmnOWDzvqnvW53nYObx3R08ilV9kftYJCqD_w_ezkPXs8ue9I_XGzZeLWv9lj1Wl6v5xfJdA95bQnXaCQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+stochastic+optimization+model+for+electricity+retailers+with+energy+storage+system+considering+uncertainty+and+demand+response&rft.jtitle=Journal+of+cleaner+production&rft.au=Yang%2C+Shenbo&rft.au=Tan%2C+Zhongfu&rft.au=Liu%2C+ZhiXiong&rft.au=Lin%2C+Hongyu&rft.date=2020-12-20&rft.issn=0959-6526&rft.volume=277&rft.spage=124017&rft_id=info:doi/10.1016%2Fj.jclepro.2020.124017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2020_124017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon