A New Algorithm for Bilinear Spectral Unmixing of Hyperspectral Images Using Particle Swarm Optimization

Spectral unmixing is an important technique for exploiting hyperspectral data. The presence of nonlinear mixing effects poses an important problem when attempting to provide accurate estimates of the abundance fractions of pure spectral components (endmembers) in a scene. This problem complicates th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 9; H. 12; S. 5776 - 5790
Hauptverfasser: Luo, Wenfei, Gao, Lianru, Plaza, Antonio, Marinoni, Andrea, Yang, Bin, Zhong, Liang, Gamba, Paolo, Zhang, Bing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spectral unmixing is an important technique for exploiting hyperspectral data. The presence of nonlinear mixing effects poses an important problem when attempting to provide accurate estimates of the abundance fractions of pure spectral components (endmembers) in a scene. This problem complicates the development of algorithms that can address all types of nonlinear mixtures in the scene. In this paper, we develop a new strategy to simultaneously estimate both the endmember signatures and their corresponding abundances using a biswarm particle swarm optimization (BiPSO) bilinear unmixing technique based on Fan's model. Our main motivation in this paper is to explore the potential of the newly proposed bilinear mixture model based on particle swarm optimization (PSO) for nonlinear spectral unmixing purposes. By taking advantage of the learning mechanism provided by PSO, we embed a multiobjective optimization technique into the algorithm to handle the more complex constraints in simplex volume minimization algorithms for spectral unmixing, thus avoiding limitations due to penalty factors. Our experimental results, conducted using both synthetic and real hyperspectral data, demonstrate that the proposed BiPSO algorithm can outperform other traditional spectral unmixing techniques by accounting for nonlinearities in the mixtures present in the scene.
AbstractList Spectral unmixing is an important technique for exploiting hyperspectral data. The presence of nonlinear mixing effects poses an important problem when attempting to provide accurate estimates of the abundance fractions of pure spectral components (endmembers) in a scene. This problem complicates the development of algorithms that can address all types of nonlinear mixtures in the scene. In this paper, we develop a new strategy to simultaneously estimate both the endmember signatures and their corresponding abundances using a biswarm particle swarm optimization (BiPSO) bilinear unmixing technique based on Fan's model. Our main motivation in this paper is to explore the potential of the newly proposed bilinear mixture model based on particle swarm optimization (PSO) for nonlinear spectral unmixing purposes. By taking advantage of the learning mechanism provided by PSO, we embed a multiobjective optimization technique into the algorithm to handle the more complex constraints in simplex volume minimization algorithms for spectral unmixing, thus avoiding limitations due to penalty factors. Our experimental results, conducted using both synthetic and real hyperspectral data, demonstrate that the proposed BiPSO algorithm can outperform other traditional spectral unmixing techniques by accounting for nonlinearities in the mixtures present in the scene.
Author Luo, Wenfei
Gamba, Paolo
Marinoni, Andrea
Zhang, Bing
Gao, Lianru
Yang, Bin
Plaza, Antonio
Zhong, Liang
Author_xml – sequence: 1
  givenname: Wenfei
  surname: Luo
  fullname: Luo, Wenfei
  email: luowenfei@m.scnu.edu.cn
  organization: School of Geographical Science, South China Normal University, Guangzhou, China
– sequence: 2
  givenname: Lianru
  surname: Gao
  fullname: Gao, Lianru
  email: gaolr@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Antonio
  surname: Plaza
  fullname: Plaza, Antonio
  email: aplaza@unex.es
  organization: Department of Technology of Computers and Communications, Escuela Politécnica de Cáceres, University of Extremadura, Badajoz, Spain
– sequence: 4
  givenname: Andrea
  surname: Marinoni
  fullname: Marinoni, Andrea
  email: andrea.marinoni@unipv.it
  organization: Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
– sequence: 5
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  email: yangb15@fudan.edu.cn
  organization: School of Geographical Science, South China Normal University, Guangzhou, China
– sequence: 6
  givenname: Liang
  surname: Zhong
  fullname: Zhong, Liang
  email: ouly65@hotmail.com
  organization: Department of Computer and Information Engineering, Guangdong Technical College of Water Resources and Electric Engineering, Guangzhou, China
– sequence: 7
  givenname: Paolo
  surname: Gamba
  fullname: Gamba, Paolo
  email: paolo.gamba@unipv.it
  organization: Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
– sequence: 8
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  email: zb@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
BookMark eNqFkMtOAjEUhhuDiYA-AZsmrgd7mZbpEokKhogRWE9K5wyUzM12COLTywi6cOPqLP7zncvXQa2iLAChHiV9Som6e54vhm_zPiNU9pkkLIrYBWozKmhABRct1KaKq4CGJLxCHe-3hEg2ULyNNkP8Ans8zNals_Umx2np8L3NbAHa4XkFpnY6w8sitx-2WOMyxeNDBc7_JJNcr8HjpW_SV-1qazLA8712OZ5Vtc3tp65tWVyjy1RnHm7OtYuWjw-L0TiYzp4mo-E0MDxkdTDgSiQgJYsSTiLJE0MVAQ2hZoIyLuRKG7kyJtE6TUIBoFNuKE2NEESlCedddHuaW7nyfQe-jrflzhXHlTGNwoHkgoimS526jCu9d5DGxtbfdx6fsllMSdyIjU9i40ZsfBZ7ZPkftnI21-7wD9U7URYAfomBkIrQkH8BVZ-Idg
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs9060558
crossref_primary_10_1109_TGRS_2018_2815044
crossref_primary_10_1016_j_infrared_2022_104170
crossref_primary_10_1109_TGRS_2020_2988519
crossref_primary_10_1109_TGRS_2023_3341473
crossref_primary_10_3390_rs13112132
crossref_primary_10_1109_TGRS_2021_3135571
crossref_primary_10_1109_TGRS_2018_2842707
crossref_primary_10_1109_TGRS_2017_2753847
crossref_primary_10_1016_j_compag_2018_07_003
crossref_primary_10_1016_j_compeleceng_2021_107199
crossref_primary_10_1109_JSTARS_2017_2782324
crossref_primary_10_3390_rs10050801
crossref_primary_10_1109_TGRS_2019_2899826
crossref_primary_10_1080_01431161_2024_2320181
crossref_primary_10_1109_TGRS_2019_2903875
crossref_primary_10_1080_01431161_2018_1508912
crossref_primary_10_1109_MGRS_2022_3145854
Cites_doi 10.1016/j.ipl.2006.10.005
10.4095/219526
10.1109/CEC.2005.1554670
10.1109/TGRS.2011.2131145
10.1109/TSP.2012.2222390
10.1109/JSTARS.2012.2194696
10.1186/1687-6180-2012-54
10.1109/JSTARS.2015.2427517
10.1017/CBO9780511804441
10.1016/j.eswa.2010.08.009
10.1109/MHS.1995.494215
10.1109/TEVC.2007.902851
10.1155/2008/685175
10.1088/0266-5611/25/12/123003
10.1109/TGRS.2014.2319337
10.1109/TGRS.2010.2098414
10.1109/JSTARS.2014.2328872
10.1109/TIP.2012.2187668
10.1017/CBO9780511524998
10.1109/WHISPERS.2011.6080928
10.1002/9780470512517.part4
10.1109/TEVC.2008.2009032
10.1109/LGRS.2007.895727
10.1109/TGRS.2005.844293
10.1109/TGRS.2014.2336858
10.1007/978-0-387-74759-0_157
10.1109/TEVC.2006.886448
10.1109/JSTSP.2015.2416693
10.1109/MSP.2013.2279731
10.1117/12.366289
10.1109/TIP.2014.2314022
10.1109/LGRS.2010.2049334
10.1007/s11721-008-0021-5
10.1109/TEVC.2010.2093582
10.1109/36.297973
10.1109/IGARSS.2008.4779330
10.1007/978-1-4419-9170-6_2
10.1109/MSP.2013.2279274
10.1109/TEVC.2004.826069
10.1109/TGRS.2004.835299
10.1109/MLSP.2009.5306262
10.1109/TGRS.2013.2251349
10.1109/TGRS.2006.888466
10.1109/TSMCB.2009.2015054
10.1080/01431160802558659
10.1007/s11721-007-0002-0
10.1109/LGRS.2013.2278993
10.1109/TCYB.2014.2334692
10.1109/WHISPERS.2009.5289072
10.1109/TEVC.2007.896686
10.1109/IGARSS.2007.4423736
10.1515/9781400841059
10.1109/JSTARS.2014.2320576
10.1109/TGRS.2013.2242475
10.1109/JSTARS.2014.2360888
10.1109/36.911111
10.1109/TPWRS.2002.807051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2016.2602882
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5790
ExternalDocumentID 10_1109_JSTARS_2016_2602882
7569014
Genre orig-research
GrantInformation_xml – fundername: Key Research Program of the Chinese Academy of Sciences
  grantid: KZZD-EW-TZ-18
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 41571349; 41325004; 61673184; 40901232
  funderid: 10.13039/501100001809
– fundername: Major Special Project–the China High-Resolution Earth Observation System
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c342t-7395de6628d30863dc190eae4a2512356bac6bccdaafd45eeaf3c11fc5509fd33
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391468900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Jul 25 10:40:00 EDT 2025
Sat Nov 29 04:50:55 EST 2025
Tue Nov 18 22:33:10 EST 2025
Wed Aug 27 02:50:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-7395de6628d30863dc190eae4a2512356bac6bccdaafd45eeaf3c11fc5509fd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.openaccessrepository.it/record/102919
PQID 1847635053
PQPubID 75722
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSTARS_2016_2602882
ieee_primary_7569014
crossref_citationtrail_10_1109_JSTARS_2016_2602882
proquest_journals_1847635053
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
winter (ref4) 0; 3753
ref51
ref50
bonnans (ref53) 2006
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ruszczynski (ref54) 2006
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
(ref66) 2006
ref35
ref34
(ref63) 2007
vanden bergh (ref57) 2001
ref36
ref31
ref30
ref33
ref32
ref1
ref39
boardman (ref2) 0; 1
engelbrecht (ref62) 2005
van den bergh (ref38) 2001
ref24
ref23
ref26
ref25
ref64
ref20
ref22
ref65
ref21
ratnaweera (ref61) 0
ref28
ref27
ref29
rebennack (ref55) 2008
ref60
williams (ref37) 1993
References_xml – ident: ref56
  doi: 10.1016/j.ipl.2006.10.005
– ident: ref3
  doi: 10.4095/219526
– ident: ref42
  doi: 10.1109/CEC.2005.1554670
– ident: ref28
  doi: 10.1109/TGRS.2011.2131145
– ident: ref21
  doi: 10.1109/TSP.2012.2222390
– ident: ref1
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref32
  doi: 10.1186/1687-6180-2012-54
– ident: ref23
  doi: 10.1109/JSTARS.2015.2427517
– ident: ref64
  doi: 10.1017/CBO9780511804441
– ident: ref52
  doi: 10.1016/j.eswa.2010.08.009
– ident: ref36
  doi: 10.1109/MHS.1995.494215
– ident: ref48
  doi: 10.1109/TEVC.2007.902851
– ident: ref44
  doi: 10.1155/2008/685175
– ident: ref40
  doi: 10.1088/0266-5611/25/12/123003
– ident: ref29
  doi: 10.1109/TGRS.2014.2319337
– ident: ref17
  doi: 10.1109/TGRS.2010.2098414
– ident: ref35
  doi: 10.1109/JSTARS.2014.2328872
– ident: ref19
  doi: 10.1109/TIP.2012.2187668
– ident: ref14
  doi: 10.1017/CBO9780511524998
– ident: ref34
  doi: 10.1109/WHISPERS.2011.6080928
– year: 2007
  ident: ref63
– year: 2005
  ident: ref62
  article-title: Part III particle swarm optimization
  publication-title: Fundamentals Comput Swarm Intell
– ident: ref27
  doi: 10.1002/9780470512517.part4
– year: 2006
  ident: ref53
  publication-title: Numerical Optimization Theoretical and Practical Aspects
– ident: ref46
  doi: 10.1109/TEVC.2008.2009032
– ident: ref9
  doi: 10.1109/LGRS.2007.895727
– ident: ref5
  doi: 10.1109/TGRS.2005.844293
– ident: ref24
  doi: 10.1109/TGRS.2014.2336858
– start-page: 890
  year: 2008
  ident: ref55
  article-title: Ellipsoid method
  publication-title: Encyclopedia Optim
  doi: 10.1007/978-0-387-74759-0_157
– ident: ref43
  doi: 10.1109/TEVC.2006.886448
– ident: ref65
  doi: 10.1109/JSTSP.2015.2416693
– ident: ref6
  doi: 10.1109/MSP.2013.2279731
– volume: 3753
  start-page: 266
  year: 0
  ident: ref4
  article-title: N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
  publication-title: Proc SPIE Conf Imag Spectrometry V
  doi: 10.1117/12.366289
– year: 1993
  ident: ref37
  article-title: Narrow-band analyzer
– start-page: 264
  year: 0
  ident: ref61
  article-title: Particle swarm optimization with self-adaptive acceleration coefficients
  publication-title: Proc 1st Int Conf Fuzzy Syst Knowl Discovery
– ident: ref26
  doi: 10.1109/TIP.2014.2314022
– ident: ref15
  doi: 10.1109/LGRS.2010.2049334
– ident: ref41
  doi: 10.1007/s11721-008-0021-5
– ident: ref47
  doi: 10.1109/TEVC.2010.2093582
– ident: ref7
  doi: 10.1109/36.297973
– ident: ref11
  doi: 10.1109/IGARSS.2008.4779330
– volume: 1
  start-page: 23
  year: 0
  ident: ref2
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Proc 5th JPL Airborne Earth Sci Workshop
– ident: ref59
  doi: 10.1007/978-1-4419-9170-6_2
– ident: ref33
  doi: 10.1109/MSP.2013.2279274
– year: 2001
  ident: ref38
  article-title: An analysis of particle swarm optimizers
– ident: ref50
  doi: 10.1109/TEVC.2004.826069
– start-page: 111
  year: 2001
  ident: ref57
  article-title: An analysis of particle swarm optimizers
– ident: ref8
  doi: 10.1109/TGRS.2004.835299
– year: 2006
  ident: ref66
– ident: ref31
  doi: 10.1109/MLSP.2009.5306262
– ident: ref22
  doi: 10.1109/TGRS.2013.2251349
– ident: ref10
  doi: 10.1109/TGRS.2006.888466
– ident: ref51
  doi: 10.1109/TSMCB.2009.2015054
– ident: ref16
  doi: 10.1080/01431160802558659
– ident: ref39
  doi: 10.1007/s11721-007-0002-0
– ident: ref25
  doi: 10.1109/LGRS.2013.2278993
– ident: ref49
  doi: 10.1109/TCYB.2014.2334692
– ident: ref12
  doi: 10.1109/WHISPERS.2009.5289072
– ident: ref45
  doi: 10.1109/TEVC.2007.896686
– ident: ref20
  doi: 10.1109/IGARSS.2007.4423736
– year: 2006
  ident: ref54
  publication-title: Nonlinear Optimization
  doi: 10.1515/9781400841059
– ident: ref13
  doi: 10.1109/JSTARS.2014.2320576
– ident: ref18
  doi: 10.1109/TGRS.2013.2242475
– ident: ref30
  doi: 10.1109/JSTARS.2014.2360888
– ident: ref58
  doi: 10.1109/36.911111
– ident: ref60
  doi: 10.1109/TPWRS.2002.807051
SSID ssj0062793
Score 2.2343743
Snippet Spectral unmixing is an important technique for exploiting hyperspectral data. The presence of nonlinear mixing effects poses an important problem when...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5776
SubjectTerms Algorithm design and analysis
Algorithms
Computational modeling
Hyperspectral imaging
Linear programming
Mixtures
Motivation
multiobjective optimization (MO)
Multiple objective analysis
Nonlinearity
Optimization
Optimization techniques
Particle swarm optimization
particle swarm optimization (PSO)
simplex volume minimization
spectral unmixing
Title A New Algorithm for Bilinear Spectral Unmixing of Hyperspectral Images Using Particle Swarm Optimization
URI https://ieeexplore.ieee.org/document/7569014
https://www.proquest.com/docview/1847635053
Volume 9
WOSCitedRecordID wos000391468900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5UFHzxWsX1Ig8-Wu2RJs3jKl4gKuqCbyVNUndhuyt7ePx7M2l2QRTBt0KTUPpN5khmvgE41FwJLVQaRJSbgMrIbimGXIRpoVVUlCaLXKHwDb-9zZ6fxf0cHM1qYYwxLvnMHOOju8vXAzXBo7ITnmL7JDoP85yzulZrqnVZzB3BrvVHRICUMZ5hKArFiRXx1sMjpnGxY-u-x1kWf7NCrq3KD13sDMzF6v8-bQ1WvCNJWjXy6zBn-huwdOka9X42oNMiVn-RVu9lYMP_TkWsc0pOu-hUyiHBrvN4xEHa_ar7Ya0XGZTkyoakdeUlvrmurKYZEZdSQO69gJHHdzmsyJ3VM5Uv4NyE9sX509lV4LsqBCqh8TjAmzltGIszndh4JrGQiNBIQyW6OknKCqlYoZSWstQ0NUaWiYqiUtlYRpQ6SbZgoT_om20goRQaGeppFJeU00JyHmJlq-Qh1SWTTYinfzlXnnIcO1_0chd6hCKvockRmtxD04Sj2aTXmnHj7-ENRGM21APRhL0pnLnflaPcRrPIv2f1zs7vs3ZhGdeu01X2YGE8nJh9WFRv4-5oeOAE7guHX9Nr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED91ZRN7GYyCKAPmhz2SNh9OHD8WBLRa6RAfUt8ix3agUtOitGzjv8fnuJWmTZN4ixRbjvI734d99zuAb4pJrriMvYAy7VERmC2VIBdhnCsZ5IVOA1soPGSjUToe8-sGnKxrYbTWNvlMd_DR3uWruXzGo7Iui7F9En0HGzGloV9Xa630bhIyS7FrPBLuIWmM4xgKfN41Qt67ucVErqRjHPgwTcM_7JBtrPKXNrYm5mLrbR-3DZ-cK0l6NfafoaFnO_Dh0rbqfWnBY48YDUZ604d5NVk-lsS4p-R0gm6lqAj2ncdDDnI_Kye_jf0i84L0TVBa117im0FpdM2C2KQCcu1EjNz-ElVJfhhNU7oSzl24vzi_O-t7rq-CJyMaLj28m1M6ScJURSaiiQwo3NdCU4HOThQnuZBJLqUSolA01loUkQyCQppohhcqivagOZvP9D4QX3CFHPU0CAvKaC4Y87G2VTCfqiIRbQhXfzmTjnQce19MMxt8-DyrockQmsxB04aT9aSnmnPj_8NbiMZ6qAOiDYcrODO3LxeZiWeRgc9onoN_z_oKm_27q2E2HIy-f4GPuE6dvHIIzWX1rI_gvfy5nCyqYyt8r67L1rI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Algorithm+for+Bilinear+Spectral+Unmixing+of+Hyperspectral+Images+Using+Particle+Swarm+Optimization&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Luo%2C+Wenfei&rft.au=Gao%2C+Lianru&rft.au=Plaza%2C+Antonio&rft.au=Marinoni%2C+Andrea&rft.date=2016-12-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=9&rft.issue=12&rft.spage=5776&rft.epage=5790&rft_id=info:doi/10.1109%2FJSTARS.2016.2602882&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2016_2602882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon